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Preface

The core technologies underlying software configuration management have changed
little in more than two decades. Development organizations struggle to manage ever­
larger software systems with tools that were never designed to handle them. Their
development processes are warped by the inadequacies of their building and version
management tools. Developers must take time from writing and debugging code to
cope with the operational problems thrust upon them by their build system's inade­
quate support of large-scale concurrent development.

Vesta, a novel system for large-scale software configuration management, offers
a better solution. Through a unique integration of building and version management
facilities, Vesta constructs software of any size repeatably, incrementally, and consis­
tently. Since modem software development occurs worldwide, Vesta supports con­
current, multi-site, distributed development. Vesta's core facilities are methodologi­
cally neutral, allowing development organizations a wide range of flexibility in the
way they arrange their code repositories and structure the building of system com­
ponents. In short, Vesta advances the state of the art in configuration management.

The idea behind Vesta is simple. Conceptually, every system build, no matter
how extensive, occurs from scratch. That means that Vesta has a complete descrip­
tion of the source files from which the system is constructed, plus a complete and
precise procedure for putting them together. By making these files and procedures
immutable and immortal, Vesta ensures that a build can always be repeated. By ex­
tensively caching the results of builds, Vesta converts a conceptual scratch build into
an incremental one, reusing previously built components when appropriate. By au­
tomatically detecting the dependencies between the system's parts, Vesta guarantees
that incremental builds are consistent. What makes Vesta interesting and useful is its
ability to do all this for software systems comprising millions of lines of code while
being practical and even pleasant for developers and their management.

This book presents a comprehensive explanation of Vesta's architecture and indi­
vidual components, showing how its novel and ambitious properties are achieved.
Vesta's functionality is compared with that of standard development tools, high­
lighting how Vesta overcomes their specific deficiencies while matching or even ex­
ceeding their performance. Detailed examples demonstrate Vesta's facilities as they
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appear to a developer, and a particular methodology of proven utility for large sys­
tem development shows how Vesta works on an organization-wide scale. For the
reader who wants to see Vesta "with the covers off", the book includes a substan­
tial treatment of the subtle and challenging aspects of the implementation, as well as
references to the open-source code.

Audience and Scope

The audience for this book includes anyone who has ever struggled with the prob­
lems of managing a substantial evolving software code base and wondered, "Isn't
there a better way to do this?" While the book is not a "how-to" manual, it does
demonstrate specific tools and techniques, founded on Vesta's core version man­
agement and building technologies, that are eminently practical. The Vesta system
embodies and encourages principled development, and so will interest software en­
gineering researchers, especially those inclined toward the creation of practical tools.
Readers with a need to design and deploy configuration management solutions will
find Vesta's flexible description language and build system a powerful, original ap­
proach to the persistent problem of coping with complex dependencies among soft­
ware components.

The Vesta system builds on many computer science specialties, including pro­
gramming language design and implementation, garbage collection, file systems,
concurrent programming, and fault-tolerance techniques. Some familiarity with these
topics is assumed.

Acknowledgements

The Vesta system was many years in the making. The core idea behind Vesta first
grabbed the attention of one of the authors of this book (RL) around 1979. The prob­
lems Vesta addresses - version management and system building - are as central
to software development today as they were then, but in the past couple of decades
the standard tools in this area haven't progressed much. Why not? We believe it is for
the same reason that we still use the QWERTY keyboard: early de facto standardiza­
tion on ultimately limiting technology. There are better system-building tools (and
better keyboards), but they are non-standard. Standard system-building tools have
brought software developers to a local hilltop. Vesta, we argue in this book, offers a
view from a different, higher one.

The path to that hilltop hasn't been straight. The development of a practical sys­
tem embodying our core idea - the notion of an exhaustive, machine-interpretable
description of the construction of a software system from source code - proved
surprisingly difficult. The first steps occurred in the context of the Cedar experimen­
tal programming environment [35, 36], A full-scale project to explore the subject
didn't get underway for several years, as part of the Taos system at the DEC Sys­
tems Research Center (SRC). This project, called Vesta but later renamed Vesta-I,
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produced a usable but idiosyncratic system capable of repeatable, incremental, con­
sistent builds of large-scale software. It saw significant use at SRC (but nowhere
else) in the early 1990s [11,13,25,40]. Vesta-2, the subject of this book, came along
several years later after considerable analysis of the use of Vesta-L, followed by a
complete redesign and reimplementation.

