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================ PREFACE ================
The human body is made up oftrillions oftiny cells that cannot be seen

by the naked eye.The functioning units inside these cellsare macromolecules
that need to travel in the three-dimensional cell-space to distances ten
thousand times their size. This movement is highly ordered, requires energy
and takes place on molecular tracks that serve as a sophisticated transport
system-somewhat equivalent to the multimodal rail-highway-river networks
of large metropolises. All the systems of the human body depend on the
efficient delivery of macromolecules to their right destination at the right
time-both within and between cells.Breakdown ofthis traffic system results
in a variety ofdiseases including diabetes, cancer and heart disease, as well as
immunological, neurological and developmental disorders . During the last
half a century, scientists have made a quantum leap in unraveling the myste­
ries oftrafficking inside cells. The three sections of this book together cover
the past, present and future of this rapidly developing and intriguing field.

The first section is about the compartments and pathways defined more
than 50 years ago by the pioneering studies ofGeorge Palade, who received
the Nobel Prize for this work. However, as shown in the chapters in this
section , new approaches that allow us to study the dynamics of these com­
partments and pathways have revealed that the compartments are not as
stable as was previously thought. Even in this section, several issues are still
controversial .

The second and largest section, on mechanisms, covers what the field
has been focused on during the last 20-25 years. Starting with the work of
James Rothman and Randy Schekman, components of the machinery
were identified and mechanisms deciphered. Using in vivo and in vitro
approaches combined with genomics and proteomics, the highly conserved
molecular machines that move vesicles between cellular compartments are
being characterized. This phase is also not complete yet , but a clear picture
is beginning to emerge.

Basedon the foundation ofthe pathways and the machinery components,
the field is now embarking on understanding how individual transport steps are
regulated, how successive steps are integrated into whole pathways, and how
these pathways are coordinated with other cellular processes. The book's third
section, documenting the promise ofthis current research,belongs to the future.
The next generation of scientists will, no doubt, continue to move this field
forward. This book is intended to help them do so.

Nava Segev, PhD
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CHAPTER 1

Overview ofIntracellular Compartments
and Trafficking Pathways
Andrei A. Tokarev, Aixa Alfonso and NavaSegev*
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Autophagy 11

Compartment Dynamics and Biogenesis 12
Summary and Future Perspectives 12

Abstract

A
ll eukaryotic cells contain membrane-bounded compartments that interact with the
cell's environment. Vesicles transport proteins and lipids between these compartments
via two major pathways: the outwards, exocytic pathway, carries material synthesized in

the cytoplasm to the cell milieu , and the inwards, endocytic pathway, internalizes material
from the environment to the inside of the cell. This communication of the cell with its envi­
ronment is crucial for all tissue and organ function. Here, we summarize progress made during
the last two decades in our understanding of bi-directional transport pathways between intra­
cellular compartments. The accumulated knowledge of intracellular compartments and path­
ways that connect them formed the basis for advancements made in our understanding of the
molecular machinery components, mechanisms and regulation of intracellular trafficking .
Whereas the major compartments and pathways are well defined, less is known about the
dynamic nature and biogenesis of compartments.

*Corresponding Author: Nava Segev-Department of Biological Sciences, Universityof Illinois
at Chicago, Chicago, Illinois 60607, USA. Email : nava@uic.edu.

Trafficking Inside Cells: Pathways, Mechanisms and Regulation, edited by Nava Segev, Editor,
with Associate Editors: Aixa Alfonso, Gregory Payne and Julie Donaldson.
©2009 Landes Bioscience and Springer Science-Business Media.
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Figure1.Adiagram ofthetwomajorintracellular trafficking pathways andthecompartments theyconnect:
The exocytic pathwaycarries proteins and lipids from the endoplasmic reticulum through the Golgi
apparatus to the plasma membrane (PM). The endocytic pathway internalizes cargo fromthe cellmilieu
or the PM through a set of endosomes to the degradative cellular compartment, the lysosome. The two
pathways are connected by bi-directional transportbetween the Golgi and endosomes. Variousproteins
follow theirspecific routestowards theirdestination; e.g., secreted cargo andPMreceptors and transporters
to the PM; newly synthesizedendosomal and lysosomal proteinsto endosomes and lysosomes; signaling
molecules and PM receptors to early endosmes; and nutrientsto lysosomes.

