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FOREWORD

This IMA Volume in Mathematics and its Applications

PROBABILITY AND PARTIAL DIFFERENTIAL EQUATIONS
IN MODERN APPLIED MATHEMATICS

contains a selection of articles presented at 2003 IMA Summer Program
with the same title.

We would like to thank Jinqiao Duan (Department of Applied Mathe­
matics, Illinois Institute of Technology) and Edward C. Waymire (Depart­
ment of Mathematics, Oregon State University) for their excellent work as
organizers of the two-week summer workshop and for editing the volume.

We also take this opportunity to th ank the National Science Founda­
tion for their support of the IMA.

Series Editors

Douglas N. Arnold, Director of the IMA

Fadil Santosa, Deputy Director of the IMA



PREFACE

The IMA Summer Program on Probability and Partial Differential
Equations in Modern Applied Mathematics took place July 21-August 1,
2003, a fitting segue to the IMA annual program on Probability and Statis­
tics in Complex Systems : Genomics, Networks, and Financial Engineering
which was to begin September, 2003. In addition to the outstanding re­
sources and staff at IMA, the summer program was developed with the
assistance of the following members of the organizing committee: Rabi N.
Bhattacharya, Larry Chen, Jinqiao Duan, Ronald B. Guenther, Peter E.
Kloeden, Salah Mohammed, Sri Namachchivaya, Mina Ossiander, Bjorn
Schmalfuss, Enrique Thomann, and Ed Waymire .

The program was devoted to the role of probabilistic methods in mod­
ern applied mathematics from perspectives of both a tool for analysis and
as a tool in modeling. Researchers involved in contemporary problems con­
cerning dispersion and flow, e.g. fluid flow, cash flow, genetic migration,
flow of internet data packets , etc., were selected as speakers and to lead
discussion groups. There is a growing recognition in the applied mathe­
matics research community that stochastic methods are playing an increas­
ingly prominent role in the formulation and analysis of diverse problems of
contemporary interest in the sciences and engineering. In organizing this
program an explicit effort was made to bring together researchers with a
common interest in the problems, but with diverse mathematical expertise
and perspective.

A probabilistic representation of solutions to partial differential equa­
tions that arise as deterministic models, e.g. variations on Black-Scholes
options equations, contaminant transport, reaction-diffusion, non-linear
equations of fluid flow , Schrodinger equation etc . allows one to exploit
the power of stochastic calculus and probabilistic limit theory in the anal­
ysis of deterministic problems, as well as to offer new perspectives on the
phenomena for modeling purposes. In addition such approaches can be
effective in sorting out multiple scale structure and in the development of
both non-Monte Carlo as well as Monte Carlo type numerical methods.

There is also a growing recognition of a role for the inclusion of stochas­
tic terms in the modeling of complex flows. The addition of such terms has
led to interesting new mathematical problems at the interface of probabil­
ity, dynamical systems, numerical analysis, and partial differential equa­
tions . During the last decade, significant progress has been made towards
building a comprehensive theory of random dynamical systems, statistical
cascades, stochastic flows, and stochastic pde's. A few core problems in
the modeling, analysis and simulation of complex flows under uncertainty
are : Find appropriate ways to incorporate stochastic effects into models;
Analyze and express the impact of randomness on the evolution of complex

vii



viii PREFACE

systems in ways useful to the advancement of science and engineering; De­
sign efficient numerical algorithms to simulate random phenomena. There
is also a need for new ways in which to incorporate the impact of prob­
ability, statistics, pde's and numerical analysis in the training of present
and future PhD students in the mathematical sciences. The engagement
of graduate students was an important feature of this summer program.
Stimulating poster sessions were also included as a significant part of the
program.

The editors thank the IMA leadership and staff, especially
Doug Arnold and Fadil Santosa, for their tremendous help in the orga­
nization of this workshop and in the subsequent editing of this volume.
The editors hope this volume will be useful to researchers and graduate
students who are interested in probabilistic methods, dynamical systems
approaches and numerical analysis for mathematical modeling in engineer­
ing and science.