Of course, no system just "comes along". The Vesta systems owe their exis­
tence to the hard work of many colleagues who generously gave their ideas, opin­
ions, insights, code, encouragement, bug reports, and comradeship. With so many
participants over so many years, it is impossible to thank them all, but we want to
acknowledge a number of key contributors.

The initial inspiration for Vesta came from Butler Lampson and his work with
Eric Schmidt and Ed Satterthwaite on Cedar and its predecessor systems at Xerox
PARCo Butler guided our thinking on numerous occasions throughout the Vesta-l
and Vesta-2 projects, contributing to the designs for the system modeling languages
and repositories. He also played a major role in designing the Vesta-2 function cache
and weeder described in chapters 8 and 9.

The Vesta-l system was developed by Bob Ayers, Mark R. Brown, Sheng-Yang
Chiu, John Ellis, Chris Hanna, Roy Levin, and Paul McJones, several of whom also
assisted in the analysis of Vesta-L's use that informed the design of Vesta-2.

Jim Homing and Martin Abadi, with Butler's participation, helped design the
Vesta-2 evaluator's fine-grained dependency algorithm. Together with Chris Hanna,
Jim also contributed to the design of the system description language and the initial
implementation of the evaluator.

Bill McKeeman's incisive and insistent suggestions led us to make the descrip­
tion language syntax simpler and more readable. Our fingerprint package on which
Vesta's repository and cache depend heavily descends directly from ideas and code
of Andrei Broder. Jeff Mogul and Mike Burrows helped track down a serious per­
formance problem in our RPC implementation. Chandu Thekkath helped with NFS
performance problems and gave helpful comments on an early draft of this book.
Emin Gun Sirer implemented the Modula-3 bridge and made several improvements
to the performance of the entire system. Mark Lillibridge gave us many useful com­
ments on an earlier draft of Appendix A. Cynthia Hibbard and Jim Homing provided
numerous suggestions for improvement on various drafts of the manuscript. Neil
Stratford coded an early version of the replication tools and some of the repository
support for them.

Tim Leonard initiated our contact with the Arana (Alpha microprocessor) devel­
opment group, which became Vesta's first real user community outside SRC, and
Walker Anderson and Joford Lim led that group's initial evaluation of Vesta. Matt
Reilly and Ken Schalk championed the use of Vesta in the Arana group, seeing it
through to eventual adoption and production use. Both were involved in the port of
Vesta to Linux, and Ken has become the driving force in evolving the present open­
source Vesta system. It is through his tireless efforts that developers unconnected
with the original work at DEC have an opportunity to evaluate Vesta as a practi­
cal alternative to conventional configuration management tools. Scott Venier created
Vestaweb, a very useful web interface for exploring a Vesta repository.
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Finally, we owe a debt of gratitude to Bob Taylor, whose regular encouragement
kept us from abandoning Vesta when it seemed unlikely it would ever see use out­
side the research lab. Without Bob's unflagging support over many years and two
companies, Vesta would probably never have happened.

This book, like the Vesta system itself, has been many years in the making. It be­
gan as a Compaq technical report [27], and we thank Hewlett-Packard for permission
to use portions of that report. We also are indebted to John DeTreville for the Vesta
logo that appears on the cover. But the book would not exist without the support of
two key individuals. Fred Schneider, as series co-editor for Springer's Monographs
in Computer Science, persuaded us to undertake the production of this book when
the complexities of our day jobs made it seem impossible. Our editor at Springer,
Wayne Wheeler, showed remarkable patience in the face of repeated underestimates
of the work involved. We are grateful to Fred and Wayne and the staff at Springer
(notably Frank Ganz, Ann Kostant, and Elizabeth Loew) for their continuous support
during the preparation of the book, and we hope that the result justifies their faith.

Palo Alto, California
December 2005

Allan Heydon
Roy Levin
Tim Mann

Yuan Yu
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Part I

Introducing Vesta



The first part of this book sets the stage for an in-depth presentation of the Vesta
system. Chapter 1 presents the key problems that Vesta addresses and lays out the es­
sential properties of Vesta's solution. Chapter 2 provides some technical background
on Unix, the operating system on which Vesta is implemented, chiefly targeted at the
non-specialist. Chapter 3 then surveys the architecture of the Vesta system, present­
ing its major components and their interactions, and laying the foundation for a more
detailed survey of Vesta's functionality in Part II.



