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Preface

Grand visions in mathematics can begin with simple observations. It is hardly
more than a homework exercise to prove that what we nowadays call the
Poincaré metric on the unit disc is invariant under the biholomorphic maps of
the unit disc to itself. But this easily established fact, when combined with the
(profound) uniformization theorem of Poincaré and Koebe, yields the striking
conclusion that, with a small number of exceptions, every Riemann surface
has a canonical complete Hermitian metric of constant Gauss curvature −1.
This result became a basic tool for the study of Riemann surfaces. From this
result also grew the whole subject of canonical metrics, an area which has
become central in transcendental algebraic geometry and in the topology of
low-dimensional manifolds.

It is natural to ask what analogue there might be in higher complex dimen-
sions of the Poincaré metric on the unit disc. Indeed, this was asked not long
after the era in the early 1900s of the uniformization theorem (Theorem 2.5.1)
and the canonical metric idea for Riemann surfaces. The higher dimensional
situation is inevitably different from the situation in complex dimension 1
because the Riemann mapping theorem fails in higher dimensions. It was
Poincaré again who showed that the unit ball in C2 was not biholomorphic to
the product of the unit disc with itself. In a similar vein, it was understood
around the same time that uniformization of algebraic surfaces was not possi-
ble in the same form as the Riemann surface result: there is no single simply
connected cover for all the algebraic surfaces with only a few exceptions, no
analogue to the unit disc being the universal cover of all but a few Riemann
surfaces. But quite early on, in the 1920s, Stefan Bergman showed how to
attach to each bounded domain in Cn, n ≥ 1, a canonical metric with the
biholomorphic invariance properties of the Poincaré metric on the unit disc:
each biholomorphic mapping of a bounded domain to itself was an isometry
of the metric, and moreover, any biholomorphic mapping of one bounded do-
main to another was an isometry of their respective metrics. Uniformization
was a failure, but invariant metrics were successful indeed.
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The Bergman metric is only numerically computable in most instances, not
given by formulas, and for some time it remained primarily an intriguing gen-
eral idea rather than a specifically useful one. But the development of the de-
tailed theory of the ∂ operator by Hörmander, Andreotti-Vesentini, Kohn, and
many others made accessible information about the behavior of the Bergman
kernel and metric, especially on strongly pseudoconvex bounded domains with
smooth boundary. The Bergman kernel is expressible directly in terms of the
solutions of ∂ that are orthogonal to holomorphic functions, and this expres-
sion means that the kernel and hence the metric can be analyzed in ∂ terms.
In particular, Fefferman’s asymptotic expansion of the Bergman kernel (1974)
near the boundary of a C∞ bounded, strongly pseudoconvex domain opened
up the possibility of realizing the grand vision of unifying complex function
theory and geometry in this case.

This unification of function theory and geometry for domains in Cn is
the subject of this book—hence its title. In particular, the use of geometric
methods yields many results about biholomorphic mappings in general and
especially about automorphisms, that is, biholomorphic maps of a domain to
itself. The fact that a biholomorphic map is an isometry means that the curva-
ture invariants of differential geometry are preserved by biholomorphic maps,
and this provides a powerful method of studying the biholomorphic mappings
themselves.

While the Bergman metric has become over the years a familiar item in
several complex variables that occurs in many texts on the subject, the study
via curvature of the geometry of the Bergman metric has been largely confined
to research papers up to now. Thus it seemed to the authors that the body
of information on this and related topics was both large enough and coherent
enough to justify its treatment in a book. That it was large enough is clear
from the length of this book. The question of being coherent we leave to the
reader, with hope for the best.

This book is not self-contained: on occasion we use, without apology and
sometimes without proof, standard results of several complex variables and
in particular of the theory of the ∂ operator. Even so, we have tried to make
the book as accessible as possible to the nonspecialist. Most of the arguments
can be followed convincingly by simply taking the unproved background re-
sults on faith, these being usually very specific and easily stated, if not easily
proven. In this sense, the book will be accessible, we hope, to anyone with
a basic background in complex analysis and differential geometry. We have
also separated out the more technical aspects of the differential geometry so
that the complex analyst can most appreciate the shape of the arguments
involving curvature by simply knowing that somehow curvature attaches dif-
ferential invariants to each point that must be preserved under isometries and
hence preserved under biholomorphic maps. Really detailed information on
differential geometry is rather seldom needed. Geodesics, for example, hardly
occur in the book at all. We have tried, in short, to make almost everything
accessible to as many readers as possible without short-changing the readers
with more specific expertise. Brave words, but we did try.
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This book is wide-ranging, though all the topics are related. And a de-
scription of the mathematical prerequisites of the book as a whole and of
the various chapters specifically may be useful. All of the book presumes ba-
sic knowledge of complex analysis in several variables, with the exception of
Chapter 2, which concerns one variable only. Especially important is some
working knowledge of normal families. A quick summary of what is needed
is given in Chapter 1. Chapter 1 also provides a summary of what is known
and needed about automorphism groups being Lie groups. These results can
be taken on faith if need be. Chapter 1 also begins to talk about Rieman-
nian metrics. Not much depth is needed here nor will be needed later about
Riemannian geometry, but the reader is presumed to have in mind what a Rie-
mannian metric is, at least. Chapter 2 is about automorphisms of Riemann
surfaces. The results there provide motivation for later developments, but as
it happens, the contents of this chapter are not explicitly used anywhere else
in the book. Again, metric concepts are used but at a quite elementary level—
Gauss curvature and some ideas about geodesics suffice. In Chapter 3, the idea
of the Bergman metric is introduced, and the geometry of the Bergman metric
is systematically exploited. The Bergman metric is by nature a Kähler metric,
but rather little is needed here about Kähler geometry in detail. Indeed, it
is not really necessary to know what a Kähler metric is. What is needed is
the realization that attached to a metric structure, a Riemannian metric in
general, are some second-order differential invariants which are preserved by
mappings that preserve the metric itself. Of course, the deeper meaning of
these curvature invariants, if known, will enhance the reader’s appreciation
of the power and elegance of their application to complex analysis. But in
the strictly logical sense, one could think of them as simply formulas, which
happened to have certain important invariance properties. The same remarks
apply to the continuation of these developments in Chapter 4.

Chapter 5 involves some considerable background in Lie group theory, es-
pecially in its second half, on the Bedford–Dadok argument. But Chapter 5
is not needed for the later parts of the book, and the reader who is so in-
clined can simply take as answered the question of which compact Lie groups
occur as the automorphism group of a smoothly bounded strongly pseudocon-
vex domain in Euclidean space—first all of them do—and skip this chapter
altogether.

Chapter 6 is similarly not needed for subsequent developments. It answers
a natural and interesting (in the authors’ view) question, and the argument
in the noncompact case is not far outside the usual ways of thinking in several
complex variables. The compact case involves some ideas from further afield,
in algebraic geometry, and can be omitted without penalty if desired.

