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Preface

Many important problems in mathematical physics can be modeled by means of el-
liptic partial differential equations or systems. Such equations arise in the study
of, for example, steady-state heat conduction (the Laplace equation), acoustics
(the Helmholtz equation), elasticity (the Lamé system), and electromagnetism (the
Maxwell system).

An important tool for investigating boundary value problems associated with
equations of this type is the boundary integral equation technique, which relies on
the derivation of Fredholm or quasi-Fredholm integral equations over the boundary
of the region of interest and leads to a very convenient representation of the solution.
The kernels of the ensuing integral equations are expressed in terms of a two-point
(scalar or matrix) function that is, in fact, a fundamental solution of the governing
linear differential operator.

Boundary integral equation methods are extremely useful for a variety of reasons.
First, they reduce the problem from one involving an unbounded partial differential
operator to one with an integral operator, making it much more appealing from
an analytic perspective; second, the methods are very general in that they can be
applied to any linear second-order elliptic boundary value problem with constant
coefficients; and third, the methods are attractive from a numerical point of view
because they yield closed-form solutions and, therefore, lend themselves readily to
boundary element treatment.

Boundary integral equation methods come in many versions. Thus, the classical
indirect approach seeks the solution in an appropriate form that is chosen a priori.
This method is ‘indirect’ in the sense that the unknown function in the correspond-
ing integral equation has no physical significance, being merely a convenient math-
ematical abstraction. By contrast, in the direct methods the unknown function in the
integral formulation is an actual physical quantity. For example, in elasticity the so-
lution of the integral equation may represent the displacement or the moment/stress
on the boundary of the elastic body.

Another main class of boundary integral equation methods makes use of mod-
ified fundamental solutions. This approach was developed to address problems of
existence of nonunique solutions to the integral equations derived by the classical
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viii Preface

techniques. In certain instances, integral equations formulated for boundary value
problems known to have at most one solution may themselves admit multiple so-
lutions. Intuitively, this should not be the case. For this reason, we consider ways
of modifying the standard fundamental solution so that it leads to uniquely solvable
integral equations.

This book investigates an elliptic system of equations arising in the theory of
elasticity which characterizes the stationary oscillations of thin elastic plates. The
system is obtained by assuming a Mindlin-type form (also known as Kirchhoff’s
kinematic hypothesis) for the displacements.

Approximate theories describing the bending of plates are important because
they reduce the equations of classical three-dimensional elasticity to a system in-
volving only two independent space variables, while highlighting the important
bending characteristics of the elastic structure. Such theories have been used suc-
cessfully in many practical engineering applications. The Mindlin-type model dif-
fers from the classical Kirchhoff theory in that it accounts for transverse shear de-
formation as well, thereby offering additional useful information to practitioners.

Boundary integral equation methods have been widely used in the study of var-
ious elliptic systems arising in the theory of elasticity and beyond, such as equi-
librium and dynamic problems in the process of deformation of two- and three-
dimensional elastic bodies, and the equilibrium and time-dependent bending of elas-
tic and thermoelastic plates with transverse shear deformation.

Although the equations governing the stationary oscillations of Mindlin-type
plates are related in a certain way to the equilibrium equations, the two systems
display very different characteristics. The main difference is the presence in the
oscillatory case of so-called eigenfrequencies. These are values of the oscillation
frequency for which the main homogeneous boundary value problems in a bounded
domain have nonzero solutions. The book will show how such difficulties can be
resolved and how the problems in question can be reduced to uniquely solvable
integral equations.

Here is a brief description of the contents.
Chapter 1 presents a derivation of the system of equations modeling the station-

ary oscillations of elastic plates with transverse shear deformation. A fundamental
integral formula, analogous to Green’s second identity from potential theory, is also
deduced.

The aim in Chapter 2 is to define the generalized single-layer and double-layer
plate potentials and to describe their essential properties. All subsequent discussion
of boundary value problems relies on the boundary properties of these integral func-
tions. In order to construct the potentials, a suitable matrix of fundamental solutions
is made available and its behavior, together with the behavior of a so-called matrix
of singular solutions, near the boundary of the plate is investigated.

Chapter 3 deals with the setting up and smoothness properties of a particular
solution to the inhomogeneous system obtained in Chapter 1.