1

Introduction

This book describes Vesta [26,28,43], a system for software versioning and building
that scales to accommodate large projects, is easy to use, and guarantees repeatable,
incremental, and consistent builds. Vesta embodies the belief that reliable, incremen­
tal, consistent building is overwhelmingly important for software construction and
that its absence from conventional development environments has significantly inter­
fered with the production of large systems. Consequently, Vesta focuses on the two
central challenges of large-scale software development - versioning and building
- and offers a novel, integrated solution.

Versioning is an inevitable problem for large-scale software systems because
software evolves and changes substantially over time. Major differences often exist
between the source code in various shipped versions of a software product, as well
as between the latest shipped version and the current sources under development,
yet bugs have to be fixed in all these versions. Also, although many developers may
work on the current sources at the same time, each needs the ability to test individual
changes in isolation from changes made by others. Thus a powerful versioning sys­
tem is essential so that developers can create, name, track, and control many versions
of the sources.

Building is also a major problem. Without some form of automated support, the
task of compiling or otherwise processing source files and combining them into a
finished system is time-consuming, error-prone, and likely to produce inconsistent
results. As a software system grows, this task becomes increasingly difficult to man­
age, and comprehensive automation becomes essential. Every organization with a
multi-million line code base wants an automated build system that is reliable, effi­
cient, easy-to-use, and general enough for their application. These organizations are
very often dissatisfied with the build systems available to them and are forced to
distort their development processes to cope with the limitations of their software­
building machinery.

Versioning and building are two parts of a larger problem area that is often called
software configuration management (SCM). The broadest definition of SCM encom­
passes such topics as software life-cycle management (spanning everything from re­
quirements gathering to bug tracking), development process methodology, and the
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specific tools used to develop and evolve software components. Vesta takes the view
that these aspects of SCM, although important to the overall software development
process, can be sensibly addressed only after the central issues of versioning and
building. Further, in contrast to most conventional SCM systems, Vesta takes the
view that these two problems interact, and that a proper solution integrates them so
that the versioning and building facilities leverage each other's properties. That in­
tegrated solution then serves as a solid base upon which to construct facilities that
address other SCM problems.

1.1 Some Scenarios

To motivate Vesta's focus on versioning, building, and their integration, here are
some scenarios that conventional software development environments do not always
handle well.

Scenario 1. A developer must check out a library to make a change necessary for his
currently assigned task, but he can't because someone else has it checked out.

The problem: the source control system doesn't allow parallel development.

Scenario 2. Dave is having difficulty debugging a change because a library used by
his code is behaving in an unexpected way. The library is a large and complex one
but was built without including information required by the debugger. Dave knows
nothing about the procedure for rebuilding the library to include the debugging in­
formation he needs.

The problem: the build system does not support the parameterization necessary
for the developer to be able to say easily "rebuild this library including debugging
information" and as a result, he must delve into the library's build instructions to
determine how to set the necessary switch and build it manually.

Scenario 3. Alice is ready to begin debugging a substantial new feature, but to do
so she requires several other components to be rebuilt with a new definition for a
data structure that they share. She is unable to do this herself without setting up an
environment comparable to that used by her organization's nightly build.

The problem: the build system and process do not enable developers to build sub­
stantial subportions of the complete system in order to test and debug their changes
with other affected components.

Scenario 4. Susan, a developer in California, leams that her colleague Anoop needs
to build Susan's software component at the Indian development lab. She would like
to help, but is uncertain about the ways in which her component depends on local
conditions that may be different in his development environment. She also has no
way to determine what additional files she needs to send to Anoop in order to ensure
that her component will build properly in India.

The problem: the build system does not ensure that building instructions are com­
plete and capture all dependencies.
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Scenario 5. Fred types "make", and his program compiles and links without errors,
but it exhibits mysterious bugs. After a long fruitless debugging session, Fred tries
"make clean; make" to build the program from scratch. The program then works.

The problem: the build system trusts the developers to supply dependency infor­
mation rather than computing that information itself, and Fred - or some developer
who had previously worked on this program - left some out.

Scenario 6. A developer comes into work and performs a "sync" operation, which
copies recently checked-in files to her workstation. This keeps her local file tree from
falling too far behind the work her colleagues are doing. However, after building her
code with the new files, she finds that it no longer works as it did yesterday. There's
no easy way for her to find the problematic change or to roll back to where she was
before the "sync".

The problem: the version management system provides only coarse-grained up­
dating and supports versioning only in the central code pool, not on behalf of indi­
vidual developers.