Chapter 7 reviews some metric ideas more general than the smooth Rie-
mannian metrics that were used earlier. These more general metrics are of
fundamental importance in several complex variables and are likely somewhat
familiar to complex analysts in any case. References are given to further details
about these metrics. This material is of central importance to the whole sub-
ject, though it is not needed in subsequent chapters as such. Automorphisms
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of Reinhardt domains, the subject of Chapter 8, require some information
about Lie algebras if they are to be studied in detail, but the reader can gain
a good impression without this.

Chapters 9 and 10 are in fact the natural continuation of Chapters 3 and 4
and can be read effectively immediately after Chapter 4, with the intervening
chapters skipped. Chapters 9 and 10 introduce what is known as the scaling
method at a rather more leisurely pace than is followed in the rest of the
book, since this material is both very important and not so widely available
in systematic form. Indeed some of the material here is new. Chapter 11 looks
back on the whole book and discusses where the results could have been
stated and proved more generally. For ease of reading, many of the results in
the earlier parts of the book were stated in special cases—e.g., for domains
in Euclidean spaces rather than complex manifolds—and Chapter 11 clarifies
what additional generality holds without the introduction of fundamentally
new arguments.

This book has been under construction for some considerable time. The
authors have benefited during this effort from interactions with many col-
leagues. We thank them all. In particular, the third named author (Krantz)
thanks Alexander Isaev for his collaboration and for many helpful ideas over
the years. Several institutions have offered us mathematical hospitality during
the writing. In addition to our home institutions, we thank MSRI, the Tech-
nical University of Denmark, the American Institute of Mathematics, and
l’École Polytechnique de France (Palaiseau). We thank Ms. Ae-Ryoung Seo
of POSTECH and Mr. Felipe Garcia Hernandez of UCLA, who each read the
whole manuscript and made helpful suggestions. It goes without saying that
any remaining errors are the authors’ sole responsibility.

Some mathematical subjects begin slowly, by accumulation of many small
contributions, like a river forming from many small streams. The general idea
of the deep relationship between function theory and geometry does indeed
have many historical sources in the nineteenth century, as indicated briefly
in the opening paragraphs of this preface. But the specific subject of this
book began definitely and quite suddenly with the work of Stefan Bergman.
Without his work, this book would not have existed. We dedicate it to his
memory.

Robert E. Greene
Kang-Tae Kim

Steven G. Krantz
Los Angeles, Pohang, Saint Louis



1

Preliminaries

1.1 Automorphism Groups

A subset Ω ⊆ Cn will be called a domain if it is connected and open. The
automorphism group Aut (Ω) of Ω is by definition the set of all holomorphic
mappings f : Ω → Ω with inverse map f−1 existing and also holomorphic. The
group operation is the composition of mappings, and it is easy to check that
this binary operation makes Aut (Ω) into a group. When n = 1, it is well
known and easy to prove that f−1 will be automatically holomorphic when it
is defined. This follows from the argument principle because a locally injective
holomorphic function has nowhere zero first derivative. This result is also true
in several complex variables, but requires more effort to prove. One must show
that a locally injective, equi-dimensional holomorphic mapping has nowhere
vanishing holomorphic Jacobian determinant; from this it follows immediately
that f−1 is holomorphic. This result is conceptually fundamental, but plays
little explicit role in what follows and will not be discussed further. [See, e.g.,
[Narasimhan 1971] for a proof.]

The definition of automorphism group can obviously be extended to the
case where Ω is replaced by a complex manifold M . The same observation
applies to the redundancy of the hypothesis that f−1 be holomorphic since the
proof of that result can be performed in local coordinates. Much of the theory
of automorphism groups of domains in space can be transferred, without any
extra work, directly to the complex manifold case; we shall often treat the two
situations simultaneously. Other results are quite different for manifolds than
for domains in Cn, and we shall indicate some of these distinctions later.

Just as, in one complex variable, the study of Riemann surfaces can clarify
basic function-theoretic questions, the study of manifolds in higher dimen-
sions can clarify the situation for domains in space. However, little detailed
knowledge of complex manifold theory will be needed for the reading of this
book.

The subject of the geometry of open sets in Cn and of the geometry of
open complex manifolds in general divides itself rather naturally into two

R. E. Greene et al., The Geometry of Complex Domains, Progress in Mathematics, 
DOI 10.1007/978-0-8176-4622-6_1, © Springer Science+Business Media, LLC 2011



2 1 Preliminaries

parts. It is really two subjects. In one of these, the domains and manifolds
are such that their automorphism groups are finite dimensional and indeed
are Lie groups. In the other, the automorphism groups involve infinitely many
parameters. The one-variable, Riemann surface situation (for example) is de-
ceptively simple. The group Aut (M) when M is a Riemann surface is always
a Lie group, as we shall prove in Chapter 2. By contrast, if one takes Ω = C2,
then the group Aut (Ω) is not a Lie group but rather is infinite dimensional
in a certain sense. For example, if f : C → C is any entire function, then
(z1, z2) �→ (z1 + f(z2), z2) is an automorphism of C2.

The present book is primarily about the situations in which Aut (Ω) is a
(finite-dimensional) Lie group and satisfies an additional condition that the
action is proper in the following sense: the action map A : Aut (Ω)×Ω → Ω×Ω
defined by (ϕ, z) �→ (ϕ(z), z) is proper. That is, A−1(C) is compact for each
compact subset C of Ω × Ω. In particular, the isotropy group Ip × {p} :=
{ϕ ∈ Aut (Ω) : ϕ(p) = p} is compact for any p ∈ Ω since Ip = A−1(p, p). For
a statement like this to make sense, we need to define a topology on Aut (Ω).
The appropriate topology, which will be used throughout, is the compact-open
topology, equivalently the topology of uniform convergence on compact sets.
[It should be noted that all the complex manifolds that we shall consider in
the sequel will be paracompact; thus no topological pathologies will arise. In
particular, the compact-open topology is metrizable in this case.]

If Ω is a bounded domain in Cn, then Aut (Ω) is necessarily a Lie group.
This was proved specifically by H. Cartan ([Cartan 1935]). Our approach to
this will be via normal families and the Bochner–Montgomery theorem (The-
orem 1.3.11 below), which characterizes the subgroups of the diffeomorphism
group which are Lie groups. Our approach will also yield the properness of
the action of Aut (Ω) on Ω (Theorem 1.3.12).

Any covering-space quotient of a manifold M with Aut (M) acting prop-
erly, and in particular any covering-space quotient of a bounded domain, also
has its automorphism group acting properly. Also, any Riemann surface except
the Riemann sphere C ∪ {∞} and C itself has this proper-action property.1

In addition to bounded domains in Cn and their quotients, there are other
classes of complex manifolds for which the automorphism group action is
proper. Some aspects of this phenomenon will be considered in Chapter 7.