Introduction
All cells are surrounded by a membrane that serves as a barrier between the inside of a cell

and its environment. Moreover, different cellular processes occur on membranes, e.g., DNA
replication and respiration. Most prokaryotic cells contain only one membrane, the plasma
membrane (PM) , which surrounds the cell, and all membrane-attached processes occur on it.
In some prokaryotes, specific patches of the PM specialize in separate functions. This special­
ization is more advanced in eukaryotic cells, which contain membrane-bound intracellular
compartments that carry out specific functions, e.g., nucleus for DNA replication and mito­
chondria for respiration. Membrane expansion and compartmentalization in eukaryotic cells
enabled the development oflarger cells (1000-10,000 fold increase in volume) and an efficient
separation of cell functions. However, at the same time compartmentalization creates a new
problem, namely the need for communication between the different cellular compartments.

A major process of communication between the compartments that connect the cellwith its
environment is achieved by vesicular transport. In this process, cargo-loaded vesicles form at a
donor compartment with the help ofspecificcoat and adaptor proteins (e.g., COPI, COPII and
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clathrin). These vesicles are then targeted to the appropriate acceptor compartment, to which they
attach with the help of tethers, and with which they fuse with the help of SNAREs.1 Vesicular
transport enables proteins in membrane-bound vesicles to move between the cell compartments ,
including the outer-cellmembrane, the PM. The first section of this book focuseson the different
traffickingpathways and cellularcompartments connected by vesiculartransport (Fig. 1).2

Two major cellular pathways shuttle material outward and inward. In the exocytic path­
way, proteins synthesized in the cytoplasm are translocated into the endoplasmic reticulum
(ER). Rough ER is the site of synthes is of all secreted proteins, and resident proteins for all
compartments connected by vesicular transport. The ER is also the site where synthesis of
most of the lipids in the cells begins. From the ER, membranous vesiclesshuttle cargo to the
Golgi apparatus. ER-derived cargo enters the Golgi in its cis cisterna, and moves through the
medial and trans cisternae. In the trans Golgi, proteins destined for secretion or to be pre­
sented on the PM are packed into secretory vesicles that subsequently fuse with the PM. This
fusion occurs either constitutively or, as in the case of regulated secretion, in response to an
external signal (summarized in Chapters 3 and 5, respectively refs. 3 and 4). The Golgi
apparatus is the major sorting compartment of the cell because in the Golgi cargo is sorted
not only to the PM for constitutive and regulated secretion, but also to endosomes and
Iysosomes, or back to the ER (see below).

In the endocyric pathway, proteins and membrane are internalized from the cell environ­
ment via a set ofendosomes, early and late, to the lysosome (summarized in Chapter 4, ref. 5).
The lysosome is a major degradation site for both internalized and cellular proteins . Thus,
cellular proteins can get to lysosomes either from the PM via the endocytic pathway or from
the cytoplasm via the autophagy and the cytoplasm-to -vacuole targeting (CVT) pathways."

In addition, there iscross-talkbetween the exocyticand endocytic pathways. First, endosomal
and lysosomalresident proteins and enzymesare shuttled from the ER via the Golgi to endosomes
and lysosomes," Second, in polarized cells, proteins can be moved between two different envi­
ronments, from one side of the cell to the other, via the transcytotic pathway.s Lastly, macro­
moleculescan be releasedfrom cellsin small vesicles calledexosomesby fusion oflate endosomes,
also known as rnultivesicular bodies (MVBs), with the PM.9

Transport of lipids and proteins between companments creates another problem , which is
how compartment identity is maintained in the context of the flow of material through the
compartments. In addition, massive membrane flow needs to be balanced to maintain com­
partmental size.Therefore, for each step of forward transport, both in the exocyticand endocytic
pathways, there is a retrograde transport step in which membrane and resident proteins are
recycled back to their original compartment. This bi-directional trafficking requires sophisti­
cated machinery and has to be regulated (summarized in the second and third sections of this
book, respectively ref 2).

The progress in our understanding of the pathways, machinery and regulation of vesicular
transport was made possible by the development of novel techniques (summarized in Chapter
2, ref 10). In particular, live-cellmicroscopy approaches provide dynamic viewsof intracellular
trafficking. Recent live-cell studies have challenged the prevailing paradigm of compartments
as static "bus stations. " The dynamic view envisions compartments as constantly changing
entities in response to the cell needs. Here, we summarize our current understanding of the
major intracellular compartments and trafficking pathways that connect them.