Jinqiao Duan
Department of Applied Mathematics
Illinois Institute of Technology

Edward C. Waymire
Department of Mathematics
Oregon State University
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NONNEGATIVE MARKOV CHAINS WITH APPLICATIONS·

K.S . ATHREYAt

Abstract. For a class of Markov chains that arise in ecology and economics
conditions are provided for the existence, uniqueness (and convergence to) of station­
ary probability distributions. Their Feller property and Harris irreducibility are also
explored.

Key words. Population mod els, stationary measures, random iteration, Harris
irreducibility, Feller property.

AMS(MOS) subject classifications. 60J05 , 92D25, 60F05 .

1. Introduction. The evolution of many populations in ecology and
that of some economies exhibit the followingcharacteristics: a) It is random
but the stochastic transition mechanism displays a time st ationary behav­
ior, b) for small population size (and in small and fledgling economies) the
growth rate is proportional to the current size with a random proportional­
ity constant, c) for large populations the above growth rate is curtailed by
competition for resources (diminishing return in economies) . This leads to
considering the following class of stochastically recursive time series model

(1)

where 9 [0,00) ---+ [0,1] is continuous and decreasing , g(O) = 1, and
{Cn}n~l are LLd. and independent of the initial value Xo.
These are called density dependent models (Vellekoop and Hognas (1997),
Hassel (1974)).

It is clear that {Cn}n >o defined by the above random iteration scheme
is a Markov chain with stated space S = [0,00) and transition function

(2) P(x, A) = P(Cx g(x) EA).

The goals of this paper are to describe some recent results on the
existence of nontrivial stationary distributions, convergence to them, their
uniqueness , etc .

2. Examples.
a) Random logistic maps. The logistic model has been quite popular

in the ecology literature to capture the density dependence as will as prey­
predator interaction (May (1976)). In the present context the parameter

"Supported in part by Grant AFOSR IISI F49620-01-1-0076. This paper is based on
the talk presented by the author at the IMA conference on Probability and P.D.E . in
July-August , 2003.

tSchool of Operations Research and Industrial Engineering, Cornell University,
Ithaca, NY 14853 (athreya@orie.comell.edu) ; and Iowa State University.



2 K.B . ATHREYA

C is allowed to vary in an LLd. fashion over time. Thus the model (1)
becomes

(3) n~ O

with Xn E [0, 1]' Cn E [0,4] . Thus, the state space S = [0, 1] and g(x) ==
1 - x has compact support .

b) Random Ricker maps. Ricker (1954) proposed the following model
for the evolution of fish population in Canada:

(4)

with Xn E [0,00) , Cn E [0, 00), °< d < 00. Thus, the st ate space
S = [0,00) and g(x) == e- dx has exponential decay.

c) Random Hassel maps. Hassel (1974) proposed a model with a poly­
nomial decay for large values. Here

(5)

with Xn E [0, 00), C; E [0, 00), °< d < 00. Here S = [0, 00), g(x) =
(l+ x )-d .

d) Yellekoop-Hiiqnos maps. A model that includes all the previous
cases was proposed by Vellekoop and Hognas (1997)

(6) b>O

h : [0, 00) --+ [1,00), h(O ) = 1, h(·) is cont inuously differentiable and

h(x) = x~~W is nondecreasing.
This family of maps exhibits behavior similar to th at of the logistic fmaily
such as pitchfork bifurcation of periodic behavior , chaotic behaivor as the
parameter value is increased etc .

The random logistic case was first introduced by R.N. Bhattacharya
and B.V. Rao (1993). Contributions to it include Bhattacharya and Ma­
jumdar (2004), Bhattacharya and Waymire (1999), Athreya and Dai (2000,
2002), Athreya and Schuh (2002), Dai (2002), Athreya (2003), Athreya
(2004a, b) .

Deterministic interval maps have been studied a great deal in the dy­
namical systems literature. Random perturbations of such system have
been investigated in the book of Y. Kifer. Useful references for the deter­
ministic case are the books by Devaney (1989), de Melo and van Strien
(1993).

