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Preface

Piezoelectric or, more generally, electroelastic materials, exhibit electrome-
chanical coupling. They experience mechanical deformations when placed in
an electric field and become electrically polarized under mechanical loads.
These materials have been used to make various electromechanical devices.
Examples include transducers for converting electric energy to mechanical
energy or vice versa, resonators and filters for telecommunication and time-
keeping, and sensors for information collection.

Piezoelectricity has been a steadily growing field for more than a century,
progressed mainly by researchers from applied physics, acoustics, materi-
als science and engineering, and electrical engineering. After World War 11,
piezoelectricity research has gradually concentrated in the IEEE Society of
Ultrasonics, Ferroelectrics, and Frequency Control. The two major research
focuses have always been the development of new piezoelectric materials and
devices. All piezoelectric devices for applications in the electronics industry
require two phases of design. One aspect is the device operation principle
and optimal operation which can usually be established from linear analy-
ses; the other is the device operation stability against environmental effects
such as a temperature change or stress, which is usually involved with non-
linearity. Both facets of design usually present complicated electromechanical
problems.

Due to the application of piezoelectric sensors and actuators in civil,
mechanical, and aerospace engineering structures for control purposes, piezo-
electricity has also become a topic for mechanics researchers. Mechanics can
provide effective tools for piezoelectric device and material modeling. For
example, the finite element and boundary element methods for numerical
analysis and the one- and two-dimensional theories of piezoelectric beams,
plates, and shells are effective tools for the design and optimization of piezo-
electric devices. Mechanics theories of composites are useful for predicting
material behaviors.

In spite of the wide and growing applications of piezoelectric devices, books
published on the topic of piezoelectricity are relatively few. Following the
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editor’s previous book, An Introduction to the Theory of Piezoelectricity,
Springer (©2005, this book addresses more advanced topics that require a
collective effort. Each self-contained chapter has been written by a group of
international experts and includes quite a few advanced topics in the theory
of piezoelectricity. Each chapter attempts to present a basic picture of the
subject area addressed.

Piezoelectricity is a broad field and, practically speaking, this volume
can only cover a fraction of the many relatively advanced topics. Following
a brief summary of the three-dimensional theory of linear piezoelectricity,
Chapters 2 through 5 discuss selected topics within the linear theory. The
linear theory of piezoelectricity assumes a reference state free of deformations
and fields. When initial deformations and/or fields are present, the theory for
small incremental fields superimposed on a bias is needed, which is the subject
of Chapter 6. The theory for incremental fields needs to be obtained from the
fully nonlinear theory by linearization about an initial state, and, therefore,
is a subject that is inherently nonlinear. Chapter 7 covers the fully dynamic
effects due to electromagnetic coupling. Chapter 8 addresses nonlocal and
gradient effects of electric field variables.

I would like to take this opportunity to thank all chapter contributors.
My thanks also go to Patricia A. Worster and Ziguang Chen of the College of
Engineering at the University of Nebraska-Lincoln for their editing assistance
on Chapters 1, 7, and 8.

Jiashi Yang
January 2009
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Chapter 1
Basic Equations

Jiashi Yang

1.1 Introduction

This chapter presents a brief summary of the basic theory of linear piezo-
electricity based mainly on the IEEE Standard on Piezoelectricity [1] and the
classical book on piezoelectricity [2] by H. F. Tiersten who also wrote the
theoretical part of [1]. The organization of this chapter is essentially a short-
ened version of Chapter 2 of An Introduction to the Theory of Piezoelectricity
[3]. This chapter uses Cartesian tensor notation, the summation convention
for repeated tensor indices, and the convention that a comma followed by an
index denotes partial differentiation with respect to the coordinate associated
with the index. A superimposed dot represents a time derivative.