HowWeStudyIntracellular Trafficking
The exocytic pathway and its compartments were defined in the I%Os by Palade and

coworkers using pulse-chase analysis combined with electron microscopy.11 The endocytic
pathway and its compartments were defined in the early 1970s by Brown and Goldstein,
while studying human mutations that result in atheroscleros is due to defects in the recycling
of low-density lipoprotein (LOL) receptors. 12 The idea that all the steps of any biological
pathway can be ident ified by mutations was further exploited during the early 1980s using
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yeast genetics to uncover all the steps of the exocytic pathway and define the genes whose
products mediate these steps.13 At around the same time, reconstitution ofprotein transport
steps in cell extracts combined with protein purification techniques allowed a complemen­
tary approach to identify transport machinery components. 14

Progress in the intracellular trafficking field during the last two decades was made possible
by further advances in available techniques (summarized in Chapter 2, ref. 10), and especially
by combining these techniques. First, a powerful combination of genetic and biochemical
strategies allowed the identification ofvesicular trafficking machinery components and regula­
tors. Genomics and proteomics studies carry the promise for the identification of the full in­
ventory of these components in the near future . Various protein interaction studies placed
these components into "molecular machines". Second, combining fluorescence and electron
microscopy with molecular genetics made it possible to localize these machinery components
to their cellular compartments.

The most exciting recent development in cellbiology,which will shape the future ofthis field,
is the development offluorescent tags and cutting edge fluorescence microscopy,which together
allow following single molecules in live cells.15 Because it is clear that proteins function in com­
plexes, the future ofthis field also belongs to techniques like fluorescenceresonance energy trans­
fer (FRET) and bi-molecular fluorescent complementation (BiFC),16 which allow identification
ofprotein interactions in situ. Together, studies using these techniques should provide a detailed
picture of the molecular machines that mediate intracellular trafficking in real time.

The Exoeytic Pathway
The exoeytic pathway moves cargo from the ER through the Golgi to the PM (Fig. 1). In

the ER and the Golgi, proteins are modified by the addition ofsugars and lipids. These modi­
fications are highly ordered and occur successively in the ER and in the three cisternae of the
Golgi, cis, medial and trans. Cargo-packed vesiclesformed at the trans-Golgi fuse with the PM
to deliver PM resident proteins such as receptors, channels and pumps and secreted proteins
such as extracellular matrix components and signaling molecules. These vesiclesalso allow the
expansion of the PM during cell growth .

Proteins enter the ER during their translat ion via the translocon pore. This entry requires a
tag, the "signal sequence", on the entering protein and signal recognition machinery on the ER
membrane. Once in the ER, proteins stay either on or inside membranes. To exit the ER,
proteins must get through a quality-control surveillance that ensures proper folding and assem­
bly.17 From regions on the ER called ER exit sites, vesiclesform and move to the cis Golgi. The
area between the ER and the cis Golgi, termed intermediate compartment (IC), is filled with
vesicles and tubules ; the IC is not well defined functionally. IS

The three Golgi cisternae are well-defined biochemically.' Different protein-modifying
enzymes are enriched in each cisterna. Currently, the way in which cargo or Golgi enzymes
move between the three Golgi cisternae is still controversial. The vesicular transport model
suggests that vesicles move cargo forward and resident proteins backward between the Golgi
cisternae. The cisternal maturation model suggests that cargo stays enclosed inside a Golgi
cisterna, which matures by fusing with retrograde vesicles carrying Golgi enzymes from a
more mature cisterna and by giving rise to retrograde vesicles that return Golgi enzymes to
younger cisternae. The rapid partitioning model suggests that Golgi cisternae within a stack
are continuous, with cargo proteins equilibrating rapidly between the cisternae. In this model ,
the partitioning ofenzymes into the different Gol~i cisternae is a result of differential distri ­
bution of lipids within the continuous cisternae. I Future experiments should help resolve
this controversy.