3. Random dynamical systems. The stochastic recursive time
series defined by (1) is an example of a random dynamical system ob­
tained by iteration of random jointly measurable maps. This set up will be
describ ed now.
Let (S, s) and (K, K,) be two measur able spaces and f : K x s --+ S be jointly
measurable, Le. (s x K" s) measurable. Let {Bi (W)} i~l be a sequence of K
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valued random variables on a probability space (D, B ,P). Let Xo : D -. S
be an S-valued r.v. Let

(7) n ~ o.
Then for each n , X n : D -. S is a random variable and hence
{Xn+!(w)}n2:0 is a well defined S-valued stochastic process on (D,B,P).
When {Bi };2:1 are LLd. LV. independent of Xo then {Xn}n2:0 is an S­
valued Markov chain on (D, B, P) with transition function

(8) P(x,A) = P{w : f(B(w),x) f- A} .

It turns out that if S is a polish space then for every probability tr ansition
kernel P(·, .), i.e., a map from S x s -. [0,1] such that for each x, P(x , ·)
is a probability measure on (S,s) and for each A in s, P(" A) : S -. [0,1]
is s measurable, there exists a random dynamical system of LLd. random
maps {Ji(X,W)};2:1 from S x n -. S that is jointly measurable for each i
and {Ji(·,W)}i2:1 are LLd. stochastic processes such that the Markov chain
generated by the recursive equation

(9)

has transition function P(" .), i.e.

P(x , A) = P{w : f( x ,w) EA}.

See Kifer (1986) and Athreya and Stenflo (2000). As simple examples of
this consider the following.

1. The vacillating probabilist .

S=[O,l],

X _ X n En+!
n +! - 2 + 2

{€n}n2:1 are LLd. Bernouilli (!) LV . Athreya (1996).
2. Sierpinski Gasket. Let S be an equilateral triangle with vertices

Vl,V2,V3 and {Xn}n2:0 be define by

X _ Xn + €n+!
n+! - 2

where {€ n}n2:1 are LLd. with distribution

1
P(El = Vi) = ­

3
i = 1,2 ,3 .

3. Let {An ,bn}n2:1 be LLd r.v. such that for each n, An is K X K real
matrix and b« is a K x 1 vector . Let
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Suppose Elog IIAIII < 0 and E(log Ilblll)+ < 00 where "Alii is the ma­
trix norm and Ilblll is the Euclidean norm. Then it can be shown that
X n converges in distribution and the limit 1r is nonatomic (provided the
distribution of (AI, bI) is not degenerate). Note that this example includes
the previous two. Further, it can be shown that w.p.1 the limit point set of
{Xn}n>O coincides with the support k of the limit distribution tt , This re­
sult has been used to solve the inverse problem of generating k. by running
an appropriate Markov chain {Xn}n~O and looking at the limit point set
of its sample path. For this the book by Barnsley (1993) may be consulted.
When S is Polish and the {Jih>l are LLd. Lifschitz maps several suffi­
cient conditions are known for the existence of a stationary distribution,
its uniqueness and convergence to it . Two are given below.

THEOREM 3.1. Let (S ,d) be Polish and (n,B,p) be a probability
space. Let {Ji(x ,wh~l be i.i.d. maps form S x n~ S such that for each i
fi is jointly measurable. Let Xn+l(w) = fn+I(Xn(w),w), n 2: 0
aJ Let Ji(·,w) be Lifschitz w.p.l and let

s(fl) == sup d(fl(x,w) ,fl(y,w)
x #y d(x ,y)

Assume E(logs(fl)) < 0 and E(logd(fl(xo ,w),xo))+ < 00 for some Xo
in S .
Then, for any initial distribution, the sequence {Xn} converges in
distribution to a limit 1r that is unique and stationary for the Markou
chain {Xn } .

bJ Let for some p > 0

sup E(d(fl(x,w),fl(y,w)))P < 1
x # y d(x ,y)

and for some Xo

E(logd(fl(xo,w),xo))+ < 00

Then the conclusion of (aJ holds.
For a proof of (a) see Diaconis & Freedman (1991). For a proof of

(b) see Athreya (2004b). The main tool is to show that the dual sequence
Xn = fl(!2 .. . (fn(-))) converges w.p.1 and that X n and Xn have the same
distribution. For related results see N. Carlson (2004) and Wu (2002).