1.2 Basic Equations

The equations of linear piezoelectricity can be obtained by linearizing the
nonlinear electroelastic equations [4, 5] under the assumption of infinitesimal
deformation and fields. The equations of motion and the charge equation are

1.5 + pofi = potis, D;i;=q, (1.1)

where T is the stress tensor, pg is the reference mass density, f is the body
force per unit mass, u is the displacement vector, D is the electric displace-
ment vector, and ¢ is the body free charge density which is usually zero.
Within the linear theory, the conservation of mass that determines the present

Jiashi Yang
Department of Engineering Mechanics University of Nebraska, Lincoln, NE 68588-0526,
USA, e-mail: Jyangl@unl.edu

J. Yang[ (ed.Special Topics in the Theory of Piezoelectricity,] DOIL:0 10.1007/978-0-387-89498-0 1,
© Springer Science + Business Media, LLC 2009



2 Jiashi Yang
mass density p takes the following form,
po = p(1 + ukk), (12)

which can be treated separately once the displacement has been obtained.
Constitutive relations are given by an electric enthalpy function H,

1 1
[H&hﬂﬁzEcaﬁ%SMf@MESmf§ggEE7 (1.3)
through
oOH
/172‘]‘ = EYN = Cgklskzl - ek:ijEk:7
]
oOH
D, = T = ek Skl + Echkn (1.4)

where the strain tensor S and the electric field vector E are related to the
displacement u and the electric potential, ¢, by

Sij = (uij +u50)/2, Bi=—d,. (1.5)

cgk“ eijk, and Elsj are the elastic, piezoelectric, and dielectric constants.
The superscript F in cgkl indicates that the independent electric constitu-

tive variable is the electric field E. The superscript S in Elsj indicates that the
mechanical constitutive variable is the strain tensor S. The material constants
have the following symmetries.

E _ E _ E o s _ _8
Cijkl = Cjikl = Cklij» €kij = €kji, €ij = E4s- (1.6)

We also assume that the elastic and dielectric tensors are positive definite
in the following sense.

cgleijSkl >0 for any Sij = th and cgleijSkl =0= Si]‘ =0,
ep BB >0 forany By, and e BB, =0= E; =0. (1.7)

The internal energy density per unit volume can be obtained from H
through a Legendre transform by

U(S,D)= H(S,E(S,D)) + E(S,D) -D. (1.8)
Constitutive relations in the following form then follow.

ou ou
T7%7 E*%7 (1.9)
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or
1 = Cgkl Skt — hkij Dy, E; = —hi Sk + 85, Dy (1.10)

It can be shown that U is positive definite:

U=H+E D,

1 1 1 1 1 1

= 5 cgleijSkl — eijk:EiSjk: — 5 &ZS]EZE] + bi(eilekl + &'Scbk)
1
S 2
> 0. (1.11)

1 1 1
cgleijSkl + B Egbib]‘

Similar to Equations (1.4) and (1.10), linear constitutive relations can also
be written as

Si; = Sgklikl + diij B, D; = dig Ty + e} B, (1.12)
and
Si; = Sgklikz + grij Dr, i = —giTia + B Dr. (1.13)

With successive substitutions from Equations (1.4) and (1.5),
Equation (1.1) can be written as four equations for u and ¢

CijkiUk,lj + €hkij@kj + pfi = plis,
CiklUk,li — EijPi5 = 4, (1.14)

where we have neglected the superscripts of the material constants and the
subscript of the reference mass density.

Let the region occupied by a piezoelectric body be V and its boundary
surface be S, as shown in Figure 1.1. Let the unit outward normal of S be n.

n

Fig. 1.1 A piezoelectric body and partitions of its boundary surface.
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For boundary conditions, we consider the following partitions of S,
SUUST:S¢USD:S7 SuﬂST:S¢ﬂSD:O7 (1.15)

where S, is the part of S on which the mechanical displacement is prescribed,
and St is the part of S where the traction vector is prescribed. Sy represents
the part of S which is electroded where the electric potential is no more than
a function of time, and Sp is the unelectroded part. For mechanical boundary
conditions, we have prescribed displacement ;

u; = U; on Sy, (1.16)
and prescribed traction ;
Tijni =t; on Sp. (1.17)
FElectrically, on the electroded portion of S,
p=¢ on Sy, (1.18)

where ¢ does not vary spatially. On the unelectroded part of S, the charge
condition can be written as

Djnj=—-6 on Sp, (1.19)

where & is the free charge density per unit surface area. In the above formu-
lation, we assume very thin electrodes, and the mechanical effects, such as
inertia and stiffness, of the electrodes are neglected. On an electrode Sy, the
total free electric charge ) can be represented by

Q= —n; D;dS. (1.20)
Se

The electric current flowing out of the electrode is given by
i=—Q. (1.21)

Sometimes there are two (or more) electrodes on a body, and the electrodes
are connected to an electric circuit. In this case, circuit equation(s) need to
be considered.