In the last step of the exocytic pathway, exoeytosis, secretory vesiclesform at the trans-Golgi
and fuse with the PM to deliver their protein and lipid cargo. Therefore, there are two major
steps in the exocytic pathway mediated by vesicles: ER-to-cis Golgi and trans Golgi-to-PM.
Vesiclesmediating these two steps differ in size and coat composition.20, 21
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The forward exocytic pathway delivers more membrane than needed for PM expansion. In
addition, resident proteins that move to the next compartment have to be retrieved back to the
original compartment for maintenance of compartment identity. Therefore, for every step of
forward transport, there is a corresponding retrograde transport step. The two major intersec­
tions of th is bi-directional trafficking are the IC, which recycles proteins back to the ER, and
recycling endosomes, which recycle proteins back to the PM or the Golgi.22

The Endocytic Pathway
In the endoeytic pathway, cargo is internalized from the cell milieu (Fig. 1, summarized in

Chapter 4, ref. 5). Cargo can be internalized at the PM by a number of routes. Membrane
receptors are mainly internalized via clathrin-coated vesicles, whereas other proteins and vi­
ruses are internalized by caviolar- or raft-dependent routes. These three internalization routes
depend on the GTPase dynamin for fission of the form ing PM vesicle. However, fluid-phase
cargo can also enter the cell via a dynamin-independent process. Each of these internalization
routes delivers cargo to an internal compartment, endosornes, although the nature of the
endosomal compartments may differ between routes .

The best characterized endoeytic pathway proceeds from clathrin-coated vesicles through
early and late endosomes to lysosomes. In the first set of endosomes , the sorting endosomes,
cargo is sorted for recycling back to the PM (or the Golgi) via recycling endosomes, or to the
lysosome via late endosomes . Patches of lare endosomal membranes are internalized as vesicles
to form multivesicular bodies (MVBs), which fuse with lysosomes. The lysosome is a major
degradation site for internalized material and for cellular membrane proteins.

Like transport through the exoeytic pathway, the first and last steps of the endoeytic path­
way are mediated by vesicular transport machinery: PM -ro-early endosome and late endosome
to lysosome. Using 3-dimensional time-lapse fluorescence microscopy (4D microscopy) and
multiple fluorescent chromophores, it wasshown that movement from early-to -late endosomes
is achieved by endosome maturation, which is in turn mediated by Rab conversion.f''

Future research in the endoeytic pathway field will address the nature of the signals for the
various internalization routes and the way in which cargo is sorted in sorting endosomes. This
sorting is crucial for cell signaling because it determines the ratio between receptors that recycle
back to the PM and continue to signal, and receptors that are shuttled to the lysosome for
degradation. Cargo sorting is also ofcrucial importance for the function of neurons or neuro­
secretory cells as protein components of synaptic vesicles have to be retrieved efficiently to
maintain PM identity.

Cross-Talk between the Exocytic and Endocytic Pathways
There are a few examples of cross-talk between the exocytic and endoeytic pathways:

bi-directional transport between the Golgi and endosomes, transport from one side ofa polar­
ized cell to the other and secretion of material from late endosomes.

Trafficking between the Golgi and Endosomes
Becausealmost all proteins and lipids destined to reside and function in any of the compart­

ments connected by vesicular transport are translocated first into the ER, there should be a path­
way to transport newly synthesized endosomal and lysosomal proteins and lipids to endoeytic
compartments. Indeed, cargo can beshuttled from the trans Golgi not only to the PM via exocy­
tosis, but also to endosomes and lysosomes (Fig. 2A). In mammalian cells, most endosomal and
lysosomalproteins are labeledwith mannose-6-phosphate (M6P) in the Golgi. In the trans Golgi,
M6P-labeledcargoissorted byM6P receptors(M6PR) into vesicles that are targetedto the endocytic
compartments. Lower pH in endosomes causesdissociation of the cargo from the M6PR for its
further delivery to the right endosomal compartment. Retrograde transport recycles M6PRs back
from endosomes to the Golgi for further functioning.? Thus, bi-directional trafficking between
the Golgi, endosomes and lysosomesconnects the two major intracellular trafficking pathways.
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A. Golgi-to-Endosome
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Figure 2. Three examples of cross-talk between the exoeytic and endoeytic pathways. A) Bi-direetional
transport between the Golgi and endosomes using a signal and a receptor. B) Inthe transeytotic pathway,
proteins can be shurtled from one side ofa polarized cell to the other. C) MVBs can fuse with the plasma
membrane to deliver exosomes. See text for details.
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Transcytosis
Polarized cells, such as epithelial cells and neurons, contain distinct functional PM do­