Scenario 7. A developer is implementing a new feature. In the course of the imple­
mentation, he decides that the approach is flawed, so he deletes what he has been
doing and goes home. Overnight, he has an idea about how to salvage a significant
portion of his previous work, but since he didn't check the code in before deleting it
from his workstation, it's gone.

The problem: the version management system provides no support for versioning
except in the shared source pool, so it can't help the developer in this situation.

Scenario 8. John needs to make a small change to a library, so he checks it out. He
makes the change, but when he tries to compile, the compiler gets a mysterious fa­
tal error. He reports the problem to his colleague Mary, who checked in the library
the previous day. Mary tries the same build on her workstation and it works. After
some head-scratching and discussion, they discover that John and Mary have differ­
ent versions of the compiler. Investigating further, they find that John was supposed
to download a new compiler several weeks before, but the email telling him to do
so came when he was absorbed making a delicate change to his code, so he put the
message aside and ultimately forgot about it.

The problem: the build system and build instructions do not reflect or capture
dependencies on the versions of tools used during the build process.

Scenario 9. A customer reports an error in an old but still supported release of a
product. The developers attempt to reproduce the problem, but they are unable to re­
build the old system from source. Investigation reveals that a third-party library used
in the old release was not included in the build tree and that when an updated version
of that library was installed for use in a later release of the product, it overwrote the
old one.

The problem: the version management and build facilities are not integrated and
do not require that build instructions constitute a complete description of the system,
causing an essential component to be inadvertently discarded.
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1.2 The Configuration Management Challenge

The common theme highlighted by the preceding scenarios is the failure of conven­
tional software configuration management systems to address the realities of building
and evolving large systems. Effective SCM becomes more difficult as the size of the
software system grows, as the number of developers using the SCM system increases,
as the number of geographically distributed development sites grows, and as more re­
leases are produced. To handle large-scale, multi-developer, multi-site, multi-release
software development, an SCM system must guarantee that builds are repeatable,
incremental, and consistent. Existing SCM systems generally fail to provide at least
one of these properties (see Chapter 10 for specifics).

Repeatability. When multiple versions are being developed in parallel, the ability
to repeat a previous build exactly is invaluable. For example, if a customer reports a
bug in an older version of a product, developers must be able to recreate the faulty
program, debug it, and develop a modified version that fixes the bug (scenario 9).

Repeatability is an easy goal to state and to appreciate, but a difficult one to attain.
Most build systems in use today do not guarantee repeatability because their build
results are dependent on some aspect of the building environment that the system
does not control. This produces the all-too-common situation in which one developer
says to another, as in scenario 8: "It works on my machine, what's different about
yours?"

Incrementality. For the practical development of large systems, the builder must
be incremental, reusing the results of previous builds wherever possible. Without
reliable incremental building, a development organization is forced to perform some
(if not all) of its builds from scratch. The slow turnaround time for such scratch
builds increases the time required for development and testing. Incremental building,
on the other hand, allows many developers to efficiently edit, build, debug, and test
different parts of the source base in parallel. (Contrast with scenario 3.) Even large
integration builds that combine work from many developers can be accelerated by
incremental building - any components that have already been built, whether in
the last integration build or in isolation by individual developers, are candidates for
reuse.

Good performance in the incremental builder itself is also important. As software
systems grow, even incremental building can be too slow if the running time of the
builder (exclusive of the compilers and other tools it invokes) depends on the total
size of the system to be built rather than the size of the changes. This problem can
easily arise. For example, a simple incremental builder might work by checking each
individual compiler invocation in the build to see whether it must be redone. If these
checks have significant cost, such a builder will scale poorly. Indeed, this is the norm
in most SCM systems.

Consistency. The build process performs a sequence of actions on source files (files
created by developers, also called sources) and derived files (files previously created
by the build system, also called deriveds). A build is consistent if every derived file
it incorporates is up to date relative to the files from which it was produced. The
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obvious way to achieve consistency is to perform every build from scratch (that is,
startingfrom sources),whichof course sacrifices incrementality. Correspondingly, a
partial systembuild introducesthe potentialfor inconsistency because some derived
filemaybe out of date with respect to a sourcefile,to anotherderivedfile,or to some
aspectof the buildenvironment on which it depends. Whenthis happens,the seman­
tics of the source and derived files no longer correspond. Such a system generally
exhibitsunwantedbehaviorthat is difficult to debug,as in scenario5.