1.3 Principle of Superposition

The linearity of Equation (1.14) allows the superposition of solutions. Sup-
pose the solutions under two different sets of loads {f()| ¢} and {f2), ¢}
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are {u, (M} and {u®, ¢}, respectively. Then, under the combined load
of {f(N4+£2) ¢(1) 14} the solution to Equation (1.14) is {u® +u® ¢ +
¢>(2)}. This is called the principle of superposition and can be shown as

o2
cijit (s +u?) 1+ erig (6D + 62) s + p(FY + £2) = poe @ + 0y

P o
o8+ counfl +ensol s engol? o1+ o1 ilh il

= (cijmul; z)] + ekz]¢>(k] +pfY = pitt) + (Cz‘jkzufc,z)j+ 6kij¢fkj+ pr® = pi?)
= 0+0
=0, (1.22)

€ikl (US) + uf)) i — i (0 + 6 45 — (g + ¢®)

= eikl“é?,’ + eiklugl)i - Ez‘j¢9} - giquf?j) - q(l) —4q
= (eiklugl)i - Eijqbfilj) - q(l)) + (eikzuifl)i - Eijqbf?j) - q(2))

=0+0

=0. (1.23)

(2

The principle of superposition can be generalized to include boundary loads.

1.4 Hamilton’s Principle

The equations and boundary conditions of linear piezoelectricity can be der-
ived from a variational principle [2]. Consider

t1
:/ dt/ {%puiuiH(S7E)+pfiuiq(b:| dv
to \%

tl tl
to St to Sp

where S and E are considered as functions of the displacement and potential
through
(CFETER 0

u and ¢ are variationally admissible if they are smooth enough and satisfy

Si]‘ =

duile, = duily, =0 in V|
w; =U; on Sy, to<t<ty,
p=¢ on Sy, to<t<t. (1.26)
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The first variation of II is

t1
‘m/to dt/v[(Tji,j + pfi — piig)ou; + (Di; — q)0¢]dV

tl tl
7/ dt/ (Ljin; —:)0ugdS — / dt/ (Din; + 6)3¢ dS,
to ST

(1.27)

where we have denoted

oH oH
T=—g D=-o (1.28)

Therefore, the stationary condition of II is

[17]'2‘]‘+pfi:p’iii in V, ty<t<ty, Dm‘:q in V, ty<t<iy,

Tyin; =t on Sp, to<t<ty, Din,=-5 on Sp, ty<t<t.
(1.29)

Hamilton’s principle can be stated as: among all the admissible {u, ¢}, the
one that also satisfies Equation (1.29) makes IT stationary.

1.5 Poynting’s Theorem and Energy Integral

We begin with the rate of change of the total internal energy density, given as

. oU . oU .
U= 555+ 5 D
=133Si + B Di = Tijivi j — ¢.: D;
= (i) j = Lig i = ($Di) s + ¢ Dis
= (Lijis) 5 — (piii — pfi)is — ($Ds) i + bg

e - o0 /1 . - .
= (Ljig),i (%( PG ) + pfiti — (¢Ds) i + ¢4q. (1.30)
Therefore,
a(l +U) = pfii + ¢q — (9Di — Tji05) 4, (1.31)
where 1

is the kinetic energy density, and (;5DZ is the quasi-static Poynting vector.
Equation (1.31) is the Poynting theorem of piezoelectricity.
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Integration of Equation (1.31) over V gives

0 .
2oy = / p( it + $3)dV + / TinidS
ot Jy % S

St Se Sp
Integrating Equation (1.33) from £y to ¢, we obtain

t
/V(T+U)|tdv/V(T+U)|t0d\/+A) dt/vp(fiuiwq)d\/

t t
to Su to ST

t t
— / dt | DiniddS + / dt / GodS.  (1.34)
to S¢ to Sp

Equation (1.34) is called the energy integral which states that the energy
at time ¢ is the energy at time ¢y plus the work done to the body from £y to ¢.