mains: apicaland basolateralor somatodendritic and axonal, respectivelr The mechanismsby
which this cellpolarity is establishedand maintained are still not clear.2 Regardless, polarized
cells use the endocyric pathway to shuttle cargo between their distinct PM domains. Here,
cargo, soluble or membranous, is internalized from the PM on one side of the cell, e.g., the
apicalside of epithelialcells, which faces the lumen of organs. In this case, cargo delivered first
to apicalearlyendosomescan beshuttled viaa common set oflare endosomes,and then through
basolateral early endosomes, to the PM of the basolateral side of the cell (Fig. 2B). Thus,
transcytosis can selectively move material through cellsacrosstissuebarriers;for example, from
the luminal (apical) side to the underlying interstitium (basolateral) side of endothelium that
lines blood vessels or epithelium that lines the intestines.8 It seemsthat even though this trans­
port is mediated by endosomes, exoeyticmachinerrs components, like the tethering complex
exocystand SNAREs,are required for this process. 5

Late Endosome-to-Plasma Membrane
This is the newestaddition to the connection betweenthe endoeyticand exoeytic pathways.

Here, transport of macromolecules from a late endoeyticcompartment is redirected to the PM
and secreted inside small vesicles, termed exosomes, to the cell's surroundings. MVBs are late
endosomesthat contain internal membrane-surroundedcargo. Usually, MVBs fusewith lysos­
omes and send their cargo for degradation. However, under cenain conditions MVBs can fuse
with the PM, thus secreting exosomes to the cellmilieu (Fig. 2C).9This process is important for
communication between cells and has been implicated in secretion of components to the blood
stream and as a signaling device. On the other hand, exosomes might playa role in spreading
infectiousagents; for example, viruses likeHN can hijack this route to be released from cells.2

Currently, the regulationand function of this process is still unknown.

Regulated Trafficking
Trafficking through the exocyric and endocyricpathways is coordinated by internal regula­

tors that ensure fidelity and uninterrupted flow.27 In addition, some trafficking steps can be
regulated by external signals. For example, transport of membranes and proteins to and from
the PM can be regulatedbyextracellular signalingmolecules, while the autophagy pathwaycan
be induced under stressconditions.

Regulated Exocytosis
At the trans Golgi, specific proreins can be sorted into specialsecretoryvesicles that accu­

mulate and fusewith the PM only when triggeredby an extracellular signal (Fig. 3A). In these
systems, the level of the signal controls the rate of exocytosis, The best-studied examples of
regulated exocytosis are secretion of neurotransmitters in synaptic vesicles by neurons and se­
cretion of hormones in secretorygranules by endocrine cells.4 However, even in yeast there are
examples of regulated exocytosis, such as the regulated sortinf of a general amino-acid per­
mease to the PM in response to external nitrogen availability.2

The basicmachineryof regulatedexocytosis, in both endocrineand neuronalcells, isadapted
from the corevesiculartransport machinery. In the caseofsecretorygranules, regulatedexocy­
tosis starts with the sorting step that occurs at the trans-Golgi. In this step, appropriate cargo
proteins often form aggregates, which are then packaged into immature secretory granules.
These vesicles undergo maturation by the recycling of membrane and Golgi-residentproteins
back to the Golgi. As a result, cargo in mature vesicles becomescondensed to form dense-core
granules.29 In addition, somepolypeptidesare proteolyticallyprocessed in the maturing vesicles
to generate active hormones or neuropeptides. Mechanisms of synaptic vesicle biogenesis re­
main unresolved, with potential sortingstepsat the TGN and at differentstages of the endocyric
pathway.30 In the cases of both secretorygranulesand synapticvesicles, a fraction of the mature
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A. Regulated exocyto=i:
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Figure3. Three examples of regulated rrafficking. A) In regulated exocytosis, the last srep of the exocytic
pathway, fusionofsecretoryvesicles with the plasmamembranecanberegulated bya requiredexternal signal.
B) Regulated internalization of plasma membrane receprors. The firsrsrep of selectiveendocytosis can be
regulated by a requiredrecepror ligand. C) Starvation can inducethe autophagypathway. Seetext forderails.