The role of proper action can be made explicit even at this early stage of
our development. This condition is necessary for the existence of a (smooth)
Riemannian metric for which all the elements of the automorphism group are
isometries. Actually, the condition of proper action is also sufficient for the

1That the property holds for tori and for C with one point removed is, in a sense,
accidental: for these Riemann surfaces are both covered by C, which itself does not
have the desired property that the action of the automorphism group is proper. But
all other Riemann surfaces (except the sphere and the cylinder) are quotients of the
unit disc D = {ζ ∈ C : |ζ| < 1}, and for these the general principle applies.
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existence of such an “invariant metric” [Palais 1961].2 This will be discussed
in more detail in Section 1.3.

Thus, for the domains and manifolds that we shall consider, the automor-
phism group, which is at first sight a function-theoretic object, will turn out
to be also a geometric one via the existence of an invariant metric. These mat-
ters will usually be treated here by constructing explicitly an invariant metric
rather than by appealing to the general results of Lie group theory.

In Riemann surface theory, this idea of relating function theory to geom-
etry goes back at least to Poincaré and even Riemann. In higher dimensions,
some aspects of the idea also have a long history, but many developments have
occurred in recent times as well. It is this interaction between function theory
and geometry that makes the whole subject so varied and interesting. And
while we begin with the function theory, geometry soon takes center stage and
plays a major role thereafter.

1.2 Some Fundamentals from Complex Analysis
of Several Variables

We shall use systematically the standard notational conventions for coordi-
nates in Cn, first

z = (z1, . . . , zn) and w = (w1, . . . , wn).

We shall also write

|z| =
⎛⎝ n∑

j=1

|zj |2
⎞⎠ 1

2

.

Thus a mapping from an open subset of Cn into Cm is given by an m-tuple
of complex-valued functions of n complex variables:

w = (w1, . . . , wn) = f(z) = (f1(z1, . . . , zn), . . . , fm(z1, . . . , zn)).

Such a map is, by definition, holomorphic if each of the functions fj , j =
1, . . . ,m, is holomorphic in one and hence any of the various equivalent senses
of the word “holomorphic.”

Here and elsewhere we take for granted basic elements of the theory of
functions of several complex variables, for which see [Grauert/Fritzsche 1976],
[Hörmander 1990], or [Krantz 2001] for instance. In particular, we assume that

2It is a familiar fact that the group of isometries of a (smooth) Riemannian
manifold acts properly. But the partial converse, that a properly-acting subgroup
of the group of diffeomorphisms acts as isometries for some smooth metric, is not
obvious.
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the reader is aware that, for C-valued functions f(z1, . . . , zn) defined on an
open subset of Cn, the following ideas are equivalent:

• The function f is holomorphic in each variable separately; 3

• The function f is real-continuously differentiable (C1) and satisfies the
Cauchy–Riemann equations in each variable separately;

• The function f has at each point p = (p1, p2, . . . , pn) of its domain a power
series expansion

f(z) =
∑

i1,i2,...,in≥0

ai1i2···in(z1 − p1)i1(z2 − p2)i2 · · · (zn − pn)in

which converges absolutely to f for all (z1, z2, . . . , zn) in some open neigh-
borhood of p.

As will be taken for granted here, many of the ideas of one complex variable
have more or less automatic extensions to several variables. These include the
Cauchy integral formula in several variables: recall that the polydisc Dn(p, r)
of polyradius r = (r1, . . . , rn) with rj > 0 for every j is defined to be

Dn(p, r) := {(z1, . . . , zn) ∈ Cn : |zj − pj | < rj for every j}.

If the closure cl(Dn(p, r)) of this polydisc is contained in the (open) domain of
definition of a holomorphic function f then, for each (z1, . . . , zn) in the open
polydisc,

f(z1, . . . , zn)

=
1

(2πi)n

∮
|ζ1−p1|=r1

· · ·
∮

|ζn−pn|=rn

f(ζ1, . . . , ζn)
(ζ1 − z1) · · · (ζn − zn)

dζn · · · dζ1,

where the integral is an iterated line integral. This reconstructs the power
series expansion of f around (p1, . . . , pn), by expansion of the integrand and
integration term-by-term. Differentiation of this formula under the integral
sign together with obvious estimates also yields the following, which we shall
apply repeatedly: if a sequence {fj} of C-valued holomorphic functions on an
open subset U of Cn converges uniformly on each compact subset of U , then
every derivative (of any order) of the sequence also converges uniformly on
each compact subset, and the derivative of the limit is equal to the limit of
the derivative.

This last result, which is a direct analogue of a familiar fact about one-
variable theory, will be especially important to us since, in effect, it says
that the compact-open topology for holomorphic functions is the same as the
C∞ topology. Thus sets or groups of holomorphic mappings have a natural,
unique topology. This means that the subtle questions associated to the phrase

3In the background here is the famous theorem of Hartogs that a function holo-
morphic in each variable separately is automatically continuous, indeed real analytic.
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“Hilbert’s fifth problem” play no role here; such matters are automatically
straightforward.

Hurwitz’s theorem in one variable on limits of zero-free functions has a
direct generalization to several variables: first, if fj : Ω → C, j = 1, 2, 3, . . .,
are holomorphic functions from a domain (i.e., a connected open set) in Cn

with 0 	∈ fj(Ω), and if the sequence {fj} converges uniformly on compact
subsets of Ω to a (necessarily holomorphic) limit f0 : Ω → C, then either
f0(Ω) = {0}, i.e., f0 ≡ 0, or 0 	∈ f0(Ω), i.e., f0 is nowhere zero. The proof
is obtained by observing that, if f0(z0) = 0 for some z0 ∈ Ω, then, by the
one-variable Hurwitz theorem, the function ζ �→ f0(z0 + aζ), for ζ ∈ C with
|ζ| small and for a ∈ Cn with ‖a‖ = 1, is defined and identically zero. Then
that f0 ≡ 0 follows by analytic continuation.

Since one of the main subjects of this book is self-mappings of domains
in Cn or, on occasion, complex manifolds, we have some special interest in
holomorphic mappings where domain and range have equal dimension; first,
n-tuples (f1(z1, . . . , zn), . . . , fn(z1, . . . , zn)) of holomorphic functions of n vari-
ables. Attached to this situation is the holomorphic Jacobian determinant J ,
first, the ordinary determinant of the n× n complex matrix⎛⎜⎜⎝

∂f1
∂z1

· · · ∂f1
∂zn

...
...

∂fn

∂z1
· · · ∂fn

∂zn

⎞⎟⎟⎠ .

A linear algebra calculation shows that the Jacobian determinant of the map-
ping considered as a real mapping from an open subset of R2n to R2n is |J |2.
This is a generalization of the familiar fact from one variable that the real
differential of a holomorphic function is a rotation followed by dilation by a
factor of |f ′|, so that its action on the area element is multiplication by |f ′|2.