1.6 Uniqueness

Consider two solutions to the following initial boundary value problem:

Tiij+pfi=pi; in V, t>t,
Di;=q in V, 1>t
155 = cijl S — ekijEk in V, t>t,
Di=eijuSi+eiiE; in V, t>t,

Si]‘ = (’U‘L]‘ + u]‘7i)/2 in V, >, (135)
and
u; =u; on Sy, t>t, T]Zn] = fl on Sp, t>tg,
b=¢ on Sg, t>to, Din;=—3 on Sp, t>1i,
ui*u? in V, t=tg, ui:v? in V, t=tg,
d=0¢% in V, t=t,. (1.36)

From the principle of superposition, the difference of the two solutions
satisfies the homogeneous version of Equations (1.35) and (1.36). Let u*, ¢*,
S*,T*, E*, and D* denote the differences of the corresponding fields and
apply Equation (1.34) to them. The initial energy and the external work for
the difference fields are zero. Then the energy integral implies that, for the
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difference fields, at any t > %,
/(T*+U*)]t dV =0, t > to. (1.37)
1%

Because both 1" and U are nonnegative,
U* =0, 1T"=0 in V, t>t. (1.38)
From the positive definiteness of 1" and U,
S* =0, E* =0, =0 in V, t>t. (1.39)

Hence the two solutions are identical for S, E, T, D, and the velocity fields
but may differ by a static rigid body displacement and a constant poten-
tial [2].

1.7 Four-Vector Formulation

Let us define the four-space coordinate system [6]
xp = {a;,t}, (1.40)

and the four-vector
Up = {ui, ¢}, (1.41)

where subscripts p, ¢, r, and s are assumed to run from 1 to 4. Also, define
the second-rank four-tensor

p000
_ JPOpgs p,g=1,2,3, [0p00
qu* {07 p7q:47 - Oopo ’ (142)
0000
and the fourth-rank four-tensor Mp4,s, where
Mkt = Cijils Myt = ejri, Mijka = erij,
Myjra = —€jk, Mpaas = —pps, (1.43)

and all other components of Mpq,s = 0. Then

(Upququl)w
= (U; jMijri + Us jMajr + Ui aMiary + Us aMaari) r
= (Ui jMiji + Us jMuajrr + Us aMiagg + Ug aMaag) i
+ (Ui jMija + Us jMyjar + Ui aMiang + Us aMasag) 4
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= (uijcijki + @ j€jkt) k + (—Uipir) 4

= CijllUi jk + k1P jk — PUL, (1.44)
and
(Up,quqM),r
= (Ui jM;jra + Us jMyjra + Ui aMigga + Ug aMasra) »
= (Ui, jMijka + Us j Majia + Ui aMiaga + Us aMaaga)
+ (Vi jMijaa + Us jMajaa + Uy a Migaa + Us aMasaa) 4
= (uijerij — Bj€k) k
= Ui jkChij = P kE jk- (1.45)
Therefore,
(Up,gMpgrs),r =0 (1.46)
yields the homogeneous equation of motion and the charge equation.
1.8 Cylindrical Coordinates
The cylindrical coordinates (r, 0, z) are defined by
x1 =rcosh, Z9 =rsinf, T3 = 2. (1.47)

In cylindrical coordinates, we have the strain-displacement relation

1 Uy

Srr = Uprr, 500 = —Ugg + —, Szz = Ugz,z,
r r
1 1
25,6 =ugr + —Urg — %7 28p, = —Uy g + Uy,
r r r
25, = Up; + Uz (1.48)
The electric field-potential relation is given by
1 1 1 1
br - 7(2577‘7 be - 7;(25,07 bZ - 7(25,2- (149)

The equations of motion are

8Tr7‘ 1 8T r 8Tzr Cerr - 17 .
gt T A pfy = pii,

o 7 o0 T on

Ol 1015 0T 2. o
or i ag T o, T ylretrfe=ris,

oT,., N 10T, N oT,, n 1,1, 4 pf. = pi (1.50)
or r 00 0z rc Plz= Ptz '
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The electrostatic charge equation is