In Chapter 4 we introduce the Dirichlet and Neumann problems associated with
the governing system of equations. It is natural to discuss these two problems to-
gether because they are intrinsically linked in the analysis of their solvability. Radi-
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ation conditions that ensure the uniqueness of the solutions of the exterior problems
are given, which are then shown to be satisfied by the potential functions defined in
Chapter 2. The bulk of the chapter is concerned with establishing integral represen-
tations for the regular solutions of the system, to be used later as a starting point in
the direct boundary integral equation method.

The presence of eigenfrequencies in the interior problems, which makes the sys-
tem of stationary oscillations so different from the corresponding equilibrium sys-
tem, is investigated in Chapter 5. The proof of the existence of eigenfrequencies
relies, however, on the relationship between the two systems.

Chapter 6 is concerned with the solvability of the boundary value problems men-
tioned above. This issue is approached through a classical indirect formulation that
results in quasi-Fredholm integral equations of the second kind. Unfortunately, ow-
ing to the existence of eigenfrequencies in the interior problems, the solvability of
the latter is not always guaranteed. Furthermore, the connection between the solv-
ability of the Dirichlet and Neumann problems leads to difficulties regarding the
unique solvability of the integral equations for the exterior problems as well, an
effect that, given the available uniqueness results, is not expected.

The application of the direct boundary integral equation method is the subject
of Chapter 7, where a coupled pair of equations for each problem—one a quasi-
Fredholm second-kind equation and one an equation of the first kind—is obtained.
Their analysis is simplified through the use of composition formulas relating vari-
ous boundary integral operators of interest. It is shown that, as physically expected,
each pair of equations for the exterior problems admits exactly one solution. A com-
posite equation consisting of a linear combination of the first-kind and second-kind
equations is also studied.

In Chapter 8 a theory of modified integral equations is developed. This is moti-
vated by the need for uniquely solvable equations from which the solutions of the
exterior boundary value problems can then be constructed. An indirect method is
employed, where the solutions are postulated in the form of modified potentials that
lead to quasi-Fredholm second-kind equations. Two different types of modification
are considered, with existence and uniqueness results proved for each. The chapter
concludes with a look at how uniquely solvable first-kind equations can be derived
(again, by an indirect method).

The Robin boundary value problems are introduced in Chapter 9. After the ques-
tion of uniqueness of solution has been investigated in three separate cases, integral
equation methods analogous to those used in Chapters 6–8 are also constructed for
these problems.

Chapter 10 considers a fourth type of fundamental boundary value problem asso-
ciated with the stationary oscillations of thin elastic plates, namely, the transmission
problem. The existence of the solution is proved by means of an indirect method
after some regularization of the operators involved. A more refined method of so-
lution is then described, based on a direct method in conjunction with a modified
fundamental solution.

Finally, in Chapter 11 the null field method is examined. Though, strictly speak-
ing, this is not an integral equation method, it is closely connected to much of the
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work from the preceding chapters. Facts concerning the unique solvability of the
null field equations and the completeness of certain sets of functions are presented.

Brief announcements of the some of the results discussed in the book can be
found in [58]–[69].

The methodology and results presented in this monograph should prove useful to
applied mathematicians, scientists, and engineers engaged in the research of oscil-
latory phenomena and other similar models, as well as to graduate students in those
disciplines.

We would like to express our sincerest thanks to Tom Grasso and Ben Cronin at
Birkhäuser Boston for their highly professional and efficient handling of this project.

Gavin R. Thomson Christian Constanda
A.C.C.A. The Charles W. Oliphant Professor
Glasgow, UK of Mathematical Sciences

The University of Tulsa
Tulsa, Oklahoma, USA

May 2011



Contents

1 The Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Layer Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Fundamental and Singular Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Order of Singularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3 Properties of the Potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 The Nonhomogeneous System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1 The Newtonian Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Smoothness Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Existence of the First-Order Derivatives . . . . . . . . . . . . . . . . . 24
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Chapter 1
The Mathematical Model

In this chapter we derive the system characterizing the stationary oscillations of thin
elastic plates with transverse shear deformation proposed in [56]. We assume that
the body forces have a time-harmonic form, which we substitute into the full clas-
sical three-dimensional elasticity model to obtain a time-independent system. The
so-called kinematic hypothesis is then applied and, by averaging over the thickness
of the plate, we arrive at the desired system of equations. The boundary moment–
stress operator is also defined.