Returning to the Cn situation in general, we see that the holomorphic
mapping from an open subset into Cn again is nonsingular as a real mapping at
a given point if and only if its holomorphic Jacobian determinant J is nonzero
at that point. Combining this observation with Hurwitz’s theorem, we see that
the limit (uniformly on compact sets) of everywhere nonsingular mappings of a
connected open set in Cn to Cn is either everywhere nonsingular or everywhere
singular. In the latter case, the limit mapping has image with empty interior
(by Sard’s theorem (Theorem 5.3.2)). This line of thought is associated to the
idea that the limit of biholomorphic mappings is either biholomorphic or in
some sense “degenerate.” This point will be explored in detail in later sections.

It is of interest to characterize holomorphic mappings in terms of their real
differentials. This is done in effect by way of the Cauchy–Riemann equations.
Let (f1(z1, . . . , zn), . . . , fm(z1, . . . , zn)) be a holomorphic mapping into Cm

defined on an open subset of Cn. Then we write fj = uj +
√−1vj , where uj ,

vj are real-valued. The Cauchy–Riemann equations are as usual

∂uj

∂x�
=

∂vj

∂y�
and

∂uj

∂y�
= −∂vj

∂x�
, j = 1, . . . ,m, � = 1, . . . , n.
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We write here, by convention, z� = x� +
√−1y�. This can be thought of

in a less coordinate-dependent fashion as follows. Identify Cn with R2n by
sending (z1, . . . , zn) to (x1, y1, . . . , xn, yn). Define an R-linear map J2n of R2n

to itself by sending (x1, y1, . . . , xn, yn) to (−y1, x1, . . . ,−yn, xn). Then the
Cauchy–Riemann equations for a map F : U → Cm, with U open in Cn, are
equivalent to

J2m ◦ dF = dF ◦ J2n,

where dF is the real differential of F considered as a C∞ function from R2n

to R2m.
This characterization of holomorphicity has an immediate consequence

that is important for the theory of complex manifolds. first, if two complex
local coordinate systems (z1, . . . , zn) and (w1, . . . , wn) are holomorphically
related, then the J operator determined from the z-coordinates is the same
operator as the J operator determined from the w-coordinates. The meaning
of this assertion is familiar in Riemann surface theory: J is rotation by 90◦

counterclockwise in the orientation determined by the Riemann surface struc-
ture. The meaning of this is the same in any holomorphic coordinate system
because the real differential of the coordinate change is orientation-preserving
and conformal. In higher dimensions, there is again a coordinate-invariant op-
erator J on the real tangent space at each point of a complex manifold. This
operator corresponds to the J operator in any coordinate system, and the ob-
servation in the previous paragraph shows that it is independent of coordinate
choice.

The J operator thus obtained provides a way to connect real Rieman-
nian geometry with complex behavior, since J is a real (1, 1) tensor but it
completely determines which (locally defined) functions are holomorphic. This
approach to the geometry of complex manifolds is presented systematically
in, e.g., [Greene 1987], [Wells 1979]; see also [Kobayashi/Nomizu 1963].

1.3 Normal Families and Automorphisms

Let D ⊂ C denote the open unit disc {ζ ∈ C : |ζ| < 1}. Also D(p, r) ⊂ C
denotes the open disc with radius r centered at p. For r > 0 we let

Dn(0, r) ≡ D(0, r)× · · · ×D(0, r)︸ ︷︷ ︸
n times

.

Further, if p = (p1, . . . , pn) ∈ Cn and r > 0, then

Dn(p, r) ≡ D(p1, r)× · · · ×D(pn, r).

If f : D → D ⊂ C is a holomorphic function with f(0) = 0 and |f ′(0)| = 1,
then f has the form f(z) = f ′(0)z. In particular, if f ∈ Aut (D) and if such
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an f has f ′(0) = 1, then f(z) = z. This is part of the classical Schwarz
lemma. The following result is a direct generalization to several variables, and
to arbitrary bounded domains. There are many possible generalizations of the
Schwarz lemma, some of which will be discussed later on in this book, but
this one is the one that will play the most direct role in our investigations.
For example, it will enable us to see that, if Ω is a bounded domain, then
Aut (Ω) has compact isotropy group at each point.

Theorem 1.3.1 (H. Cartan). Suppose that Ω is a bounded domain in Cn.
Let φ : Ω → Ω be holomorphic and suppose that, for some p ∈ Ω, φ(p) = p
and dφ(p) = id. [Here dφ is the n-dimensional complex differential.] Then φ
is the identity mapping from Ω to itself.

Boundedness of Ω is an essential hypothesis: consider the automorphism
of C2 given by (z1, z2) �→ (z1 + z2

2 , z2).

Proof of Theorem 1.3.1. We may assume that p = 0 (the origin). For proof
by contradiction, assume that φ does not coincide with the identity mapping.
Expanding φ in a power series about p = 0 (and remembering that φ is
vector-valued, hence so is the expansion) yields

φ(z) = z + Pk(z) + O(|z|k+1),

where Pk is the first nonvanishing homogeneous polynomial (of degree k)
of order exceeding 1 in the Taylor expansion. Defining φj(z) = φ ◦ · · · ◦ φ
(j times); direct computation then gives that

φ2(z) = z + 2Pk(z) + O(|z|k+1)
φ3(z) = z + 3Pk(z) + O(|z|k+1)

...
φj(z) = z + jPk(z) + O(|z|k+1).

Choose polydiscs Dn(0, a) ⊆ Ω ⊆ Dn(0, b). The Cauchy estimates imply
then that, for any multi-index α = (α1, . . . , αn) with |α| := α1 + · · ·+αn = k,

j ·
∣∣∣∣( ∂

∂z

)α

φ
∣∣∣
0

∣∣∣∣ =
∣∣∣∣( ∂

∂z

)α

φj
∣∣∣
0

∣∣∣∣ ≤ n · b · α!
ak

,

where (
∂

∂z

)α

=
∂α1

∂zα1
1
· · · ∂

αn

∂zαn
n

.

Note that the rightmost item in this estimate is independent of j. Hence,
for each such multi-index α with |α| = k, (∂/∂z)αφ

∣∣
0 = 0. Thus Pk = 0,

a contradiction. ��
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This argument in particular applies when the dimension n = 1 and the
domain Ω is the unit disc. There it gives a conceptually direct proof of the
corresponding part of the classical Schwarz lemma.

Cartan’s result has some further immediate but surprising consequences.

Corollary 1.3.2. Suppose that Ω is a bounded, circular domain in Cn, that
is (eiθz1, e

iθz2, . . . , e
iθzn) ∈ Ω whenever (z1, z2, . . . , zn) ∈ Ω for every θ ∈ R.

If 0 ∈ Ω and f ∈ Aut (Ω) with f(0) = 0, then f is a linear mapping.

Proof. For θ ∈ R and z ∈ Ω, let F (z) = e−iθf(eiθz). Then F ∈ Aut (Ω),
since Ω is circular. By the chain rule it follows that

d(f−1 ◦ F )
∣∣
0 = id.