1 1
;(rl)r)w + ;De,e +D..=q. (1.51)

1.9 Spherical Coordinates

The spherical coordinates (r,8,¢) are defined by
21 = rsinf cos ¢, Z9 = rsinfsin @, x3 =rcosf. (1.52)

In spherical coordinates we have the strain-displacement relation

ou, 10ug u, 1 JOu Up  Ug
Srr = =-——+— = —£ 4+ L+ —coth
or’ b r89+r7 ¥ rsing Oy r+rCO ’
(1.53)
Oug 10u, ug 10u 1 Oug wu
28 = — + — - — 2 =__2 — — —Zcoth
6 8r+r 56 r’ be r89+rsin98<p r SO0
1 Ju ou U
25, = e 1.54
v rsind dy or r (1.54)
The electric field-potential relation is
o 10¢ 1 0¢
B, =—-=—=, By = ———, FE,=—— —_— 1.55
or 6 r 00 v rsin ) Oy ( )

The equations of motion are

8;7 + %%Tg’” + rsiln9 85;’” + %(2’1’” —Too — Lpy + Torcot 0) + pfi
= pliy, (1.56)
OT,g 10T 1 9T
o T o0 T remd ov
= p’ii97 (1.57)
0Ty,  10Ts, 1 T, 1

e 4 (3L + 2L cot O B
or r 00 rsinf Oy +r(3 o+ 2lopc0t0) +pf

= pii,. (1.58)

1
+ ;[3’1;9 + (Lpg —Lipp)cot 0] + pfo

The electrostatic charge equation is

0 1 0 1 0
2 .

= Z(Desing) - — 2 D —
rsin 6 89( osin ¢) rsin @ dp

92
r 8r(r D)+ q. (1.59)
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1.10 Compact Matrix Notation

We now introduce a compact matrix notation [1, 2]. This notation consists
of replacing pairs of indices, ij or ki, by single indices, p or g, where i, j, k,
and [ take the values of 1, 2, and 3; and p and ¢ take the values of 1, 2, 3, 4,
5, and 6 according to

gjor kl: 11 22 33 23 or 32 31 or 13 12 or 21

1.60
porgq 1 2 3 4 5 6 ( )
Thus
Cijkl = Cpq,  €ikl = €ip, Lij — 1. (1.61)
For the strain tensor, we introduce S, such that
S1 =511, S = Saa, S3 = 533,
54 = 25237 55 = 25317 Sﬁ = 2512. (162)
The constitutive relations can then be written as
o E ) L . S
lp = Cpqu — ekpbk7 D; = equq + &5 P (1.63)
In matrix form, Equation (1.63) becomes
E .E .E .E _E _E
it €11 €12 €13 C14 €15 Ci6 g
1 E 1 €11 €21 €31
Ty €21 23 €93 €y Ca5 Cog Sy €12 €29 €39 i
o E E E E 1
T3\ _ | ¢31 32033 ¢34 ¢35 C36 | ] S3| | e1seasess By (1.64)
[T74 e ey oy e el el | ] Sa €14 €24 €34 | | g ’
1 CE B B B (B E S5 €15 €25 €35
't 51 €52 €53 C54 C55 C56 g e o e
6 E E E .E .E .E 6 16 €26 €36
€61 %2 63 C64 C65 66
51
r s .S .8
D €11 €12 €13 €14 €15 €16 52 E11 €12 £13 Eq
3 S .S _S
D2 = |e21 €22 €23 €94 €25 €94 5,4 + £91 €99 €33 E2 . (165)
S .S .S
Ds [ €31 €32 €33 €34 €35 €36] | S5 €31 £32 £33 Es
Se

Similarly, Equations (1.10), (1.12), and (1.13) can also be written in
matrix form. The matrices of the material constants in various expressions
are related by

E E __ D D __
Cprsqr - 617‘17 Cprsqr - 617‘17

Biese =0ij,  Bhel = 0ij, (1.66)
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Cz% = ch + erphing, 531 = qu — dipGkgs

&5 = &fg + digejq, 3; = @‘Sj = Gighiqs (1.67)
eip = digch,,  dip = £1.0kp,

9ip = Birdip,  hip = GigCqp. (1.68)
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Chapter 2
Green’s Functions

