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===================pREFACE ====================

T here are a number of books dedicated to the cellular and molecular
biology of chaperones and their important role in facilitating
protein folding; however, this is the first book dedicated to the

co-chaperones that regulate them. This book is perhaps long overdue, as the
concept of co-chaperones has been in place for more than a decade. The
chapters reflect many of the emerging themes in the field of
co-chaperone-chaperone biology, with a particular emphasis on the
co-chaperones of the major molecular chaperones, Hsp70 and Hsp90.

What constitutes a co-chaperone?In formal terms, a co-chaperone may
be defined as any non-substrate protein that interacts specificallywith a mo­
lecular chaperone and is important for efficient chaperone function. Many
co-chaperones are dedicated to a specific chaperone and playa regulatory
role (e.g., Hsp40 regulates the nucleotide-bound state ofHsp70). This regu­
latory role is highly substrate-sensitive, with some co-chaperones having the
ability to directly interact with the substrate protein and target it to the
chaperone. Indeed , some co-chaperones have the capacity to carry out some
of the functions of a chaperone, such as the prevention of protein aggrega­
tion (e.g., some Hsp40s, UNC-45 and Cdc37). However, co-chaperones do
not alwayshave the ability to interact with substrate or to act as true chaper­
ones in their own right. Nevertheless, whether they directly bind the sub­
strate or indirectly "sense" its presence, in many casesco-chaperones provide
specificity to their somewhat promiscuous chaperone partner.

The structure ofco-chaperones suggeststhat they haveevolvedthrough
domain recruitment, manifesting as highly sophisticated protein scaffolds
for the efficient spatial orientation of protein-protein interaction domains
(e.g., J domain) and motifs (e.g., tetratricopeptide repeat [TPR] motif). A
number of the chapters document the rapidly emerging structural data on
domains and motifs, giving us insight into the elegant manner in which
these structural features are the functional engines driving the optimal dock­
ing and regulation of chaperones by co-chaperones. Interestingly, evidence
has also emerged for "fractured" co-chaperones (e.g., Zim17 in yeast), which
represent the evolution of physically uncoupled, yet functionally linked,
partner domains , allowing for the flexibility of multiple roles.

Contrary to the perception that co-chaperones are merely auxiliary
components ofthe cell'smolecular chaperone machinery, a number ofchap­
ters suggest that co-chaperones are core components of, and can some­
times transcend, the chaperone machinery (e.g., the role of GrpE as a
thermosensor; and Hop may not be dedicated to Hsp70 and Hsp90). Fur­
thermore, co-chaperones not only play an important role in the regulation
of Hsp70 and Hsp90 protein folding pathways, but also integrate these
folding pathways with protein degradation pathways so as to maintain



cellular homeostasis. Therefore, co-chaperones can be broadly viewed as
quality control factors enabling the major molecular chaperones to inte­
grate diverse cellular signals and make the correct decision on whether to
hold , fold, or degrade; the global safety of the cell being paramount. Fi­
nally, the dogma that chaperones interact only with misfolded or dena­
tured substrate proteins is being challenged by mounting evidence to indi­
cate that co-chaperones are able to target chaperones to act with near na­
tive proteins to facilitate conformational change (e.g., targeting ofclathrin
to Hsp 70 by auxilin) . The name co-chaperone is perhaps limiting, and as
more details on the global cellular roles of co-chaperones are revealed, we
will no doubt have to re-evaluate the co-chaperone paradigm.

Gregory L. Blaich, Ph.D.
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CHAPTER 1

Nucleotide Exchange Factors for Hsp70
Molecular Chaperones
Jeffrey L Brodsky* andAndreas Bracher

Abstract

Hsp70 molecular chaperones hydrolyze and re-bind ATP concomitant with th e
binding and release ofaggregation-prone protein substrates. Asa result, Hsp70s can
enhance protein folding and degradation, the assembly of multi-protein complexes,

and the catalytic activity of select enzymes. The ability of Hsp70 to perform these diverse
funct ions is regulated by two other classes of proteins: Hsp40s (also known as
]-domain-containing proteins) and Hsp/D-specific nucleotide exchange factors (NEFs). Al­
though a NEF for a prokaryotic Hsp70, DnaK has been known and studied for some time ,
eukaryotic Hsp70s NEFs were discovered more recently. Like their Hsp70 partners, the eu­
karyot ic NEFs also play diverse roles in cellular processes, and recent structural studies have
elucidated their mechanism of action .

Introduction
To cope with environmental stresses, such asheat shock, oxidative injury, or glucose-depletion,

the expression of a large number of heat shock proteins (Hsps) is induced in all cell types
examined. Early work defined these Hsps (some ofwhich are identical to the glucose-responsive
proteins, or Grps) by their apparent molecular masses; thus , H sps with a mass of -70 kDa
became known as Hsp70s, and -40 kDa Hsps are Hsp40s.1 Subsequent studies indicated that
many Hsps also function as molecular chaperones , factors that aid in the maturation, process­
ing, or sub-cellular targeting of other proteins.