Hence

f−1 ◦ F = id

on Ω, or equivalently f = F . If we write f = (f1, . . . , fn), F = (F1, . . . , Fn),
and

fj(z) =
+∞∑

|N |=1

aNzN

is the Taylor expansion of fj , then the Taylor expansion of Fj is, by definition
of F and by substitution,

Fj =
+∞∑

|N |=1

e−iθaNei|N |θzN .

But Fj = fj . Therefore ei(|N |−1)θaN = aN for all multi-indices N and all
θ ∈ R. This implies that aN = 0 for |N | ≥ 2.4 Thus each fj is linear. ��

It is easy to modify this argument to show that, if Ω1, Ω2 are two bounded,
circular domains containing the origin 0 and if F : Ω1 → Ω2 is biholomorphic
with F (0) = 0, then F is linear. This immediately implies that, when n ≥ 2,
the unit ball {(z1, . . . , zn) : |z1|2 + · · · + |zn|2 < 1} and the unit polydisc
{(z1, . . . , zn) : |zj | < 1, j = 1, . . . , n} are not biholomorphic: If there were a
biholomorphic map between them, then applying suitable biholomorphic maps
to each variable in the unit polydisc separately would produce a biholomorphic
map that took 0 to 0. This would then have to be linear, which is not possible,
since, e.g., the ball has smooth boundary and the polydisc does not (when
n ≥ 2). Thus the direct analogue of the Riemann mapping theorem fails
in Cn, n ≥ 2: (bounded) domains can be homeomorphic to the ball without
being biholomorphic to it. This failure, even for small perturbations of the
ball, will be explained in much more detail in later chapters.

4Here N = (n1, . . . , nn) and |N | = n1 + · · · + nn.
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The second corollary will play an important role in what follows.

Corollary 1.3.3. If Ω is a bounded domain in Cn and p ∈ Ω, then the
mapping

f �−→ df
∣∣
p

is an injective homomorphism of the group

Ip ≡ {f ∈ Aut (Ω) : f(p) = p}
into GL(n,C).

Proof. If df
∣∣
p

= dg
∣∣
p

for f, g ∈ Ip, then the chain rule gives that d(f−1◦g)∣∣
p

=
id, where the identity map id is given by the n × n identity matrix In ∈
GL(n,C). By Theorem 1.3.1, f−1 ◦ g : Ω → Ω is the identity mapping. Hence
f ≡ g. We conclude that f �→ df

∣∣
p

is injective on Ip. The homomorphism
property is a special case of the chain rule. ��

If a group G acts on a space X through an action G × X → X, and
if x ∈ X, then the orbit Ox of the point x is the set {gx : g ∈ G}. In a
natural sense the orbit is the image of the group G. Indeed, Ox is naturally
identified with the quotient G/Ix, where Ix = {g ∈ G : gx = x}. We shall
be particularly interested in boundary points that are accumulation points of
some orbit for the action of the automorphism group Aut (Ω) on Ω. If the
orbit Ox ⊆ Ω, considered as a point set, has a boundary point p ∈ ∂Ω as an
accumulation point then we call p a boundary orbit accumulation point. These
will be discussed in detail in Section 1.5.

Corollary 1.3.3 immediately yields the following observation. Fix p0 ∈ Ω.
Then each f ∈ Aut (Ω) is uniquely determined by f(p0) and df |p0 . Now the
possibilities for f(p0) range at most over Ω and for df |p0 over Cn2

(identifying
df |p0 with its complex n × n matrix). So in a general sense Aut (Ω) is pa-
rameterized by a subset of Cn ×Cn2

. Thus one might expect Aut (Ω) to be a
finite-dimensional group, and hence a Lie group. This expectation turns out to
be justified. But of course this depends on adding the topology into the picture
of Aut (Ω): as it stands, this “parameterization” is only set-theoretic. We have
already discussed the appropriate topology for Aut (Ω), first the compact-open
topology. Clearly the association f �→ (f(p0), df |p0) ∈ Cn ×Cn2

is continuous
(for the second factor, by Cauchy estimates). To pursue this matter further,
we shall need some results from normal families, to which we shall turn next.

Among results also associated to normal families and the closure properties
of the group Aut (Ω), when Ω is a bounded domain in Cn, the following
principle will in particular play an important role in our later considerations.
While in a sense this is just an application of standard normal families ideas,
the details are surprisingly subtle in this general, multi-variable situation.

Theorem 1.3.4 (Normal Families of Automorphisms). Let Ω be a
bounded domain in Cn. If {fj} is a sequence in Aut (Ω) which converges
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uniformly on compact subsets of Ω and if, for some p0 ∈ Ω, the limit
limj→∞ fj(p0) is a point of Ω, then the limit holomorphic mapping f0 ≡
lim fj : Ω → cl(Ω) has image equal precisely to Ω and f0 ∈ Aut (Ω).

Without the hypothesis about the point p0, the conclusion can fail. For
example, if Ω = D = {z ∈ C : |z| < 1} and

fj(z) =
z − (1− 1/j)
1− (1− 1/j)z

,

then fj ∈ Aut (Ω), but

lim fj = the constant function −1.

In one complex variable, such “degenerate limits,” where lim fj(p0) ∈ cl(Ω)\Ω
for some p0 and hence (by the theorem) all p0 ∈ Ω, are necessarily constant
functions. This is an easy consequence of Hurwitz’s theorem on the limits
of sequences of zero-free holomorphic functions. For, suppose to the contrary
that lim fj(p0) = q ∈ cl(Ω) \ Ω. Then the limit of the zero-free functions
fj(z)− q for z ∈ Ω has a zero at p0 and is hence ≡ 0 on Ω.

This argument indeed shows that, under the hypotheses of the theorem,
lim fj is “interior,” i.e., (lim fj)(Ω) ⊂ Ω, in the one-variable case. But the
argument needed in general (i.e., higher dimensions) is much more intricate—
even though Hurwitz’s theorem on limits of sequences of zero-free holomorphic
functions continues to play a role.

Proof of Theorem 1.3.4. Let Jfj be the holomorphic Jacobian determinant
of fj as discussed earlier. Then Jfj is zero-free on Ω. Write f0 for the limit
of the fj . By Hurwitz’s theorem, Jf0 is either identically 0 or is zero-free. To
rule out the first possibility, we show that Jf0(p0) 	= 0. For this, note that

Jf0(p0) = lim
j→∞

Jfj (p0) = lim
j→∞

1
Jgj (fj(p0))

,

where gj ≡ f−1
j .

Since lim fj(p0) exists by hypothesis and belongs to Ω, it follows that
the set {fj(p0)} belongs to a compact subset of Ω. Indeed it belongs to
{limj fj(p0)}∪{fj(p0)}, which is surely compact. By Cauchy estimates, Jgj is
bounded on this compact set. Thus limj 1/Jgj (fj(p0)) 	= 0, and that is what
we wanted.