The chapter concludes with the reciprocity relation, which connects the solutions
of the system in a bounded domain with the values of the displacements and of the
moments and stresses on the boundary.

Unless stated otherwise, throughout what follows Latin and Greek indices take
the values 1, 2, 3 and 1, 2, respectively, and the convention of summation over re-
peated indices is understood. Also, a superscript T denotes matrix transposition.

Consider a three-dimensional homogeneous and isotropic elastic body, and let
ti j = t ji be the internal stresses, Vj the displacements, Fj the body forces, λ and μ the
Lamé constants of the material, and ρ the (constant) mass density. If x=(x 1,x2,x3)

T

is a generic point in R
3, then the equations of motion are [56]

ti j,i(x, t)+Fj(x, t) = ρ
∂ 2Vj

∂ t2 (x, t), (1.1)

with the constitutive relations written as

ti j(x, t) = λδi jVk,k(x, t)+ μ(Vi, j +Vj,i)(x, t), (1.2)

where (. . .),i= ∂ (. . .)/∂xi and δi j is the Kronecker delta. The components of the
resultant stress vector t in a direction n = (n1,n2,n3)

T are

ti = ti jn j.

If F is of the form
F(x, t) = Re

[
f (x)e−iωt], (1.3)

1G.R. Thomson and C. Constanda, Stationary Oscillations of Elastic Plates,

A Boundary Integral Equation Analysis, DOI 10.1007/978-0-8176-8241-5_1,
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2 1 The Mathematical Model

where f is a complex-valued vector function and ω ∈ R, and if the boundary con-
ditions are separable in the same way with respect to the space and time variables,
then the body performs stationary oscillations of frequency ω , and its expected dis-
placements are of the form

V (x, t) = Re
[
v(x)e−iωt] . (1.4)

Substituting (1.3) and (1.4) in (1.1) and (1.2) yields

ti j,i(x)+ f j(x)+ρω2v j(x) = 0, (1.5)

ti j(x) = λδi jvk,k(x)+ μ(vi, j + v j,i)(x). (1.6)

These are the equations of stationary oscillations in classical elasticity [40].
Suppose that the body is an elastic plate occupying a region S̄× [−h0/2,h0/2] in

R
3, where S is a domain in R

2 bounded by a simple, closed C 2-curve ∂S and h0,
0 < h0 � diamS, is the constant thickness of the plate (see Figure 1). The bounded
domain enclosed by ∂S is denoted by S+, and we write S− = R

2\(S+∪∂S).

∂S

x3 = h0/2

x3 =−h0/2

S+S−

x1

x2

x3

Fig. 1. Geometric configuration of a plate.

We assume a Mindlin-type displacement field; that is,

vα(x1,x2,x3) = x3uα(x1,x2),

v3(x1,x2,x3) = u3(x1,x2),
(1.7)

which ensures that this model takes into account the effects of transverse shear
forces [14].

Consider the averaging operators Iα−1 and Jα−1 defined by
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(Iα−1g)(x1,x2) =
1
h0

[
xα−1

3 g(x1,x2,x3)
]x3=h0/2

x3=−h0/2,

(Jα−1g)(x1,x2) =
1
h0

h0/2∫
−h0/2

xα−1
3 g(x1,x2,x3)dx3.

Substituting the kinematic assumption (1.7) in (1.5) and writing

Nαβ = J1tαβ ,

N3α = J0t3α ,

Hα =−(J1 fα +I1t3α),

H3 =−(J0 f3 +I0t33),

we arrive at the system of equations

Nαβ ,β −N3α +ρω2h2uα = Hα ,

N3β ,β +ρω2u3 = H3,
(1.8)

where h2 = h2
0/12.

It can be shown that N3α , Nαα (α not summed) and N12 = N21 are, respectively,
the averaged transverse shear forces and averaged bending and twisting moments
with respect to the middle plane, acting on the face of a vertical cross-sectional
element of the plate perpendicular to the xα -axis [14]. Similarly, Hα and H3 are
related to the averaged body forces and moments and resultant averaged forces and
moments acting on the faces x3 =±h0/2.