Overview ofIntracellular Compartments and Trafficking Pathways 11

granules, called "primed" vesicles,attach to the PM and are ready to fuse in response to a signal.
Signals, like hormones or neurotransmitters, interact with PM surface receptors to cause cal­
cium influx through membrane channels, which results in a transient increase in cytoplasmic
calcium near the prospective vesiclefusion site.The machinery components that mediate secre­
tory granule and synaptic vesicle attachment and fusion are modified to function only upon
stimulation by specific regulators. These specific regulators are calcium sensors that ensure
vesicle attachment at the right place and fusion only upon elevation of local calcium levels.

In addition, a specific feature of secretion in neuronal synapses is that synaptic vesiclescan
undergo multiple rounds of fusion. This is achieved by two mechanisms unique to synapses.
First, vesiclescan be refilled with neurotransmitters from the cytoplasm by transporters present
in the vesicle membrane. In addition, fast release of neurotransmitters in the synapse can be
facilitated by a transient link of vesicleswith a fusion pore on the PM, in a mechanism called
"kiss and run".

Because regulated exocytosis is crucial for proper funct ioning of two major body systems,
endocrine and neuronal, uncovering the details of this process is important for understanding
and treating neural and endocrine dysfunctions. Future studies should help to identify calcium
sensors that ensure vesiclefusion only upon excitation and determine the way by which these
sensors regulate the precise rate of vesiclefusion.

Regulated Receptor Endocytosis
Endocytosis of signaling receptors and plasma membrane transporters also can be regu­

lated by extracellular signals. One well-characterized example involves G-protein coupled
receptors (GPCR), the largest family of signaling receptors (~900 in mammalian cells). In­
ternal ization of some GPCR can be induced by the addition of their cognate signal (Fig.
3B). This induction is mediated by phosphorylation of activated receptors, which elicits
arrestin binding and uncoupling of the receptor from the G-protein. Phosphorylated recep­
torlarrestin complexes then interact with specific clathrin coat adaptors that mediate their
concentration in clathrin-coated pits . Subsequently, activated receptors are internalized via
clarhrin-coared vesicles to early endosomes, where they can be sorted to recycling endosomes
for recycling back to the PM , or to late endosomes for degradation in the lysosome. This
regulated internalization and sorting ofactivated receptors determines the length and ampli­
tude of multiple cell-signaling processes. The specific internalization mechanisms for many
GPCRs that regulate important cell functions are still unknown, and future studies should
elucidate these mechanlsms."

Autophagy
Under nutrient deprivation conditions, cells can induce the autophagy pathway, which

allows them to engulfareas of their cytoplasm, including membrane-bounded organelles, and
deliver the material for degradation in the lysosome to generate nutrients (Fig. 3C) . In mam­
malian cells, autophagy is crucial for multiple processes such as programmed cell death and
cellular defense against pathogens. Improper r1ulation ofautophagy can result in cancer and
in muscular and neurodegenerative disorders.3

The machinery components of the autophagy pathway, first defined in yeast, are conserved.
This pathway is regulated by the target-of-rapamycin (TOR) kinase, which inhibits autophagy
under normal growth conditions. Once TOR inhibition is removed, a new organelle, the
autophagosome, is generated de novo. In this process, a membrane "sac" engulfs portions of
the cytoplasm and closure of this sac results in the formation of the double-membrane
autophagosome. Fusion of the outer membrane of the autophagosome with the lysosome re­
sults in the exposure ofthe inner membrane and its content to lysosomal hydrolases, leading to
their degradation. 33, 34 Much is known about the steps of the autophagy pathway and its ma­
chinery components. However, little is currently known about the beginning of the process,
especially how the "sac" is generated.
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Compartment Dynamics and Biogenesis
Until recently, compartments were viewed asstable entities, like "bus stations", with "bus-like

carriers" moving cargo between them. This view was challenged especially when live-cell mi­
croscopy allowed observation of compartment dynamics. It became clear that compartments
can disappear and reappear depending on the cell cycle, environmental cues and cargo waves.