Perhaps the best-srudied group ofmolecular chaperones is the Hsp 70s.2 Hsp70s are found in
every organism (with the exception ofsome archae~) and in eukaryotes reside in or are associ­
ated with each sub-cellular compartment. Hsp70s are highly homologous to one another and
are comprised ofthree domains: A -44 kDa amino-terminal ATPase domain, a central -18 kDa
peptide-binding domain (PBD), and a carboxy-terminal "lid" that closes onto the PBD to cap­
ture peptide substrates." In some Hsp70s, a short carboxy-terminal amino acid motif also medi­
ates the interaction between Hsp70s and co-chaperones containing tetratrico peptide repeat
(TPR) domains (see Chapters by Cox and Smith, and Daniel et al). By virtue of their preferen­
tial binding to hydrophobic peptides, Hsp70s retain these aggregation-prone substrates in solu­
tion , which in turn permits Hsp70s to enhance: (1) the folding of nascent or temporarily un­
folded proteins; (2) the degradation ofrnis-folded polypeptides; (3) the assembly ofmulti-protein
complexes; and (4) the catalytic activity of enzyme complexes that might require quaternary
assembly. It should come as no surpr ise, then , that Hsp70 over-expression permits the cell to

· Corresponding Author: Jeffrey L. Brodsky-Department of Biological Sciences, 274A Crawford
Hall, Universityof Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A. Email: jbrodskywpltt.edu

NetworkingofChaperones by Co-Chaperones, edited by Grego ry L. Blatch.
©2007 Landes Bioscience and Springer Science-Business Media.



2 Networking ofChaperones by Co-Chaperones

withstand cellular stresses,and that Hsp70s and constitutively expressed Hsp70 homologues, or
Hsp70 "cognates" (also known as Hsc70s) play vital roles in cellular physiology.

Hsp70s bind loosely to their peptide substrates when the ATPase domain is occupied by
ATp, and tightly when the enzyme is in the ADP-bound state;5-8 therefore, ADP-ATP ex­
change is critical for peptide release, and both ATP hydrolysis and nucleotide exchange are
accelerated by Hsp70s co-chaperones. Specifically, Hsp40s-which are defined by the pres­
ence of an ~70 amino acid ")" domain-enhance ATP hydrolysis (see Chapter by Rosser and
Cyr), whereas ADP release is catalyzed by another group of proteins, known as nucleotide
exchange factors (NEFs). In fact, these factors do not "exchange" one nucleotide for another,
but because ATP is present at much higher concentrations than ADP in the cell, ATP binding
most commonly followsADP release.

The physiolo~ical consequences of eukaryotic Hsp70-Hsp40 interaction are
well-characterized. -II In contrast, the contributions of Hsp70 NEFs in eukaryotic cell ho­
meostasis are only now becoming apparent. Therefore, the purpose of this review is to sum­
marize briefly what is known about the best-characterized Hsp70 NEF, the bacterial GrpE
protein, and then to discuss in greater detail the more recent discovery ofeukaryotic NEFs in
the cytoplasm and in the endoplasmic reticulum (ER). Particular emphasis will be placed on
the molecular underpinnings by which these NEFs function, and on important but unan­
swered questions in this field of research.

GrpE: The Bacterial Nucleotide Exchange Factor for Hsp70
The replication of the A bacteriophage genome in E. coli requires DNA helicase activity at

the origin of replication (or£). The helicase is initially inhibited by the AP protein, but the
protein is displaced by host-encoded Hsp70 and Hsp40 chaperones, which were first named
DnaK and Dna], respectively, based on the inability of dnaKand dna] mutants to support A
replicarion.V Another mutant that prevented A replication is encoded by the grpE locus.13

DnaK-Dna]-dependent liberation ofAP from the on and replication of the phage genome can
be recapitulated in vitro , and it was discovered that decreased amounts ofDnaK are required in
these assaysifGrpE is also present.14,15 This phenomenon results from the fact that GrpE strips
ADP from DnaK, and the combination of Dna] and GrpE synergistically enhances DnaK's
ATPase activity in single-turnover measurements by 50-fold, or even up to 5000-fold, depend­
ing on whether GrpE is saturating.8.16 The DnaK-Dna]-GrpE "machine" not only regulates
multi-protein complex assembly-as observed during phage A replication-but assists in the
folding of newly synthesized and unfolded polypeptides, and homologues of each of these
proteins reside in the mitochondria and help drive the import or "translocation" and matura­
tion of nascent polypeptides in this organelle (see Chapter by Bursae and Lithgow).17.18

The Discoveryof Hsp70 Nucleotide Exchange Factors in Eukaryotes:
Fishing Pays Off