Using the same averaging procedure and taking (1.7) into account, we bring the
constitutive relations (1.6) to the form

Nαβ = h2 [λuγ,γδαβ + μ(uα ,β + uβ ,α)
]
,

N3α = μ(uα + u3,α).
(1.9)

In view of (1.9), system (1.8) can now be rewritten as

Aω(∂x)u(x) = A(∂/∂x1,∂/∂x2)u(x)

+

⎛
⎝ρω2h2 0 0

0 ρω2h2 0
0 0 ρω2

⎞
⎠u(x) = H(x), (1.10)

where A(ξ1,ξ2) is the matrix⎛
⎝h2μΔ + h2(λ + μ)ξ 2

1 − μ h2(λ + μ)ξ1ξ2 −μξ1

h2(λ + μ)ξ1ξ2 h2μΔ + h2(λ + μ)ξ 2
2 − μ −μξ2

μξ1 μξ2 μΔ

⎞
⎠ , (1.11)
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u = (u1,u2,u3)
T, H = (H1,H2,H3)

T, and Δ = ξ 2
1 + ξ 2

2 . System (1.10) was derived
in [56]. The matrix operator A(∂x) defined by (1.11) arises in the equilibrium bend-
ing of plates (see [14]).

The components of the moments and stress on the boundary of the plate are

Nα = Nαβνβ ,
N3 = N3β νβ ,

(1.12)

where ν = (ν1,ν2)
T is the unit outward normal to ∂S in the middle plane of the

plate. By (1.9), equations (1.12) may be written in terms of u as

N = T (∂x)u(x).

Here, N = (N1,N2,N3)
T and T (∂x) = T (∂/∂x1,∂/∂x2), where T (ξ1,ξ2) is the ma-

trix ⎛
⎜⎝h2[(λ + 2μ)ν1ξ1 + μν2ξ2] h2(μν2ξ1 +λν1ξ2) 0

h2(λν2ξ1 + μν1ξ2) h2[μν1ξ1 +(λ + 2μ)ν2ξ2] 0

μν1 μν2 μναξα

⎞
⎟⎠ . (1.13)

A solution u of (1.10) is called regular in S± if u ∈C2(S±)∩C1(S̄±).
In what follows we assume that

λ + μ > 0, μ > 0, (1.14)

ω2 >
1
h2

μ
ρ
. (1.15)

Clearly, (1.15) indicates that we are concentrating on high-frequency oscillations.

Theorem 1.1. The system of equations (1.10) is elliptic.

Proof. Consider the matrix

Aω
0 (ξ ) =

⎛
⎜⎝

h2μΔ + h2(λ + μ)ξ 2
1 h2(λ + μ)ξ1ξ2 0

h2(λ + μ)ξ1ξ2 h2μΔ + h2(λ + μ)ξ 2
2 0

0 0 μΔ

⎞
⎟⎠ ,

which corresponds to the second-order derivatives in (1.10). Then

detAω
0 (ξ ) = h4μΔ

[(
μΔ +(λ + μ)ξ 2

1

)(
μΔ +(λ + μ)ξ 2

2

)− (λ + μ)2ξ 2
1 ξ

2
2

]
= h4μΔ

[
μ2Δ2 + μ(λ + μ)Δ2]

= h4μ2(λ + 2μ)Δ 3

= h4μ2(λ + 2μ)(ξ 2
1 + ξ 2

2 )
3.

By (1.14), detAω
0 (ξ ) > 0 for ξ �= 0, so Aω

0 (ξ ) is invertible; therefore, (1.10) is an
elliptic system [47]. ��
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The next assertion is known as the reciprocity relation.

Theorem 1.2. If u,v ∈C2(S+)∩C1(S̄+), then∫
S+

(
vTAωu− uTAωv

)
da =

∫
∂S

(
vTTu− uTT v

)
ds.

Proof. The corresponding reciprocity relation for the equilibrium bending of plates
[14] states that if u,v ∈C2(S+)∩C1(S̄+), then∫

S+

(
vTAu− uTAv

)
da =

∫
∂S

(
vTTu− uTTv

)
ds.

Consequently,

∫
S+

[
vTAu+ρω2(h2u1v1 + h2u2v2 + u3v3)

− uTAv−ρω2(h2u1v1 + h2u2v2 + u3v3)
]

da

=

∫
∂S

(vTTu− uTTv)ds,

and the required formula follows from (1.10). ��
Remark 1.1. (i) Theorem 1.1 enables us to replace the discussion of the solvability of
system (1.10) in the (two-dimensional) domain S by the analysis of the solvability of
some related integral equations on the (one-dimensional) boundary curve ∂S. This
is a distinct advantage since integral operators have ‘better’ properties than their
differential counterparts.