Ernian Pan

2.1 Introduction

Coupling between mechanical and electric fields has stimulated interesting
research related to the microelectromechanical system [1, 2]. The major
applications are in sensor and actuator devices by which an electric volt-
age can induce an elastic deformation and vice versa. Because many novel
materials, such as the nitride group semiconductors, are piezoelectric, study
on quantum nanostructures is currently a cutting-edge topic with the strain
energy band engineering in the center [3, 4]. Novel laminated composites (with
adaptive and smart components) are continuously attracting great attention
from mechanical, aerospace, and civil engineering branches [5]. In materials
property study, the Eshelby-based micromechanics theory has been very pop-
ular [6]. In most of these exciting research topics, the fundamental solution of
a given system under a unit concentrated forcefcharge or simply the Green’s
function solution is required. This motivates the writing of this chapter. In
this chapter, however, only the static case with general anisotropic piezo-
electricity is considered, even though a couple of closely related references
on vibration and/or dynamics (time-harmonic) wave propagation are briefly
reviewed. Furthermore, although emphasis is given to the generalized point
and line forces, the Green’s functions to the corresponding point and line dis-
locations, as well as point and line eigenstrain are also discussed or presented
based on Betti’s reciprocal theorem.

Ernian Pan
Department of Civil Engineering, Dept. of Applied Mathematics, The University of Akron,
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J. YangO (ed.fSpecial Topics in the Theory of Piezoelectricity,] DOIL:0 10.1007/978-0-387-89498-013,
© Springer Science + Business Media, LLC 2009
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2.2 Governing Equations

Consider a linear, anisotropic piezoelectric and heterogeneous solid occupying
the domain V bounded by the boundary 5. In discussing the Green’s func-
tions, the problem domain and the corresponding boundary conditions are
clearly described later. We also assume that the deformation is static, and
thus the field equations for such a solid consist of [7]:
(a) Equilibrium equations (including Gauss equation):

i+ fi=0 Dii—q=0, (2.1)

where o5 and D); are the stress and electric displacement, respectively; fi and

q are the body force and electric charge, respectively. In this and the following

sections, summation from 1 to 3 (1 to 4) over repeated lowercase (uppercase)

subscripts is implied. A subscript comma denotes the partial differentiation.
In the Cartesian coordinate system, the equilibrium equations are

004y n 00y n 004, f =0
Or oy 0z ¥

00y n 0oy, n 0oy,
Or oy 0z
00 1o n 00 4y n 00,
Or oy 0z
oD, oD, 0D,

—q=0. 2.2b
8x+8y+8zq0 ( )

+1y,=0

+f.=0 (2.2a)

In the cylindrical coordinate system, the equilibrium equations are

8Urr 80r0 8Urz Orr — 009

or rof 0z r /=0
Oorg  Ooge  Oog, 20,4 B

or rof + Oz r +fe=0 (2.32)
8Urz 8U0z 8022 Orz + f -0

or rof 0z r =
0D, 0Dy 0D, .

o Ty T, 170 (2.3b)

(b) Constitutive relations:
dij = CijimYim — ekjilik D; = eijpvjk +€ij by, (2.4)

where «j; is the strain and £; the electric field; Cijim, eij, and €55 are the
elastic moduli, piezoelectric coefficients, and dielectric constants, respectively.
The uncoupled state (purely elastic and purely electric deformation) can be
obtained by simply setting ejj = 0. For transversely isotropic piezoelectric
materials with the z-axis being the material symmetric (or the poling) axis,
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the constitutive relation in the Cartesian coordinate system is (using the
reduced indices for Cjjiq and e;5x, with the following correspondence between
the one and two indices: 1 = 11,2 =22,3 = 33,4 =23,5 =13, 6 = 12)

Ozz = C117Vzz + Cr27yy + C13722 — €318

Oyy = C12%aa + Cr1yyy + C13722 — e .

