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Preface

The attention on critical infrastructures is evolving from concerns about aging
public works (in the 1980s) to redefinition in terms of national security as a result
of increased international terrorism (after 11 September 2001) and susceptibility
against natural hazards, to unprecedented failure combinations and malicious
(cyber) attacks (during mid-2000s). Consequently, the view has broadened from
local via national/regional to global while concerns about single failure mecha-
nisms have developed into a full set of potential failures, hazards and threats. As a
result, nowadays strategies to reduce and manage vulnerabilities in critical infra-
structures and the provision of related analytical instruments have to follow an ‘‘all
hazards approach’’.

Societies have always been dependent on services provided by infrastructures,
but recently the systems involved have witnessed higher and tighter integration,
e.g., by means of pervasive use of modern information and communication
technology (ICT), changing operational environments, e.g., market liberalization,
and growing mutual dependencies. At the same time the public has become even
more dependent on the continuous service infrastructures offer (the Internet and
consumption of electricity as a common good may serve as examples). Then today,
we cannot allow many such systems to debilitate or collapse, as inconveniences
and risks are unacceptable and financial losses are huge, e.g., the 14 August 2003
blackout in North America affected 50 million people and led to 3 billion USD
insurance claims.

From the analysis point of view, it is commonly agreed that infrastructures have
become more complex and their behavior is hard to understand or predict; research
on complex networks has shown that some elements (nodes) evolve to become
more important and some structures (topologies) are more susceptible against
random failures or targeted attacks than others. Reduction of technological and
social vulnerabilities calls for better system understanding and preventive analy-
ses, efforts for which established frameworks and methods seem to be still missing
or, if available, are not properly applied.

Infrastructures are of different types and dimensions and show different
importance for our society, i.e. different degrees of criticality. This book will focus
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on large, geographically-distributed, physical-engineered networks, and particu-
larly on those of undoubted importance for at least highly industrialized countries,
such as:

– energy supply (electricity, gas)
– urban freshwater supply and wastewater treatment
– information and communication
– transport (rail, road)
– control systems (SCADA).

Most of these systems are coupled and mutually dependent on different degree
and order, difficult to understand and emulate. Very often ‘‘the system’’ consists of
a ‘‘part being under control’’ and ‘‘the control part’’ itself, using the same tech-
nology as public information and communication systems or even those directly,
i.e., the Internet for transport of data and commands. This book will reflect these
structural conditions, where appropriate, when elaborating challenges to methods
and assessing their quality/suitability.

The aim of the book is of collecting and capturing the state of knowledge in the
evolving research field of vulnerability analysis of complex physical-engineered
networks, by literature survey focused on ‘‘landmark’’ reports and making use of
ongoing authors’ work. The targeted audience encompasses students of natural and
engineering sciences at MS or PhD level, researchers in the field, non-routine
practitioners in industries and agencies as well as executives responsible for
critical infrastructure design and protection.

The book is structured according to the course of a fictitious vulnerability
analysis. At first the book introduces critical infrastructures in a top-down manner
and defines the key terms including the concept of vulnerability followed by
elaborations on characteristics of critical infrastructure such as complexity and
dimensions of interdependencies, and on challenges to methods. Approaches for
vulnerability assessment are categorized and outlined in more general terms
before—in the focal chapter—some methods for screening analysis and in-depth
analysis are presented in detail. The methods are selected according to their
eligibility to meet the challenges posed by the basic characteristics of the types of
infrastructures and the objectives of the analysis defined beforehand. Selected
methods, e.g. complex network theory, probabilistic techniques, and object-
oriented modeling, will be introduced in terms of basic approach, algorithm and
measures, and explained by means of illustrative examples; strengths and weak-
nesses will be assessed separately and finally comparatively. Well-established and
well-known methods, e.g., Petri nets, will be mentioned but not explained in detail;
reference books will be referred to.
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Chapter 1
Introduction and Definition of Key Terms

The welfare and security of each nation rely on the continuous flow of essential
goods (such as energy and data) and services (such as banking and health care). A
large-scale array of wide area, man-made systems and assets, mostly privately
owned or operated, that function collaboratively and synergistically to produce and
distribute such a flow, are called infrastructures. Those infrastructures so vital to
any country that their incapacity or destruction would have a debilitating impact on
the health, safety, security, economics, and social well-being, including the effec-
tive functioning of governments1 are called critical. A failure within one of these
infrastructures, or the loss of its continuous service, may be damaging enough to a
society and its economy, while that which cascades across boundaries has the
potential for multi-infrastructural collapse and unprecedented consequences.