For Feller Markov chains on Polish spaces one of the methods of finding
stationary distributions is to use the weak compactness of the occupation
measures and the Foster-Lyaponov criterion.
More specifically, define the occupation measures by

(10)
1 n-l

rn ,x(A) ==; L P(Xj EA) ,
o
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THEOREM 3.2 . Let I' be a vague limit point of {I'n,x(-)}, that is,
I' is a measure such that r(S) S 1 and for some subsequence n k ---+ 00,
Is 9 zrn,x ---+ I 9 a: for all continuo~s functions 9 with compact sup­
port . Suppose S admits an "approxim ate identi ty" i.e. :3 {gkh~l such
that for each k, gk is a continuous function with compact support and
for all x in S, 0 S gdx) i 1. Then, r is stationary for P, i.e.
r(A) = Is P(x, A)r(dx), VA E s.

The Foster-Lyaponov condition ensures that any vague limit I' is non­
trivial.

THEOREM 3.3. Suppose there exist s a function V : S ---+ [0, (0) , a set
Kc S and constants a > 0, M < 00 such that

i) "Ix ~ k, E(v(Xd IXo = x) - V(x) S -a.
ii) "Ix E S, E(V(Xl ) IXo = x) - V(x) S M .

Then limfn,xo(k) 2 ",';M > O.
In ecological and economic applications when S = [0,(0) , the above condi­
tion is verified for a compact set k c (0,00) so that I' is different from the
delta measure at O.

For proofs the above two results see Athreya (2004a, b) .

4. Stationary distributions for Markov chains satisfying (1) .
Let {Xn}n >O be a Markov chain defined by (1). A necessary condit ion
for the existence of a st ationary distribution 1r such that 1r(0 , (0) > 0 is
provided below.

THEOREM 4.1. Let E(ln cl)+ < 00. Suppose there exists a probability
distribution 1r on [0, (0) that is stationary for {Xn}n~O and 1r(0, (0) > O.
Then,

i) E(lncl)- < 00,
ii) I Ilng(x)I1r(dx) < 00,
iii) E In Cl = - I In g(x) 1r(dx) and hence strictly positive.
CORO LLARY 4.1. If E In Cl S 0 then 1r == 80 , the delta measure at 0 is

the only stationary distribution for {Xn}n~O ' Further, Xn converges to 0
w.p.1 if E In Cl < 0 and in probability if E In Cl = O.
A sufficient condition is given below.

THEOREM 4.2. Let D == sup xg(x) < 00. Let
i) EllnCll <oo, ElnCl>O,
ii) Ellng(Cl , D)I < 00.

Then, there exists a stationary distribution 1r for {Xn} such that
1r(0, (0) = 1.
For the logistic case this reduces to ElnCl > 0 and Elln(4 - Cdl < 00
and for the Ricker case to E In Cl > 0 and EC l < 00.

For proofs of these and more results see Athreya (2004) . The station­
ary distribution is not unique, in general. For an example in the logistic
case see Athreya and Dai (2002). Under some smoothness hypothesis on
the distribution of Cl uniqueness does hold as will be shown in the next
sect ion. For some convergence results see Athreya (2004a,b).
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5. Harris irreducibility.
DEFINITION 5.1. A Markov chain {Xn}n>O with state space (S, s) and

transition function P(·, .) is Hams irreducible with reference measure cp on
(S,s) if

i) sp in a-finite and
ii) cp(A) > 0 ===} P(Xn E A for some n ~ 11 Xo = x) is > 0

for every x in S.
(Equivalently if there exists a er-finite measure sp on (S,s) such that for
each x in S, the Green's measure G(x, A) == I:~=o P(Xn E AI Xo = x)
dominates cp.)