02z = C13%ze + C137Vyy + C337.. — €33L0;

oy = 2Cuyy. — e1sky

Oz = 2044z — €158z

Owy = 2C66Vay (2.5a)
Dy = 2e15722 + €111

Dy = 2e157y. + 11y

€31 (Yex + Yyy) + €33722 + €332, (2.5b)

=
I

where Cﬁﬁ = (Cn — 012)/2.
Similarly, in the cylindrical coordinate system, the constitutive relation is

orr = Cr17Yrr + Cr2700 + C13722 — €312

099 = Cr2%rr + C11700 + C13722 — €311,

022 = C137%rr + C13700 + C33722 — €331,

00, = 2C4479, — €15k

Oy = 2C447yr, — e15 b

ore = 2C667re (2.6a)
Dy =2e15%r, +en1 b

Do =2e157p. + €111

D, = e31(vrr + Vo0) + €33722 + £330, . (2.6b)

(¢c) Elastic strain-displacement and electric field-potential relations:

0.5 (2.7)

1
vij =5 iy +uja) B

whereu; and ¢ are the elastic displacement and electric potential, respectively.
In the Cartesian coordinate system, we have

Ouy Ouy ou, Ouy  Ou,

Ox’ oy’ Dz Dz Ay
05 8um+8uz — 05 8um+% (2.80)
Tz =0 T, Ox oy = Ay Ox o
09 09 09
Be=- oz’ By == oy’ Ha = dz’ (2.8b)
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and in cylindrical coordinate system, we obtain

ou, Oug U, Ou,
Trr = G %99:@+77 Vez = 5
S T R
Yrg = 0.5 (fg; + % = %) (2.92)
ET:7%7 E9:7%7 Ezzf%. (2.9b)

The notation introduced by Barnett and Lothe [8] has been shown to be
very convenient for the analysis of piezoelectric problems. With this notation,
the elastic displacement and electric potential, the elastic strain and electric
field, the stress and electric displacement, and the elastic and electric moduli
(or coefficients) can be grouped together as [9]

wi [=i=1,2,3 210)
ur = .
Vo I1=4
Yij I:i:17273
= 2.11
I {Ej I=4 211)
Tij J:j:17273
S 2.12a
; {Di F (2120)
1510 J = ':1727
J’Jo—imi{j)i:‘ J—i 3 (2.12b)
Cijk:l J7K:j7k:17273
7 e J=4K=k=1,23" '
—E51 J7K:4

It is noted that we have kept the original symbols instead of introducing

new ones because they can be easily distinguished by the range of their
subscript. In terms of this shorthand notation, the constitutive relations can
be unified into a single equation as

oiy = CigKIVKI, (2.14)
where the material property coefficients Cj;x; can be location-dependent in
the region.
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Similarly, the equilibrium equations in terms of the extended stresses can
be recast into

oigi+ fr=0 (2.15)
with the extended force fj being defined as
£ J=3j=1,2,3
_ . 2.16
fr= { . T (2.16)

For the Green’s function solutions, the body force and electric charge den-
sity are replaced by the following concentrated unit sources (k = 1, 2, 3),

id(x—x;0), 1=i=1,2,3
fr = #0( ) . (2.17)
d(x — x0), 1 =4

It is observed that Equations (2.14) and (2.15) are exactly the same as
their purely elastic counterparts. The only difference is the dimension of the
index of the involved quantities. Therefore, the solution method developed
for anisotropic elasticity can be directly applied to the piezoelectric case. For
ease of reference, in this chapter, we still use displacement to stand for the
elastic displacement and electric potential as defined in Equation (2.10), use
stress for the stress and electric displacement as defined in Equation (2.12a),
and use traction for the elastic traction and normal electric displacement as
defined in Equation (2.12b).

2.3 Relations Among Different Sources and
Their Responses

Relations among different concentrated sources and their responses can be
studied via Betti’s reciprocal theorem, which states that for two systems (1)
and (2) belonging to the same material space, the following relation holds

(i.e., [9]) 1, (2), (1)
O Uy = O U (2.18)

From (2.18), one can easily derive the following integral equation for these
two systems

/ o Du nids — / o uPav = / o7 ul nids — / ot ullav.
S |4 S \%4
(2.19)

We let system (1) be the real boundary value problem and (2) be the
corresponding “point-force” Green’s function problem; that is,

Oigi = —6xd(x] — b)), (2.20)