It would be pleasant if the fact that we just established, first that Jf0 is
zero-free on Ω, implied immediately that f0(Ω) ⊂ Ω. In the special case that
Ω has a “nice boundary” (e.g., a regularly embedded C2 hypersurface in Cn),
the result would actually follow. For in that case Jf0 being nowhere zero
implies that f0(Ω) is open in Cn and for a domain Ω with smooth boundary,
every subset of the closure cl(Ω) of Ω that is open in Cn is contained in Ω. But
of course in a more general setting, wherein the boundary of Ω is not smooth,
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cl(Ω) can in fact contain points of cl(Ω) \Ω in its interior (e.g., consider the
case of Ω a punctured open ball). Thus a more refined argument is needed.

Fix a point p ∈ Ω. Then Jf0(p) 	= 0 and of course the entire holomor-
phic Jacobian matrix of first derivatives of fj at p converges to the matrix
for f0, which is nonsingular. Moreover, the second derivatives of the fj on
any fixed, closed ball cl(Bn(p, ε)) ⊂ Ω, ε > 0, are bounded uniformly in j by
Cauchy estimates. Now it follows from the inverse function theorem (see, e.g.,
[Krantz/Parks 2002]) that there is a δ > 0 such that fj(Ω) contains an open
ball of radius δ around fj(p). Here δ can be taken to be independent of j. In
particular, since fj(Ω) = Ω, the distance of fj(p) to Cn\Ω is at least δ for all j.
It follows that limj fj(p) = f0(p) is in Ω, not in cl(Ω) \Ω. Thus, f0(Ω) ⊂ Ω.

Now that we know that f0 is “interior,” i.e., it maps the interior points
to the interior points and hence no interior points are mapped to a boundary
point, we want to show that f0 ∈ Aut (Ω), i.e., that f0 : Ω → Ω is one-to-one
and onto. Passing to a subsequence if necessary, we can suppose that {gj} =
{f−1

j } converges uniformly on compact subsets to a limit g0 : Ω → cl(Ω). Our
next goal is to show that g0 is interior. By the argument used to show that f0
was interior, it suffices to show that g0(f0(p0)) belongs to Ω, not to cl(Ω)\Ω.

For this, choose λ > 0 such that the closed ball cl
(
Bn(f0(p0), 2λ)

) ⊂ Ω.
Notice that fj(p0) ∈ cl

(
Bn(f0(p0), λ)

)
whenever j is sufficiently large. Hence,

by Cauchy estimates, there is a constant M > 0, independent of j, such that

‖gj(fj(p0))− gj(f0(p0))‖ ≤M‖fj(p0)− f0(p0)‖
for all j sufficiently large. But gj(fj(p0)) = p0. Hence

‖p0 − gj(f0(p0))‖ ≤M‖fj(p0)− f0(p0)‖.
Since the righthand side goes to 0 as j → +∞, so does the lefthand side and
hence

g0(f0(p0)) = lim
j→∞

gj(f0(p0)) = p0.

We conclude that g0(f0(p0)) ∈ Ω and therefore g0 is interior.
We now must show that f0 ◦ g0 : Ω → Ω and g0 ◦ f0 : Ω → Ω are both

identity maps of Ω to Ω. This of course will establish that f0 ∈ Aut (Ω). This
final result is a consequence of the next lemma.

Lemma 1.3.5. If {fj : Ω → Ω} and {gj : Ω → Ω} are sequences of holomor-
phic mappings which converge uniformly on compact subsets of Ω to interior
limits f0 : Ω → Ω and g0 : Ω → Ω, then the sequence {gj ◦ fj : Ω → Ω}
converges uniformly on compact subsets of Ω to g0 ◦ f0 : Ω → Ω.

Assuming this lemma for the moment, we may apply it to fj and gj as
before. Since gj ◦ fj is the identity map of Ω to Ω, for all j, it follows that
g0 ◦ f0 is also the identity map. Applying the lemma again with the roles of f
and g interchanged gives that f0 ◦ g0 is the identity. This completes the proof
of the theorem. Thus, it remains to prove the lemma.
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Proof of Lemma 1.3.5. Suppose that K ⊂ Ω is a compact subset. Then choose
ε > 0 such that

Lε ≡ {z ∈ Ω : ‖z − w‖ ≤ ε for some w ∈ f0(K)}

is a compact subset of Ω. This choice is possible since f0(K) is a compact
subset of Ω. For all j sufficiently large, fj(K) ⊂ Lε. Furthermore, the mem-
bers of {gj} are uniformly Lipschitz continuous on Lε by Cauchy estimates.
Thus, for z ∈ K and j large, there is a j-independent constant M such that

‖gj(fj(z))− g0(f0(z))‖ ≤ ‖gj(fj(z))− gj(f0(z))‖+ ‖gj(f0(z))− g0(f0(z))‖
≤ M‖fj(z)− f0(z)‖+ ‖gj(f0(z))− g0(f0(z))‖.

Now ‖fj(z) − f0(z)‖ → 0 uniformly for z ∈ K. Also, since {f0(z) : z ∈
K} is compact, ‖gj(f0(z)) − g0(f0(z))‖ → 0 uniformly for z ∈ K. Thus
limj gj(fj(z)) = g0(f0(z)) uniformly for z ∈ K as required. ��

The proof of Theorem 1.3.4 is now complete. ��
Corollary 1.3.6. For each p ∈ Ω, the orbit Op := {f(p) : f ∈ Aut (Ω)} is
closed in Ω.

Proof. We need to show that, if {fj(p)} converges to q ∈ Ω, then q ∈ Op,
i.e., that q = f(p) for some f ∈ Aut (Ω). Choose a subsequence of {fj}
which converges uniformly on compact subsets of Ω to f : Ω → cl(Ω).5 By
Theorem 1.3.4, f ∈ Aut (Ω) and clearly f(p) = limj fj(p) = q. ��
Corollary 1.3.7. The injective homomorphism f �→ df |p of Ip (the isotropy
group {f ∈ Aut (Ω) : f(p) = p}) onto dIp is a homeomorphism of Ip (in the
compact-open topology) onto a compact subgroup of GL(n,C).

Proof. That f �→ df |p is an injective homomorphism of Ip onto dIp has al-
ready been established (Corollary 1.3.3). The continuity is an immediate con-
sequence of the Cauchy estimates for first derivatives. For the compactness,
note that a sequence {dfj |p : fj ∈ Ip} has a subsequence {dfjk

|p : fjk
∈ Ip}

for which {fjk
} converges uniformly on compact subsets of Ω and, by The-

orem 1.3.4, to an element f0 ∈ Aut (Ω) that fixes p. Again by the Cauchy
estimates, dfjk

|p converges in GL(n,C) to df0|p ∈ dIp. ��
The compactness part of Corollary 1.3.7 is a special case of a more general

result which has essentially the same proof.

Corollary 1.3.8. If K is a compact subset of Ω and p ∈ Ω, then {f ∈
Aut (Ω) : f(p) ∈ K} is a compact subset of Aut (Ω).