Critical infrastructures (CIs) are various by nature, e.g., physical-engineered,
cybernetic or organizational systems, and by environment (geographical, natural)
and operational context (political/legal/institutional, economic, etc.).

In principle, a system can be defined as a group of interacting elements (or
subsystems) having an internal structure and comprising a unified whole. The
boundary of a system is either given or obvious or needs to be defined. Autonomy,
coherence, permanence, and organization are essential properties of systems
(Dupuy 1985).

Engineered physically networked CIs, often called lifeline systems, is the focus
of this book; examples are those providing:

– Energy (electricity, oil, and gas supply)
– Transportation (by rail, road, air, and sea)
– Information and telecommunication (such as the Internet)
– Drinking water, including wastewater treatment

1 Definition refers to President’s Commission on Critical Infrastructure Protection (1997), USA
Patriot Act (2001) and European Commission (2004) but was slightly modified by the authors.
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The system of CIs can be represented by hierarchical layers which are linked
through physical and logical relations (see Fig. 1.1 for the rail transport system).

These CIs are subject to a set of multiple hazards and potentially asymmetrical
threats (Table 1.1) disclosing weaknesses and vulnerabilities, respectively;
furthermore, they may pose risks themselves during normal operation (e.g., elec-
tromagnetic fields—EMF) or accidents (e.g., rupture of gas pipelines). Also, most
CIs have a dynamic structure, are undergoing far-reaching changes, both techno-
logical and organizational, and incorporating technologies soon after they are
(commercially) available.

As shown by experienced events, CIs are highly interconnected and mutually
dependent in complex ways, both physically and through a host of information and
communication technologies, the so-called cyber-based systems (Rinaldi et al.
2001). Identifying, understanding and analyzing these features are still major
challenges, magnified by the breadth and complexity2 of most infrastructures.

According to Rinaldi et al. (2001), dependency is defined as a unidirectional
relationship between two infrastructures, that is infrastructure i depends on
j through the link, but j does not depend on i through the same link, while
interdependency defines a bidirectional relationship, that is infrastructure
i depends on j through some links, and j likewise depends on i through the same
and/or other links.

Fig. 1.1 Hierarchical representation of the rail system

2 See Chap. 2 for definition.
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Infrastructures are not only complex but most of them show adaptive behavior;
that is, all components and the system as a whole are influenced by past experi-
ence, e.g., degradation from overuse, aging over time, by trials to improve per-
formance, e.g., of the personnel, and by adjustment to new conditions or
disturbances, e.g., automatic variation of generator output to meet actual power
loads or load-shedding (Rinaldi et al. 2001).

Infrastructure interdependencies3 have often been illustrated by a dependency
matrix (IRGC 2005; Luiijf 2008) or by representing infrastructure networks as
interconnected single planes or layers as shown in Fig. 1.2. In Fig. 1.2, parallel
lines represent individual sectors or subjects within a particular infrastructure;
solid lines connect nodes and cross-sectors in internal dependencies while dashed
lines mark interdependencies. A meaningful representation of such web of
dependencies must relate to a specific scenario; here, the flooding event and
subsequent response during Hurricane Katarina have been selected.

The vulnerability of CIs must be theoretically analyzed and assessed. While the
concept of risk is fairly mature and consensually agreed, the concept of vulnera-
bility is still evolving and not yet established. In general terms, risk refers to a
combination of the probability of occurrence (frequency F) of a specific (mostly
undesired/adverse) event leading to loss, damage or injury and its extent (conse-
quence indicators c j)

4. These quantities and their associated uncertainties are
regarded as being numerically quantifiable. Besides this quantitative side of risk,
there is a non-technical dimension accounting for the aspects of societal and
psychological risk experience and perception which are subject to changes and
contextual in nature.5 For CIs, the term risk may include the frequency of loss of
service with its resulting consequences for the people concerned.