Achieving these three essential properties is thus the central challenge for an
effective SCM system.

1.3 The Vesta Response

This book shows how the Vesta system successfully addresses the SCM challenge.
Specifically, it explainsand justifies the claim at the beginningof this chapter:

Vesta is an SCM system that scales to accommodate large software, is easy to
use, and guarantees repeatable, incremental, and consistentbuilds.

Vesta subdivides the general problem of versioning into version management and
source control. Buildingbreaks downinto systemmodeling and modelevaluation.

Version Management. Version management is the process of assigning names to
evolving sequences of related source files and supporting retrieval of those files by
name. Some SCM systemsapply versionmanagement to derivedfilesas well, in the
sense that derivedfiles receiveversioned, human-sensible namesjust as sourcesdo.
By contrast, Vesta's version management assigns human-sensible names to sources
only, while derivedfiles receivemachine-oriented names and are managedautomat­
ically.

Source Control. Source control is the process of controllingor regulating the pro­
ductionof newversionsof sourcefiles. Operations commonlyassociatedwith source
control include check-out and check-in, which respectively reserve a new version
name (typically incorporating a number) and supply the file or files to be associ­
ated with a previously reserved version name. Source control may be coupled with
concurrency control as well, so that checking out a particular versionmay limit the
abilityof other users to check out related ones. Vestaadoptsa unique perspective on
source control, quite differentfrom that of conventional SCM systems, that enables
it to avoidthe kinds of problemsevident in the scenariosof the precedingsection.

System Modeling. A system model describes how to build all or part of a software
system.It names the softwarecomponents that are combinedto producelargercom­
ponents or entire systems,names the tools used to combinethem, and specifies how
the tools are applied to the components. Configuration description, systemdescrip­
tion, and buildinginstructions are equivalent terms for systemmodel.

Conventional build systems typically do not require and therefore rarely have
comprehensive buildinginstructions. Instead,theydependon the environment, which
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might comprise files on the developer's workstation and/or well-known server direc­
tories, to supply the unspecified pieces. This partial specification prevents repeatable
builds. The first vital step toward achieving repeatability is to store source files and
build tools immutably and immortally, as Vesta does, so that they are available when
needed. The second step is to ensure that building instructions are complete, record­
ing precisely which versions of which source files went into a build, which versions
of tools (such as the compiler) were used, which command-line switches were sup­
plied to those tools, and all other relevant aspects of the building environment. Vesta's
system models do precisely that.

Model Evaluation. A system model can be viewed either as a static description of
a system's configuration, or as an executable program that describes how to build
the system. Model evaluation means taking the second view: running a builder or
evaluator (the terms are used synonymously) to construct a complete system by pro­
cessing and combining a collection of software components according to a system
model's instructions.

By following those instructions to the letter, the builder performs in effect a
scratch build of the system. Completeness of the instructions makes the build repeat­
able, but for practicality it must also be incremental. Incrementality means skipping
some build actions and using previously computed results instead, an optimization
that risks inconsistency. To ensure that an incremental build is consistent, the Vesta
builder records every dependency of every derived file on the environment in which
it was built. This includes dependencies on source files, other derived files, the tools
used in the build, environmental details, and the building instructions themselves.
Then, if anything on which a derived file depends has changed, the builder detects
it and performs the necessary rebuilding. If not, the builder can be incremental and
skip an unnecessary rebuilding step. Recording dependencies for use in this way
is obviously impractical unless automated, and worthless unless exhaustive. Vesta's
coupling of automated dependency analysis and incremental building distinguishes
it from conventional SCM systems.

As these brief descriptions indicate, the four central topic areas are not inde­
pendent. For that reason, the remainder of the book does not address them in order,
taking instead a top-down approach. Part I presents an overview of Vesta's architec­
ture. Part II describes the Vesta system as a software developer sees it, emphasizing
the user-level concepts rather than the implementation. This part examines Vesta's
facilities for storing files and manipulating them in the course of the development
cycle. It also introduces the language in which system models are written and shows
how it is used to describe large systems effectively. By the end of Part II, the reader
will understand why Vesta is easy to use and how it can scale to handle large software
systems while guaranteeing repeatable, incremental, and consistent builds.