5We shall use the notation cl(Ω) for the closure of Ω, instead of the more famil-
iar Ω, to avoid confusion with the complex conjugate.
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Proof. Let {fj} be a sequence in Aut (Ω) with fj(p) ∈ K for all j. Since K is
compact, we see by passing to a subsequence (still called fj) that limj fj(p)
exists and lies in K. By normal families considerations, a further passage to a
subsequence yields a sequence that converges uniformly on compact sets. By
Theorem 1.3.4, this sequential limit is itself an automorphism. Obviously this
limit takes p to some point in K. ��

Corollary 1.3.9. If, for some p ∈ Ω, {f(p) : f ∈ Aut (Ω)} is compact, then
Aut (Ω) is compact.

Proof. In the corollary before this one, we simply take K = {f(p) : f ∈
Aut (Ω)}. ��

For all p ∈ Ω, {f(p) : f ∈ Aut (Ω)} is compact if Aut (Ω) is compact, just
because for a given p the mapping

F : Aut (Ω)→ Ω

f �→ f(p)

is continuous. Thus we have proved the following result.

Proposition 1.3.10. If one orbit of Aut (Ω) is compact, then Aut (Ω) is com-
pact and all of its orbits are compact.

We know from Corollary 1.3.6 that any orbit of Aut (Ω) is closed in Ω.
Thus the only way that an orbit of Aut (Ω) can be noncompact is to “run out
to the boundary” of Ω, i.e., the closure must contain an element of cl(Ω) \Ω.
One of the main points of the present book is to study what happens when
Aut (Ω) is noncompact. And one of the main approaches will be to study
cl(Ω) \Ω in a neighborhood of such a “boundary orbit accumulation point,”
that is, an element of cl(Ω) \ Ω that lies in the closure of some orbit of the
automorphism group action.

We now see that the automorphism group of a bounded domain is a (finite-
dimensional) Lie group. For this we shall use the following general theorem.

Theorem 1.3.11 ([Bochner/Montgomery 1946]). Let G be a subgroup
of the diffeomorphism group of a smooth manifold. If it is locally compact,
then G is a Lie group.

When the action of the automorphism group is proper, the group is neces-
sarily locally compact. first, as before, we define the action map A : Aut (Ω)×
Ω → Ω×Ω by A(ϕ, z) = (ϕ(z), z). Then A−1 of a compact-closure neighbor-
hood of (z, z) for any z ∈ Ω has compact closure in Aut (Ω) × Ω, when A is
a proper map. This gives a compact-closure neighborhood of the identity in
Aut (Ω), by projection to the first factor of Aut (Ω)× Ω. Thus to show that
Aut (Ω) is a Lie group when Ω is a bounded domain in Cn, it suffices, in the
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presence of the Bochner–Montgomery theorem (Theorem 1.3.11), to show:

Theorem 1.3.12. If Ω is a bounded domain in Cn, then the action of Aut (Ω)
on Ω is proper, i.e., the map (ϕ, z) �→ (ϕ(z), z) : Aut (Ω) × Ω → Ω × Ω is
proper.

Proof. Properness means explicitly that, if C ⊂ Ω × Ω is a compact set,
then {(ϕ, z) : (ϕ(z), z) ∈ C} is a compact set in Aut (Ω) × Ω. To check this
property for Aut (Ω), suppose that {(ϕj , zj) : j = 1, 2, . . .} is a sequence
with (ϕj(zj), zj) ∈ C for all j. Passing to a subsequence if necessary, one can
assume that {zj} converges to a point z0 ∈ Ω and that the sequence {ϕj(zj)}
converges to w0 ∈ Ω.

Since Ω is bounded, Cauchy estimates imply that ϕj(z0) converges to w0:
in more detail, this follows by noting from the Cauchy estimates that, for some
ε > 0, B(z0, 2ε) ⊂ Ω, so that there is a constant M > 0 independent of j such
that the norm of the (real) differential of ϕj is less than M at each point of
B(z0, ε). Thus the distance from ϕj(zj) to ϕj(z0) is bounded by M‖zj − z0‖,
and hence goes to 0.

Since ϕj(z0) converges now to w0 ∈ Ω, it follows from Corollary 1.3.8 that
{ϕj} has a subsequence that converges to some ϕ0 ∈ Aut (Ω). The compact-
ness of {(ϕ, z) : (ϕ(z), z) ∈ C} has thus been established. ��

Corollary 1.3.13. If Ω is a bounded domain in Cn, then Aut (Ω) is a Lie
group.

Proof. Combine Theorem 1.3.12 with the Bochner–Montgomery theorem
(Theorem 1.3.11). ��

As already noted at the end of Section 1.1, this result implies, from the
result of Palais [Palais 1961], the existence of a smooth Riemannian metric
on Ω invariant under Aut (Ω). Averaging this with respect to the almost
complex structure produces a Hermitian metric on Ω invariant under Aut (Ω).
In Chapter 3, an explicit construction of such a metric will be presented, but
it is worth noting that the existence of such an invariant metric is guaranteed
by the general principles we have discussed.

The general situation just described gives at least a philosophical idea of
why Aut (Ω) is a Lie group when Ω is a bounded domain. The precise version
of this idea is Theorem 1.3.11 by Bochner and Montgomery. The main point
is to describe the elements of G := Aut (Ω) locally, in a neighborhood of the
identity element, by a finite number of parameters so as to make the group
itself a manifold (of finite dimension). A way to think of this is to look for a
point of minimal isotropy dimension. This idea makes sense because all the
isotropy groups are closed subgroups of GL(n,C) (actually U(n)), so the idea
of dimension is just submanifold dimension. If p is such a point, and its orbit
Op := {γ(p) : γ ∈ G}, then elements γ near the identity can be determined by
specifying γ(p), which is near p, and dγ

∣∣
p
, which is near the “identity map,”
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where the “identity map” is just the map from the tangent space at p to the
tangent space at γ(p) arising from the coordinates in Cn. The set of such dγ
in Euclidean coordinates is a submanifold of GL(n,C), although it is not in
general a subgroup (if γ(p) 	= p). Using submanifold coordinates from that
observation and submanifold-of-Cn coordinates of Op near p gives a local
parameterization of G = Aut (Ω) near the identity.

This picture will be clearer if one thinks of the case of Ω the unit disc and
p = 0. Let γ be an element of Aut (Ω). Near the identity, we can parameterize
Aut (Ω) by the image γ(0) together with dγ

∣∣
0. The set of such dγ

∣∣
0 (when

γ(0) is near 0) is a submanifold of GL(1,C) = C \ {0}. It generally is not a
subgroup:

{dγ∣∣0 : γ(0) = a} = {ωT−a

∣∣
0 : |ω| = 1},

where T−a ∈ Aut (Ω) is defined by T−a(z) = (z+a)/(1+az). But we still get
a legitimate smooth parameterization of Aut (Ω) near the identity.