If S = N, the set of natural numbers and P == ((Pij)) is a transition
probability matrix and if Vi, j :3 nij E Pi;ij > 0 then {Xn } is Harris ir­
reducible with the counting measure on N as the reference measure. An
important consequence of Harris irreducibility is the following

THEOREM 5.1. Let {Xn}n;:::O be Hams irreducible with state space
(S, s), transition function P(·,·) and reference measure cp. Suppose there
exists a probability measure 1r on (S, s) that is stationary for P. Then

i) n is unique.
ii) For any x in S , the occupation measures r n,x(A) =

~ I:~-l P(Xj E AI Xo = x) converge to 1r(') in total variation.
iii) For any x in S, the empirical distribution Ln(A)

~ I:~-l lA (Xj) -+ 1r(A) w.p.l (Px ) (when Xo = x) for each A
in s.

iv) {Xn}n>O is Hams recurrent i.e. cp(A) > 0 ::::} P(Xn) E A for
some";~ 11 Xo = x) = 1 for all x in S.

The Markov chain vacillating probabilist (Example 3.1) is not Har­
ris irreducible but will be if Ei has a distribution that has an absolutely
continuous compnent.

It is also known that if s is countably generated then every Harris
recurrent Markov chain with state space (S, s) is regenerative in the sense
its sample paths could be broken up into a sequence of LLd. cycles as in the
discrete state space case. For a proof of this and Theorem 5.1 see Athreya
and Ney (1978), Nummelin (1984), Meyn and Tweedie (1993).

In the rest of this section conditions will be found for Harris irreducibil­
ity of {Xn}n;:::O defined by (1).

Assume that {Cn}n;:::l are LLd. with values in (0, L), L :s 00 and for
each c E (O,L), fc(x) == cxg(x) maps S = (O,k), k:S 00 to itself. For any
function f : S -+ S the iterates of f are defined by

The first step is a local irreducibility result.
THEOREM 5.2. Suppose
i) :30 < a < 00, 8> 0, a Borel function lIt : J == (a - 8,a + 8) -+

(0,00) -+ P(C1 E B) ::::: fBn] lIt(B)dB for all Borel sets B .
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ii) ::10 < P < 00, m 2: 1 such that for the function f O;(x) == ax g(x ),

f~m)(p) = p .

Then, ::11] > °-; "Ix E I == (p -1] ,p + 1]) , Px(Xm EA) > °for all Bo rel
sets A such that iP (A) == .\(A n 1) > °where .\ is Lebesgne m easure.

COROLLARY 5. 1. Suppo se in additi on to the hypotheses of Th eorem
5.1 , Px(Xn E I fo r some n 2: 1) is> °for all x in (0, k) . Th en {Xn }n2:0
is Hams irreducible with state space S = (0, k).

Using a deep result of Gu ckenheimer (1979) on S-unimodal maps a
sufficient condition for the hyp otheses of Corollary 5.1 can be found.

DEFINITION 5.2. A map h : [0,1] -; [0,1] is S-unimodal if
i) h( .) E C3, i.e. 3 times con tinuous ly differentiable,
ii) h(O) = h(l) = 0,
iii) ::I °< c < 1 ::1 h"(c) < 0, h is increasing in (0, c) and decreasing

in (c,l) an d

' ) (S f )( ) - h"l(x) 3( hll(X )) 2'f h' ( ) Od 'f h' ( ) - Ozv X = h"(x) - '2 h'(x) Z X > an - 00 Z x -

is < ° fo r all °< x < 1.
EXAMPLES. h( x) === cx (l - x ), 0 < c::; 4, h( x ) = x 2 sin JrX .

DEFINITION 5.3 . A number p in (0,1) is a stable periodic point for h
if for som e m 2: 1: h(m )(p) = p and Ih(m)(p)1 < 1.

DEFINITION 5.4. For x in (0,1) the orbit Ox is th e set {h(m)(x)}m 2:0
and w( x) is the limit point set of Ox.