Table 1.1 Set of multiple hazards and threats disclosing vulnerabilities of CI

Natural events such as earthquakes, hurricanes/typhoons, tornados, severe flooding, landslides or
other (increasingly) extreme weather conditions

Accidents or technical factors such as components’ failure/rupture leading to the debilitation of
plants, networks and operations

Market factors such as instability associated with major producer groups, or economic pressure
trading off security factors

Policy factors such as artificial supply limitations or negative pricing outcomes or misusing
‘‘energy’’ for political purposes

Human factors such as unintended failures of omission or commission, e.g., of system operator,
intended errors or even targeted malicious attacks, either physical or cyber

3 See Chap. 2 for further explanation.
4 See also ISO/IEC Guide 73 (ISO/IEC 2002).
5 See also German Advisory Council for Global Change (WBGU 1999) and IRGC White Paper
1 (IRGC 2005, p 141) for further details.
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The term vulnerability has been introduced as the hazard6-centric perception of
disasters that is revealed as being too limited to understand in terms of risks. A
hazard of low intensity could have severe consequences, while a hazard of high
intensity could have negligible consequences: the level of vulnerability is making
the difference (White 1974).

The concept of vulnerability seen as a global system property focuses on three
elements7:

– Degree of loss and damages due to the impact of a hazard (technical dimension)
– Degree of exposure to the hazards, i.e., likelihood of being exposed to hazards

of a certain degree and susceptibility of an element at the risk of suffering loss
and damages (the element at risk could be a technical system)

– Degree of resilience,8 i.e., the ability of a system to anticipate, cope with/absorb,
resist and recover from the impact of a hazard (technical) or disaster (social).

Fig. 1.2 Infrastructure interdependencies, illustrated for the flooding event and subsequent
response during Hurricane Katrina, USA (Pederson et al. 2006)

6 ‘‘A potentially damaging physical event, phenomenon and/or human activity, which may
cause loss of life or injury, property damage, social and economic disruption or environmental
degradation. Hazards can be single, sequential or combined in their origin and effects’’ (UN/ISDR
2004).
7 See Bouchon (2006) for further detailed explanations.
8 Resilience generally means the ability to recover from some shock, insult, or disturbance, the
quality or state of being flexible. In physics and engineering, it is defined as the physical property
of a material that can return to its original shape or position after deformation that does not
exceed its elastic limit, i.e., as its capacity to absorb energy when it is deformed and then, upon
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Figure 1.3 brings these elements together with the scenarios which may
develop depending on the system characteristics; cascading effects are shown to
possibly lead to a complete system breakdown.

In the context of the material presented in this book, we define vulnerability as a
flaw or weakness (inherent characteristic, including resilience capacity) in the
design, implementation, operation, and/or management of an infrastructure sys-
tem, or its elements, that renders it susceptible to destruction or incapacitation
when exposed to a hazard or threat, or reduces its capacity to resume new stable
conditions. The latter can be provided with a likelihood (frequency) while a
measurand for destruction or incapacitation (loss or damage, respectively) needs
specific elaborations depending on the value placed on the asset by its owner/
operator or the customer/government. For example, the vulnerability of the electric
power system might be specified in terms of changes in network characteristics
following attacks on nodes and the scale (e.g., number of nodes/lines lost) or the
duration of the associated loss. More sophistically, it can be expressed in terms of
the frequency of major blackouts (number per year) and the associated severity,
measured either in power lost or energy unserved (MW or MWh) as illustrated by
Fig. 1.4.

Therefore, this interpretation of vulnerability is closely related to the definition
of risk while another interpretation is used to describe a system component or an
aspect of a system, i.e., a component is said to be a vulnerability of a system if its

Fig. 1.3 Vulnerability elements and associated response scenarios (Bouchon 2006)

(Footnote 8 continued)
unloading, to have this energy recovered. Regarding systems resilience basically it is the potential
to remain in a particular configuration and to maintain its feedback and functions, and involves
the ability of the system to reorganize following disturbance-driven changes (Bouchon 2006).
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failure causes large negative consequences to that system (Jönsson et al. 2008).
The measure could be a ranking of components a system depends upon.