The reader is invited to consider the corresponding local parameterization
of Aut (Ω) when Ω is the unit ball in C2—after this group is discussed in
some detail in the next section.

Note that one obtains here a view of the general fact that, for G = Aut (Ω),

dimOp + dim (Ip) = dim G,

when

Op = orbit of p = {γ(p) : γ ∈ G}.

[This holds in general: the restriction to minimal isotropy, maximal orbit di-
mensions we made was just for convenience of visualization purposes.]

A closed subgroup of GL(n,C) which acts on Cn isometrically is necessarily
a closed subgroup of U(n) and is hence compact. Conversely, if a subgroup of
GL(n,C) is compact, then there is a Hermitian metric on GL(n,C) for which
the subgroup acts isometrically and hence belongs to the U(n) associated to
the Hermitian metric. This follows from a standard argument using averaging
of the standard metric with respect to the group action of the given subgroup
of GL(n,C).

The fact that every compact subgroup of GL(n,C) acts isometrically rela-
tive to some Hermitian metric combined with Corollary 1.3.7 implies that, at
each point p ∈ Ω, there is a Hermitian metric for which Ip acts isometrically
on the tangent space at p. This strongly suggests that one ought to seek a
Hermitian metric on Ω which is Aut (Ω)-invariant. In other words, one ought
to look for a C∞ family hp, p ∈ Ω, of Hermitian metrics such that, for all
γ ∈ Aut (Ω) and p ∈ Ω, the map dγ

∣∣
p

from the tangent space at p with metric
hp is an isometry onto the tangent space at γ(p) with metric hγ(p). Indeed,
it even suggests a way to do this: for some selection of distinguished points
p, one in each orbit, choose hp more or less arbitrarily except that in some
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sense it varies nicely with the choices of orbit. Then, for q in the orbit of such
a point p, determine hq by the requirement that dγ

∣∣
p

must be isometric for
a γq with γq(p) = q. This is well defined by Corollary 1.3.7, independently of
which γq is chosen. Thus the only question is whether this can be done so that
the resulting metric on all of Ω is C∞. This involves finding smooth “slices”
for orbits. This is the point addressed in [Palais 1961]. But since we shall
construct such Aut (Ω)-invariant metrics directly later on, we leave Palais’s
general construction as a philosophical observation.

1.4 The Basic Examples

In this section we shall collect a number of examples for which the auto-
morphism groups are obtained explicitly. Some of these are well known and
elementary, and the derivations of their automorphism groups need be out-
lined only briefly. But it will be convenient to have them all in one place; and
looking at them all at once will suggest various paths of exploration that we
follow later.

(1) Aut (C) = {z �→ az + b : a, b ∈ C, a 	= 0}.
If f : C→ C is injective, then the only possible singularity of f at∞ is a
simple pole. If instead ∞ were a removable singularity, then f would be
constant by Liouville’s theorem. If∞ were an essential singularity, then f
would not be injective in any neighborhood of∞. Similarly, a pole at ∞
of higher order than 1 would preclude injectivity in a neighborhood of∞.
Thus the nonconstant injective function f is a polynomial of degree one.
That any polynomial of degree one is an automorphism is clear. ��

(2) Aut (D) = {z �→ ω · (z − a)/(1− az) : a, ω ∈ C, |ω| = 1, |a| < 1}.
That

Ta : z �−→ z − a

1− az

is defined and injective from D to D is easy algebra. Also Ta(T−a(z)) = z;
hence Ta is surjective.

Conversely, suppose that f ∈ Aut (D). Let a = f−1(0). Then g :=
f/Ta is holomorphic and zero-free on D and

lim
|ζ|→1

|g(ζ)| = lim
|ζ|→1

∣∣∣∣ f(ζ)
Ta(ζ)

∣∣∣∣ = 1.

By the maximum principle applied to both g and 1/g, we see that
|Ta/f | ≡ 1 on D, hence f = ωTa for some constant ω with |ω| = 1.6 ��

6An alternative argument is to note that Ta ◦ f maps the disc to the disc and
fixes 0. Then Schwarz’s lemma implies that |(Ta ◦ f)(z)| ≤ |z|. Applying the same
reasoning to the inverse of this mapping gives |(Ta ◦f)(z)| ≥ |z|. Hence |Ta ◦f(z)| ≡
|z| on D, and Ta ◦ f equals w · id on D for some ω with |ω| = 1.
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(3) Aut (C \ {0}) = {z �→ azε : ε = ±1, a ∈ C, a 	= 0}.
If f ∈ Aut (C\{0}), then a connectivity argument shows that limz→0 f(z)
= 0 or limz→0 |f(z)| = +∞. Composing with an inversion, we may as-
sume that the first alternative holds. But then f , considered as a holo-
morphic function, has a removable singularity at the origin. Thus the
extension f(0) = 0 makes f an entire function that is an automor-
phism of the entire plane. From part (1), f(z) = az, for some a 	= 0.
In case limz→0 f(z) = ∞, the same reasoning applied to 1/f gives
1/f(z) = az. ��

(4) Aut ({z ∈ C : 0 < r1 < |z| < r2}) = {z �→ ωz : ω ∈ C, |ω| = 1} ∪ {z �→
ωr1r2/z : ω ∈ C, |ω| = 1}.
Denote the annulus by A. By a connectivity argument, for each f ∈
Aut (A), either
(a) lim|z|→r2 |f(z)| = r2 and lim|z|→r1 |f(z)| = r1;

or

(b) lim|z|→r2 |f(z)| = r1 and lim|z|→r1 |f(z)| = r2.
In either case, repeated application of Schwarz reflection to the

boundary circles extends f to an automorphism f̂ : C \ {0} → C \ {0}
of C \ {0}. Thus, by Example (3), f(z) = az or f(z) = a/z for some
nonzero a ∈ C. The condition f(A) = A tells us then that a = ω in the
first instance and that a = ωr1r2 in the second instance. ��

(5) Aut ({(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}).
The set

B2 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 < 1}

is of course the unit ball in C2. First notice that I(0,0) = U(2) ⊂ GL(2,C).
Obviously U(2) ⊂ I(0,0). If f ∈ I(0,0), then f is C-linear according to
Corollary 1.3.2. Since f has to preserve the unit sphere (the boundary
of B2), it is immediate that f ∈ U(2).

Now a direct calculation, analogous to that for the disc, shows
that the mapping

T(a,0)(z1, z2) ≡
(

z1 − a

1− az1
,

√
1− |a|2 z2

1− az1

)

sends the ball B2 into itself. Furthermore, the inverse mapping to T(a,0)
is T(−a,0). Thus T(a,0) is an automorphism.

If (z1, z2) is any point of B2, then there is an element λ ∈ U(2) that
takes (z1, z2) to a point of the form (a, 0). Also T(a,0)(a, 0) = (0, 0). These
two pieces of information combined tell us that Aut (B2) acts transitively