(ii) The reciprocity relation (Theorem 1.2) is used in the construction of repre-
sentation formulas (Chapter 4) and in the proof of existence of solutions by means
of direct methods (Chapters 7 and 8).



Chapter 2
Layer Potentials

We solve boundary value problems associated with system (1.10) (or, rather, its ho-
mogeneous version) by means of potential-type functions with a suitably chosen
kernel. In this chapter we construct a matrix of fundamental solutions for the oper-
ator Aω(∂x), which we can then use to define generalized single-layer and double-
layer plate potentials. The method used is analogous to the one employed in [14] to
construct the corresponding matrix for the operator A(∂ x) defined by (1.11), which
occurs in the study of the equilibrium bending of plates.

Later, we write the matrix of fundamental solutions in a form that allows us to de-
compose it into an infinite series of so-called wavefunctions. This form, constructed
in Theorem 2.1, is similar to the corresponding matrix in the theory of plane elasto-
dynamics [48] with the added complication of certain computational constants.

In Section 2.2 we investigate the singularities of the matrix of fundamental solu-
tions and of its associated matrix of singular solutions. Thus, in Theorems 2.3 and
2.4 we find that these singularities coincide with those of the corresponding ma-
trices from equilibrium plate theory. Therefore, the single-layer and double-layer
potentials introduced in Section 2.3 behave in the same way as the potentials con-
sidered in [14]. The important properties of these functions, used extensively in the
subsequent analysis, are contained in Theorems 2.5–2.7.

2.1 Fundamental and Singular Solutions

We construct a matrix of fundamental solutions for the operator Aω(∂x) using the
method described in [13]. If Aω∗(ξ ) is the adjoint of the matrix Aω(ξ ), then

u(x) = Aω∗(∂x)B(x), (2.1)

where B satisfies
(detAω) (∂x)B(x) = H(x). (2.2)

From (1.10) and (1.11) it follows that

7G.R. Thomson and C. Constanda, Stationary Oscillations of Elastic Plates,

A Boundary Integral Equation Analysis, DOI 10.1007/978-0-8176-8241-5_2,

© Springer Science+Business Media, LLC 2011
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detAω(ξ )

= μξ1
[
μ2ξ1(h

2Δ − 1)+ρω2h2μξ1
]
+ μξ2

[
μ2ξ2(h

2Δ − 1)+ρω2h2μξ2
]

+(μΔ+ρω2)
[
h4μ(λ + 2μ)Δ 2 + h2(λ + 3μ)(ρω2h2 − μ)Δ +(ρω2h2 − μ)2]

= μ3(ξ 2
1 + ξ 2

2 )(h
2Δ − 1)+ρω2h2μ2(ξ 2

1 + ξ 2
2 )

+ h4μ2(λ + 2μ)Δ 3 +
[
h2μ(λ + 3μ)(ρω2h2 − μ)+ρω2h4μ(λ + 2μ)

]
Δ2

+
[
μ(ρω2h2 − μ)2 +ρω2h2(λ + 3μ)(ρω2h2 − μ)

]
Δ +ρω2(ρω2h2 − μ)2

= h4μ2(λ + 2μ)Δ 3 +
[
ρω2h4μ(2λ + 5μ)− h2μ2(λ + 2μ)

]
Δ2

+ρω2h2(ρω2h2 − μ)(λ + 4μ)Δ+ρω2(ρω2h2 − μ)2.

Factoring this expression, we obtain

detAω (ξ ) = h4μ2(λ + 2μ)
(
Δ2 +

λ + 3μ
λ + 2μ

k2Δ +
μ

λ + 2μ
k2k2

3

)
(Δ + k2

3),

where

k2 =
ρω2

μ
(2.3)

and

k2
3 = k2 − 1

h2 ; (2.4)

hence,
detAω(ξ ) = h4μ2(λ + 2μ)(Δ+ k2

1)(Δ + k2
2)(Δ + k2

3), (2.5)

where

k2
1 + k2

2 =
λ + 3μ
λ + 2μ

k2,

k2
1k2

2 =
μ

λ + 2μ
k2k2

3.
(2.6)