One of the best-studied examples of compartment dynamics is the Golgi complex. In most
eukaryotic cells, the Golgi apparatus disintegrates during mitosis. Golgi disintegration can also
be induced by drugs like Brefeldin A (BFA). At the end of mitosis, or upon removal of the
drug, the Golgi apparatus reassembles. Mechanistic questions addressed in the field are: what
happens to Golgi resident proteins during disintegration and how does the Golgi reassemble.
Currently these questions are under active investigation with one model suggesting that the
Golgi contents completely recycle through the ER and another model propo sing that Golgi
fragments form the stage for its reassembly.35. 36

Recent findings suggest that compartments change continuously, depending on cargo pass­
ing through them . For example, an extension of the cisternal maturation model suggests that
the entire Golgi apparatus assembles and disassembles continuously. In this model , the cis
Golgi cisterna is generated by fusion of ER-derived COPII vesicles that contain cargo, with
retrograde COPI vesicles that contain cis-Golgi enzymes. On the other end of the Golgi, the
trans cisterna is consumed as anterogade vesicles form to carry cargo to the PM or endosomes,
and retrograde vesiclesare generated to carry trans-Golgi enzymes to the medial compartment.
This latrer event is required for the maturation of the medial- to trans-Golgi cisterna. Thus,
this model proposes the Golgi to be a dynamic compartment that changes not only during cell
cycle, but also in the context of cargo rransport. Y Therefore, intracellular compartments may
be more like "bus stations" comprised of a collection of "buses" without a static structure.

Ano ther important question is how compartments are inherited into newly divided cells.
Do compartments self assemble de novo, with or without template , or do they grow and di­
vide? Studies in yeast suggest that the Golgi is formed de novo without a template whereas the
perinuclear ER, together with the nucleus, is partitioned between the two newly formed cells.
In mammalian cells and some protozoa, the suggested mechanism for Golgi biogenesis is
self-assembly that requires a template. 38 The autophagosome is a non-essential companment
formed de novo under deprivation conditions.34 However, it is not clear whether phagosomes
need a template for assembly. For example, yeast cells that grow under normal conditions have
the cytoplasm-to-vacuole targeting, cvr,pathway to transport special proteins from the cyto­
plasm directly to the lysosome, called vacuole in yeast. Many components are shared between
the cvr and autophagy parhwaysf Therefore, here again it is possible that under deprivation
conditions, phagosomes use preexisting cvr structures as a template for their assembly.

Summary and Future Perspectives
Major advances in technology have made substantial progress in the intracellular trafficking

field possible. During the past two decades, the field gained detailed understanding of the
nature of cellular compartments and the connecting pathways. Each compartment is defined
by its lipid and protein composition. Maintenance of compartment identiry during massive
internal flow of proteins and membrane is probably achieved by active recycling of proteins
and lipids to their original compartment. However, there are still unanswered questions and
areas of controversy.

The intracellular membrane-surrounded compartments can be clearlyvisualized by electron
microscopy and the inventory of compartment components is almost complete (see Section II
of this book, ref 2). Does this mean that we know what compartments look like? It would be
like trying to imagine how a car looks based on the inventory of its parts without actually seeing
the car. Currently, very little is known about the architecture ofintracellular compartments. The
first glimpse into compartment architecture was recently provided for synaptic vesicles (SVs).A
quantitative study of purified SVs was used for modeling an average Sv. This model suggests
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that the outsideof the SVisdensely covered withproteins, that the proteins arehighlydivergent
and includemore than onefercent of our proteome, and that abundant proteinsarepresentin
multiplecopies pervesicle.3 Majorquestions arestillopen asto whetherthe proteindivergence
reflects averaging of sub-populations of Sv, whether multiple copies of abundant proteinsare
distributed randomly over the surface of the SV or found concentrated in patches, and the
nature of the architectureoflarger, morecomplex compartments.

The most controversial topic in the areaof trafficking pathways has been howcargo moves
through compartments, and especially throughthe Golgicisternae. It seems that between com­
partments, e.g., ER and Golgi, or Golgi to the PM, cargo moves via vesicles. In contrast,
between sub-compartments, e.g., cis-, medial- and trans-Golgi, or early-to-late endosomes,
vesicles are probablynot the carriers of cargo. 19 The jury is still out as to whether intra-Golgi
transport occurs by vesicular transport, cisternal maturation or gated transport through con­
necting tubules.

Another major open question concerns intracellular compartment biogenesis. The Golgi
apparatus is the best-studied organelle for this question because it naturallydisintegrates dur­
ing mitosis. Here too, there are diverse results for Golgibiogenesis in differentorganisms and
the question remains open as to whichGolgisub-structures or proteins, if any, form a template
for assembly of the newGolgiafter eachmitotic division.38 Future studieswillhopefully help
solve thesecellmysteries.
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