THEOREM 5.3 (Guckenheim er (1979)) . Let h be S-unimodal with a
stable periodic point p . Let K = {x : °< x < 1, w(x ) = w(p )} . Th en ,
.\(K) = 1 where .\( .) is the Lebesgue m easure.
Combining Theorem 5.2, 5.3 and Corollar y 5.1 leads to

THEOREM 5.4 . Let S = [0,1] . A ssume
i) "1 O< c < k , hc(x) == cx g(x ) is S -unim odal.
ii) ::I °< P < 1, °< a < L ::1 P is a stable periodic point fo r

hO;(x) == axg(x ).
iii) ::I 8 > 0, a Bo rel function Ill : J == (a - 8,a + 8) -; (0,00) ::1

P(C1 E B) 2: f Bn J III(B)dB for all Borel sets B . Th en , the Markov
chain {Xn} n2:0 defined by

n=0,1 ,2 , . ..

where {Cn} n2:1 are i.i.d . is Ham s irreducibl e with state space (0,1)
reference m easure cP(·) = .\(.n 1) where I = (p -1],p + 1]) for some
appropriate 1] > 0.

As a special case applied to random logistic maps one gets
THEOREM 5.5. Let S = [0,1]' let {Cn} n2:1 i.i .d. (0,4] valued r.v . and

{Xn}n2:0 be the the Markov chain defin ed by

n 2: 0.

Suppose ::I an open interval J C (0,4) and a function Ill : J -; (0,00) -;
P(C1 E B) 2: fBnJ III(B)dB fo r all Borel sets B .
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If J n (1,4) = ip , assume in addition, that :3 j3 > 1 in the support of
Cl 3 f{3(x) == j3x(l - x) admits a stable periodic point p in (0,1). Then
{Xn}n>O is Hams irreducible .

COROLLARY 5.2 . Suppose, in addition to the hypotheses of Theorem
5.5, that:3 InCI > 0 and Elln(4-CI )1< 00 . Then,:3 a unique stationary
measure 1r for {Xn} such that

i) 1r(0 , 1) = 1,
ii) 1r is absolutely continuous,
iii) V 0 < x < 1, Px (Xn E .) --+ 1r(') in total variation.

For proofs of all the results in this section except Theorem 5.1 see the
Athreya (2003) . It has been pointed out by one of the referees that the
above Corollary has been obtained independently by R.N. Bhattacharya
and M. Majumdar in a paper entitled "Stability in distribution of randomly
perturbed quadratic maps as Markov processes" , CAE working paper 02­
03, Department of economics, Cornell University.
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PHASE CHANGES WITH TIME AND MULTI-SCALE
HOMOGENIZATIONS OF A CLASS OF

ANOMALOUS DIFFUSIONS*

RABI BHATTACHARYA t

Abstract . Composite media often exhibit multiple spatial scales of heterogeneity.
When the spatial scales are widely separated, t ransport through such medi a go through
distinct phase changes as time progresses. In the pres ence of two such widely separated
scales, one local and one large scale , the time scale for t he appearance of the effects due
to the large scale fluctuations is determined. In the case of t ransport in periodic media
with such slowly evolving heterogeneity and divergence-free velocity fields , there is a first
Gaussian phase which breaks down at the above t ime scale, and a second Gaussian phase
occurs at a later time scale which is also precisely determined. In between there may be
non-Gaussian phases, as shown by examples. Dep ending on the structure of the large
scale fluctuations , the diffusion is either super-diffusive, with the effective diffusivity
increasing to infinity, or it exhibit s normal diffus ivity which increases to a finite limit as
time increases. Sub-diffusivity, with the effect ive diffusion coefficient tending to zero in
time, is shown to arise in a cert ain class of velocity fields which are not divergence-free.