Without loss of generality, we assume that k2
1 ≥ k2

2.
Using (2.4) and (2.6), we find that k2

1, k2
2, and k2

3 are connected by the equality

h2(k2
1 − k2

3)(k
2
2 − k2

3) = h2[k2
1k2

2 − k2
3(k

2
1 + k2

2)+ k4
3

]
= h2

(
μ

λ + 2μ
k2k2

3 −
λ + 3μ
λ + 2μ

k2k2
3 + k4

3

)

= h2(−k2k2
3 + k4

3)

= h2k2
3

(
− k2 + k2 − 1

h2

)
,

from which
h2(k2

1 − k2
3)(k

2
2 − k2

3) =−k2
3. (2.7)
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We claim that, under assumptions (1.14) and (1.15), k 2
1, k2

2, and k2
3 are real, strictly

positive, and distinct. First, k2
1 and k2

2 are the two roots of the equation

x2 +
λ + 3μ
λ + 2μ

k2x+
μ

λ + 2μ
k2k2

3 = 0.

The discriminant of this quadratic is

(λ + 3μ)2

(λ + 2μ)2 k4 − 4μ
λ + 2μ

k2k2
3

=
k2

(λ + 2μ)2

[
k2(λ 2 + 6λμ+ 9μ2)− 4μ(λ + 2μ)

(
k2 − 1

h2

)]

=
k2

(λ + 2μ)2

[
k2(λ 2 + 2λμ+ μ2)+

4μ(λ + 2μ)
h2

]

=
k2

(λ + 2μ)2

[
k2(λ + μ)2 +

4μ(λ + 2μ)
h2

]
> 0.

Consequently, k2
1 and k2

2 are real and distinct. Also, by (2.4), assumption (1.15)
implies that k2

3 > 0. By (2.6) and (1.14), this means that

k2
1 + k2

2 > 0, k2
1k2

2 > 0.

Hence, k2
1 and k2

2 are strictly positive. Finally, from (2.7) and the fact that k 2
3 �= 0 it

follows that k2
1 �= k2

3 and k2
2 �= k2

3.
Replacing, in turn, each component of H by −δ (|x− y|), where δ is the Dirac

delta distribution, and setting the other two equal to zero, from (2.1) and (2.2) we
obtain the matrix of fundamental solutions

Dω (x,y) = Aω∗(∂x)
[
t(x,y)E3

]
, (2.8)

where, by (2.2) and (2.5), t(x,y) is a solution of

h4μ2(λ + 2μ)(Δ+ k2
1)(Δ + k2

2)(Δ + k2
3)t(x,y) =−δ (|x− y|). (2.9)

We seek t(x,y) in the form

t(x,y) =
3

∑
j=1

b jH
(1)
0 (k j|x− y|), (2.10)

where H (1)
0 is the Hankel function of the first kind of order zero and the b j are con-

stants to be determined from (2.9). This Hankel function is a fundamental solution
of the Helmholtz operator and satisfies [75]

(Δ + k2
j)H

(1)
0 (k j|x− y|) = 4iδ (|x− y|). (2.11)
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From (2.10) and (2.11) we find that

(Δ + k2
3)t(x,y) = b1

[
4iδ (|x− y|)+ (k2

3 − k2
1)H

(1)
0 (k1|x− y|)]

+ b2
[
4iδ (|x− y|)+ (k2

3 − k2
2)H

(1)
0 (k2|x− y|)]+ 4ib3δ (|x− y|).

To eliminate the Dirac distribution in this equation, we require that

b1 + b2 + b3 = 0. (2.12)

Now, if (2.12) is satisfied, we see that

(Δ + k2
2)(Δ + k2

3)t(x,y)

= b1(k
2
3 − k2

1)
[
4iδ (|x− y|)+ (k2

2 − k2
1)H

(1)
0 (k1|x− y|)

]
+ 4ib2(k

2
3 − k2

2)δ (|x− y|),

so we must have

(k2
3 − k2

1)b1 +(k2
3 − k2

2)b2 = 0. (2.13)

Since t(x,y) satisfies (2.9), we obtain

− 1
h4μ2(λ + 2μ)

δ (|x− y|) = (Δ + k2
1)(Δ + k2

2)(Δ + k2
3)t(x,y)

= 4ib1(k
2
1 − k2

2)(k
2
1 − k2

3)δ (|x− y|),

from which we deduce that

b1 =
i

4h4μ2(λ + 2μ)(k2
1 − k2

2)(k
2
1 − k2

3)
. (2.14)

Substituting this into (2.12) and (2.13) yields

b2 =
i

4h4μ2(λ + 2μ)(k2
2 − k2

1)(k
2
2 − k2

3)
,

b3 =
i

4h4μ2(λ + 2μ)(k2
3 − k2

1)(k
2
3 − k2

2)
.