Reliability of an infrastructure of interest and availability of a service or goods
it provides are also attributes useful to subscribe the quality of infrastructure
systems. These terms are defined as follows:

• Reliability is the ability of a system or component to perform its required
functions under stated conditions for a specified period of time (mission without
maintenance). Reliability is quantitatively expressed as a probability.

• Availability is the probability of a unit to be in working state at a given time t
(includes maintenance).

The term ‘‘safety’’ is defined as the absence of a specified damage on users, the
public and the environment taking unintentional (random) triggering acts/events,
failures or faults into account while ‘‘security’’ includes threats of intentional
origin such as sabotage, cyber attacks and terrorism. The traditional security
attributes such as availability, confidentiality and integrity are often applied,
together with attributes such as privacy and accountability (see also Aven 2007).

Given the realm of single infrastructures and interdependencies, thegoals of
vulnerability analysis, and the associated modeling and simulation efforts,
could be:

1. Given a system and the end state of interest, identify the set of events and event
sequences that can cause damages and loss effects.

2. Identify the relevant set of ‘‘initiating events’’ and evaluate their cascading
impact on a subset of elements, or the system as a whole.

3. Given a system and the end state of interest, identify the set of events or
respective event sequences that would cause this effect.

4. Given the set of initiating events and observed outcomes, determine and
elaborate on (inter)dependencies (within the system and among systems) and on
coupling of different orders.

The ultimate goal is to identify obvious and, most importantly, hidden vul-
nerabilities in infrastructure systems, to be able to act for managing and reducing

Fig. 1.4 Complementary
cumulative blackout
frequencies for four different
grid load levels L-100%
(circles), 110% (stars), 120%
(triangles) and 137%
(diamonds)
(Schläpfer et al. 2008)
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them. The achievement of these goals rely on the analysis of the system, its parts
and their interactions within the system; the analysis must account for the envi-
ronment which the system lives in and operates, and finally for the objectives the
system is expected to achieve. During the development of such basic system
understanding, first vulnerabilities may have already been emerged.
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Chapter 2
Properties of Critical Infrastructures

Physical-engineered critical infrastructures (CIs) are characterized as large scale,
spatially distributed, complex networks—either open or closed. According to
Dueñas-Osorio and Vemuru (2009), these systems are made of ‘‘a large number of
interacting components (real or virtual), show emergent properties difficult to
anticipate from the knowledge of single components, are characterized by a large
degree of adaptability to absorb random disruptions and are highly vulnerable to
widespread failure under adverse conditions.’’ Indeed, small perturbations can
trigger cascades and large-scale consequences in CIs; furthermore, disruptions
may also be caused by targeted malicious attacks.

2.1 Complexity

A recent National Science Foundation (NSF) workshop report (Guckenheimer and
Ottino 2008) points at the fact that a complex system is characterized by an
internal structure which may consist, besides many interacting components, of
‘‘a network that describes which components of the system interact, multiple
scales of space and/or time, or symmetry. The components of many complex
systems are heterogeneous and form a hierarchy of subsystems.’’ Furthermore,
uncertainty is regarded as pervasive in complex systems, and its characterization
and propagation through the system as key aspects for the reliable prediction of the
system behavior and its effect and safe control.

The above attributes draw the boundary between simple and complex systems.
Less trivial is to draw a boundary between complicated and complex systems.
Table 2.1 attempts to do so by highlighting the very essence of a complex system,
which is believed to lie in the degree and modality the parts interact and the overall
behavior of the system that emerges from these. ‘‘The system must be analyzed as
a whole; decomposing the system and analyzing subsystems does not necessarily
give a clue as to the behavior of the whole’’ (Guckenheimer and Ottino 2008).
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2.2 Learning from Experience

Despite Cassandra, CIs have proved highly reliable in and beneficial for Western
societies. Nevertheless major breakdowns have occurred, illustrating the com-
plexity of system behavior and of the event sequences which may generate, and
showing the negative consequences of dependencies leading to cascading effects.