Part III examines the implementation of the functionality described in Part II.
Achieving each of the key properties - repeatability, incrementality, consistency ­
requires the solution of significant technical problems. This part focuses on those
problems and their solutions, providing sufficient description of the relevant parts of
the implementation to evaluate Vesta's design and engineering choices.
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Finally, Part IV comparesVestaagainstother leadingSCMsystems,both in func­
tion and performance. It showsthat development organizations need not sacrifice the
formerfor the latter; the key SCMpropertiesare achievedwith similaror even supe­
rior performance as comparedto "industry-standard" builders.



2

Essential Background

The essential problems of software versioning and building transcend particular
platforms and development environments. Nevertheless, concrete solutions to those
problems are created for specific platforms and environments, and Vesta is no ex­
ception. The Vesta designers sought to address the central issues in a way that was
minimally dependent on the environment, but inevitably there are dependencies of
style, terminology, and implementation detail. This book presents Vesta in sufficient
detail that these dependencies are visible, which therefore requires that the reader
understand something of that dependent context.

To this end, this chapter presents a brief overview of the environment in and for
which Vesta was originally built: Digital Equipment Corporation's Tru64® operating
system.' Tru64 is a multi-generation descendent of the Berkeley (BSD) version of
Unix. Vesta uses few notions that are peculiar to Unix, so the key Vesta concepts and
most of the technical specifics transfer easily from Unix to other popular operating
systems. Those specifics of Vesta are nevertheless shaped by the Unix context, so
this chapter outlines that context as background for the material in the remainder of
the book.

Readers who are conversant with Unix can quickly skim this chapter or skip it
entirely. Those who are unfamiliar with Unix will likely find that the essentials de­
scribed below have natural analogs in the environments with which they are familiar.
This brief chapter is certainly not a reference on Unix concepts.i It occasionally sac­
rifices a bit of technical precision in the interest of remaining concise and conveying
the key ideas necessary to understand Vesta, a fact that Unix and Tru64 aficionados
will undoubtedly recognize.

1 Vesta hasbeen ported to a number of other Unix platforms, including Linux.
2 The classic reference is Kernighan and Pike [33].
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2.1 The Unix File System

2.1.1 Naming Files and Directories

File names are subdivided into a name and an extension, separated by a period (" . ").
This is only a convention; Unix has no machinery for associating semantics with
file extensions, as is the case for some other operating systems (e.g., Microsoft
Windows"). File extensions are very frequently used to identify the "type", that is,
the internal format, of files. Because extensions are only conventional, they may be
of any length, although between one and four characters is typical. For some kinds of
files, the absence of an extension is the norm, but in such cases the usage of the file
is such that a single fixed name (like readme or Make f i 1e) is commonly used.

A directory is a collection of names, each of which may identify a file or an­
other directory. These names do not distinguish the things they name; thus, the name
foo. bar might be a directory or a file, although conventionally a name with an
embedded dot is used for a file, not a directory.

The files and directories on a disk partition are arranged in a tree-structured
name space. (This is a simplification, to be corrected shortly.) Within this tree, a
path (sometimes called a filename path) is a sequence of names separated by the
character "I". The root of the tree is named "I", so a path from the root might be
I x I y I z. In such a path, every name, with the possible exception of the last, must be
a directory, so in the path Ix/y I z, x is a directory containing a directory named y

containing z (z may name either a file or a directory). A path like I x I y I z is called
absolute because it explicitly originates at the root. A path like x/y I z is called rel­
ative, meaning that it is to be interpreted relative to some directory that depends on
the context in which the path is used.

Every directory contains the special name" . ", which refers to the directory itself.
Every directory except the root also contains the special name" . .", which refers to
the directory's parent in the naming tree.

2.1.2 Mount Points

The file name space that Unix programs and users see is created by connecting the
directory trees on individual disk partitions via a mechanism called mount points. A
directory tree Ti is attached to a particular node N in tree T2 by mounting it there,
that is, by effectively splicing T2 so that N becomes the name of the root of Ti. So,
for example, if a/bl c names a file in Tl and x/y I z is a path in T2, mounting Ti at
x/y makes the file accessible as x/y I a/bl c. Note that, as a result of the mount,
x/yI z is no longer in the name space.

The mount point mechanism enables the construction of large file name spaces
out of the smaller ones that correspond to individual disk partitions. The individual
disk partitions may be on separate computers; that is, a mount point may span file
servers connected by a local area network. File servers may implement their file
systems differently as long as they adhere to recognized protocols, of which NFS [49,
54] is a particularly common one. Vesta's storage machinery (Chapters 4 and 7)
exploits this property.