(2.15)

The formula for b3 can be simplified by means of (2.7):

b3 =− i

4h2μ2(λ + 2μ)k2
3

. (2.16)

These constants are well defined since the k2
j are distinct.

To calculate the matrix of fundamental solutions D ω(x,y) using (2.8), we first
need to compute Aω∗(∂x). From (1.10) and (1.11) it follows that
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Aω∗
11 (ξ ) =

∣∣∣∣h2μΔ + h2(λ + μ)ξ 2
2 − μ+ρω2h2 −μξ2

μξ2 μΔ +ρω2

∣∣∣∣
= h2μ2ΔΔ + h2μ(λ + μ)Δξ 2

2 +(ρω2h2 − μ)μΔ+ρω2h2μΔ

+ρω2h2(λ + μ)ξ 2
2 +ρω2(ρω2h2 − μ)+ μ2ξ 2

2

= h2μ2ΔΔ + h2μ(λ + μ)ΔΔ − h2μ(λ + μ)Δξ 2
1 − μ2ξ 2

1 + 2ρω2h2μΔ

+ρω2h2(λ + μ)Δ −ρω2h2(λ + μ)ξ 2
1 +ρω2(ρω2h2 − μ)

= h2μ(λ + 2μ)ΔΔ − h2μ(λ + μ)Δξ 2
1 +ρω2h2(λ + 3μ)Δ

− (μ2 +ρω2h2(λ + μ)
)
ξ 2

1 +ρω2(ρω2h2 − μ).

In the same way,

Aω∗
22 (ξ ) = h2μ(λ + 2μ)ΔΔ − h2μ(λ + μ)Δξ 2

2 +ρω2h2(λ + 3μ)Δ

− (μ2 +ρω2h2(λ + μ)
)
ξ 2

2 +ρω2(ρω2h2 − μ).

Next,

Aω∗
12 (ξ ) =−

∣∣∣∣h2(λ + μ)ξ1ξ2 −μξ1

μξ2 μΔ +ρω2

∣∣∣∣
=−

∣∣∣∣h2(λ + μ)ξ1ξ2 −μξ2

μξ1 μΔ +ρω2

∣∣∣∣= Aω∗
21 (ξ )

=−h2μ(λ + μ)Δξ1ξ2 −
(
μ2 +ρω2h2(λ + μ)

)
ξ1ξ2,

Aω∗
13 (ξ ) =

∣∣∣∣ h2(λ + μ)ξ1ξ2 −μξ1

h2μΔ + h2(λ + μ)ξ 2
2 − μ+ρω2h2 −μξ2

∣∣∣∣
=−

∣∣∣∣h2(λ + μ)ξ1ξ2 h2μΔ + h2(λ + μ)ξ 2
2 − μ+ρω2h2

μξ1 μξ2

∣∣∣∣=−Aω∗
31 (ξ )

=−h2μ(λ + μ)ξ1ξ 2
2

+
[
h2μ2Δξ1 + h2μ(λ + μ)ξ1ξ 2

2 +(ρω2h2 − μ)μξ1
]

= h2μ2Δξ1 + μ(ρω2h2 − μ)ξ1,

Aω∗
23 (ξ ) =−

∣∣∣∣h2μΔ + h2(λ + μ)ξ 2
1 − μ+ρω2h2 −μξ1

h2(λ + μ)ξ1ξ2 −μξ2

∣∣∣∣=−Aω∗
32 (ξ )

= h2μ2Δξ2 + μ(ρω2h2 − μ)ξ2.

Finally,

Aω∗
33 (ξ )

=

∣∣∣∣h2μΔ + h2(λ + μ)ξ 2
1 − μ+ρω2h2 h2(λ + μ)ξ1ξ2

h2(λ + μ)ξ1ξ2 h2μΔ + h2(λ + μ)ξ 2
2 − μ+ρω2h2

∣∣∣∣