In the electrical transmission CIs, for example, the analysis of recent major
blackouts from 2003 to 2006 (Table 2.2) leads to drawing some conclusions on the
main underlying causes and to carving some patterns of common behavior:

• Technical failures (Denmark/Sweden, two independent failures), external
impacts (Tokyo, construction work; Brazil, extreme weather conditions) and
adverse behavior of protective devices (London) are important triggering
events, when not protected by the N-1 security criterion1 and/or in combination
with high-load conditions (Moscow).

Table 2.1 Characteristics of complicated versus complex systems, both entailing a large number
of highly connected components

Complicated systems (mechanical watches,
aircraft, power plants, etc.)

Complex systems (stock market, www, power
grid, etc.)

Components have well-defined roles and are
governed by prescribed interactions

Rules of interaction between the components
may change over time and may not be well
understood

Structure remains stable over the time. Low
dynamics

Connectivity of the components may be quite
plastic and roles may be fluid. Interactions
are not always obvious

No adaptation. One key defect may bring
system to a halt

System responds to external conditions and
evolves

Limited range of responses to changes in their
environment

Display organization without a central
organizing principle (self-organization/
emergence)

Decomposing the system and analyzing sub-
parts can give us an understanding of the
behavior of the whole, i.e., the whole can be
reassembled from its parts

Respond to and interact with their environment

Problems can be solved through analytical
thinking and diligence work

Inadequate information about the state of the
influencing variables, nonlinearities

Overall behavior cannot be simplified in terms
of their building blocks. The whole is much
more than the sum of its parts

1 Definition of the N-1 security criterion specifies that ‘‘any probable single event leading to a
loss of a power system element should not endanger the security of the interconnected operation,
that is, trigger a cascade of trippings or the loss of a significant amount of consumption. The
remaining network elements, which are still in operation, should be able to accommodate the
additional load or change of generation, voltage deviation or transient stability regime caused by
the initial failure.’’ (Union for the Coordination of Transmission of Electricity 2008).
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• Organizational factors such as market liberalization and short-term contracting
causing operation of the system beyond original design parameters (e.g., Great
Lakes, Italy), and stressing operation conditions such as weakening mainte-
nance work and/or inadequate integration of intermittent power generation
(e.g., Western Europe) have proven to be outstanding causes.

• As the transmission system operators (TSOs) play a decisive role with regard to
contingency management, lack of situational awareness and short-term pre-
paredness, as well as limited real-time monitoring beyond control areas and
poorly timed cross-border coordination (e.g., Great Lakes, Italy, Switzerland
(rail)) build up as aggravating factors.

• The inadequacy of the N-1 security criterion and, even more importantly, of its
inadequate evaluation/implementation in various cases have enforced attempts
to make it more stringent and legally binding.

Table 2.2 Recent major blackouts of electric power supply systems

Blackout Load
loss
(GW)

Duration
(h)

People
affected

Main causes

Aug 14,
2003

Great Lakes,
NYC

*60 *16 50 million Inadequate right-of-way
maintenance, EMS failure,
poor coordination among
neighboring TSOs

Aug 28,
2003

London 0.72 1 500,000 Incorrect line protection device
setting

Sept 23,
2003

Denmark/Sweden 6.4 *7 4.2 million Two independent component
failures (not covered by N-1
rule)

Sept 28,
2003

Italy *30 up to 18 56 million High load flow CH-I, line
flashovers, poor
coordination among
neighboring TSOs

July 12,
2004

Athens *9 *3 5 million Voltage collapse

May 25,
2005

Moscow 2.5 *4 4 million Transformer fire, high demand
leading to overload
conditions

June 22,
2005

Switzerland
(railway
supply)

0.2 *3 200,000
passengers

Non-fulfillment of the N-1 rule,
wrong documentation of
line protection settings,
inadequate alarm processing

Aug 14,
2006

Tokyo ? -5 0.8 million
households

Damage of a main line due to
construction work

Nov 4,
2006

Western Europe
(‘‘controlled’’
line cut off)

*14 *2 15 million
households

High load flow D-NL, violation
of the N-1 rule, poor inter
TSO–coordination

Nov 10,
2009

Brazil, Paraguay *14 *4 60 million Short circuit on key power line
due to bad weather, Itaipu
hydro plant (18 GW) shut
down
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