The cytoplasm and ER lumen in eukaryotes contain several Hsp70 and Hsp40 homo­
logues, and it was assumed that GrpE homologues would also reside in these compartments.
After many years, the failure to identify them was ascribed either to the fact that GrpE homo­
logues are highly divergent and/or that the Hsp70s in the ER and eukaryotic cytoplasm might
have evolved such that GrpE-assisted ADP release is dispensable.i'' Thus, it came as a complete
surprise when BAG-I-which was first identified as a cellular parmer for Bcl-2, a nertive
regulator of apoptosis2o-was found to catalyze ADP release from mammalian Hsp70.2 The
binding between BAG-I and the ATPase domain of Hsp70 is mediated by a ~50 amino acid
"BAG" domain,22-24 which is present in each ofthe many isoforms and splice variants ofBAG-I
that have been identified. However, it is clear that BAG domain-containing NEFs do not
function identically to GrpE, at least in part because their structures are distinct (also see be­
low). For example, GrpE catalyzes the release of both ADP and ATP from DnaK, whereas
BAG-I triggers only ADP release.25 In addition, GrpE augments DnaK-Dna]-mediated pro-
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tein folding and assembly, whereas BAG-l has been found to exert either positive or negative
effects on Hsp70-Hsp40-directed protein folding and chaperone activity.These contradictory
results stem primarily from the concentrations of BAG-l employed and the presence or ab­
sence of specific co-chaperones.26,27 Thus, future work is needed to define how BAG
domain-containing proteins impact known chaperone activities and how each of the various
isoforms function under normal, cellular conditions and at their native concentrations.

For some time it was thought that yeast lacked a BAG domain -containing protein, but the
available structure of an Hsp70 ATPase domain in complex with a BAG domain fragmen~8

brou~ht about the discovery of a highly divergent BAG-l homologue in the yeast database,
Snll. 9 SNLl was originally identified as a high-copy suppressor of the toxicity produced by
the C-terminal fragment of a nuclear pore protein, and one consequence of this fragment is
the generation of nuclear membrane "herniations".30 Therefore, it was proposed that Snll
modulates nuclear pore complex (NPC) integrity, and consistent with this hypothesis, Snll is
an integral membrane protein that resides in the nuclear envelope/ER membrane. Proof that
Snll is a bona fide BAG homologue derived from the fact that Snll associates with Hsp70s
from yeast and mammals, and that a purified soluble fragment of Snll stimulates
Hsp40-enhanced ATP hydrolysis by Hsp70 to the same extent as a mammalian BAG
domain-containing protein. 29

Because the lumen of the ER houses a high concentration of Hsp70 and because of its
prominent role in catalyzing the folding of nascent proteins, it was also assumed that a NEF
would reside in this compartment. Almost all secreted proteins associate with Bip, the ER
lumenal Hsp70, during translocation and folding.31During translocation, BiP is anchored to
an integral membrane ]-domain-containing protein, but if the subsequent folding of the na­
scent secreted protein is compromised, BiP interacts instead with soluble Hsp40s to facilitate
the "ren o-translocation" of the aberrant protein from the ER and into the eyroplasm where it
is degraded by the proteasome.32This processwas termed ER associateddegradation (ERAD33)

and is conserved amongst all eukaryotes.
To identify BiP partners that might include NEFs and that might facilitate protein translo­

cation, folding, and/or ERAD, genetic selections were performed in different yeasts. First, the
SLSl gene was ident ified in a synthetic lethal screen in Y. lipolytica strains that lacked a compo­
nent of the signal recognition particle, which is essential in this organism for protein transloca­
tion .34 Later studies established that the Slsl homologue in S. cerevisiae interacts preferentially
with the ADP-bound form ofBiP, that Slsl enhances the Hsp40-mediated stimulation ofBiP's
ATPase activity, and that Slsl accelerates the release of ADP and ATP from Bip'35 Second,
Stirling and colleaguesisolated a gene that at high-copy number suppressed a growth defect in
S. cereoisiae lacking an Hsp70-related protein, known as Lhsl , and that were unable to mount
an ER stress response.36 The gene, SILl , is identical to SLSl, and the Sill protein was shown to
bind selectivelyto BiP'sATPase domain. Together, these data suggested strongly that Slsl/Sill
is a BiP NEE Further support for this hypothesis was provided by the discovery that SlsllSill
is the yeast homologue ofBAP, a resident ofthe mammalian ER that strips nucleotide from BiP
and synergistically enhances the j-domain-mediated activation of BiP'sATPase activity.37

Surprisingly, Lhsl, mentioned above as an Hsp70-related protein, also appears to func­
tion as a NEE Lhsl is a member of the Hspll0/Grpl70 family of mammalian molecular
chaperones that possessN-terminal ATP binding domains with some homology to the Hsp70
ATPase domain; however, the C-terminal halves are comprised of extended, nonconserved
polypeptide binding domains.38 Recent studies from the Stirling laboratory indicate that
Lhsl interacts with BiP in the yeast ER and can strip ADP/ATP from BiP as efficiently as
SlsllSill, thus activating BiP's steady-state ATPase activity when combined with a
j-domain-conraining protein.39 In turn, BiP activates the ATPase activity ofLhsl, and in
both cases the ATP-binding properties of the chaperones are essential for activity. These
results indicate that BiP and Lhsl reciprocally enhance one another's activities, perhaps to
coordinate the transfer of polypeptide substrates. Although it is not yet clear whether all