1. Introduction. Electric and thermal conduction in composite me­
dia as well as diffusion of matter through them are problems of much sig­
nificance in applications (see, [5-7, 16, 21]) . Examples of such composite
media are natural heterogeneous material such as soils, polycrystals , wood ,
animal and plant tissue, cell aggregates and tumors , and synthetic prod­
ucts such as fiber composites, cellular solids , gels, foams, colloids, concrete,
etc . The evolution equation that arises in such context s is gener ally a
Fokker-Planck equation of the form

(1.1)
ac(t, y) 1

at = 2" \7 . (D(y)\7c) - \7 . (v(y) c), c(O, .) = Ox

where D( ·) is a k x k positive definite matrix-valued function depending on
local properties of the medium, and its eigenvalues are assumed bounded
away from zero and infinity; v(·) is a vector field which arises from other
sources. To fix ideas one may think of v(·) as the velocity of a fluid (say,
water) in a porous medium (such as a saturated aquifer) in which c(t , y) is
the concentration of a solute (e.g., a chemical pollutant) injected at a point
in the medium ([12 , 16,21 ,25,31 ,36,38]) . One may also think of (1.1) as
the equation of transport , or diffusion, of a substance in a turbulent fluid
([1,3,35]).

One of the main aims of the study of transport in disordered media
is to derive from the local , or microscopic, Equation (1.1) a macroscopic
equation with constant coefficients governing c over much larger space/time

*Research supported by NSF Grant DMS-OO-73865.
tDepartment of Mathematics, Univers ity of Arizona, Tucson , AZ 85721

(rabi@math.arizona.edu) .
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scales , under appropriate assumptions. Such a derivation is known as ho­
m ogenization in par t ial differential equations. The macroscopic equation is
then of the form

(1.2) ac(t, y) = ~ ~ D . . a
2c

_ ~ e. ac
at 2 L...J t ,) ay . ay . L...J t ay. '

i,j=l t) i = l t

where D = (Di,j) is the effective dispersion or , diffusivity. This program
has been carried out in complete generality for periodic D (·), v( ·) in Ben­
soussan et al. (1978) (also see [1, 2, 8, 23, 30, 38]). Another popular model
assumes D (·), v (·) are stationary ergodic random fields ([1, 2, 7, 23,38]).
P apanicolaou and Varadhan (1980) and Kozlov (1979) independently de­
rived homogenizations when (1.1) is in divergence form (i.e., v(·) = 0 in
(1.1)) . For a class of two-dimensional problems in such random media
with D(·) = D constant and v(.) a (divergence free) shearing motion, a
der ivation of homogenization and analysis of asymptotics is carried out in
Avellaneda and Majda (1990), (1992) (also see [1]).

From a probabilistic point of view, homogenization of (1.1) in the form
(1.2) means that a diffusion (Markov process ) X( ·) generated by A = ~\7.

(D (.)\7) +v( ·) . \7 converges in law, under a scaling of time and space with
properly large units , to a Brownian motion WO with (constant) diffusion
matrix D and (constant) drift velocity vector v:

(1.3) cX (!-) - ! v --. W(t) ,
c;2 E

(t ~ 0), as s ] o.

It is known that if the coefficients are periodic, or stationary ergodic random
fields, and v(·) is divergence free, the effect ive diffusivity is larger than the
average of the local diffusivity D(· ).

We have so far considered homogenization under a single scale of het ­
erogeneity. Natural composite media generally exhibit multiple scales of
heterogeneity, i.e., heterogeneity th at evolves with distance. It has been
observed in many instances, and sometimes verified theoretic ally, that this
often leads to increase in the effective dispersivity D with the spatial scale,
say, L. For t he case of solute dispersion in porous media, such as saturated
aquifers, one may see this by introducing a scale parameter in v(·), or by
relating D to the correlation length, and still using a single large scale
([13, 23, 38]).

Our objective in the present survey is to introduce different widely
separated spatial scales of heterogeneity explicitly in the model and study
(i) the effective diffusivity as a funct ion of the spatial scale, and (ii) the
time scales for the different (Gaussian and non-G aussian ) phases t he diffu­
sion passes through as time progresses. In the next sect ion we give a fairly
complete description of this for the case of periodic coefficients and a diver­
gence free velocity field v(·) with two widely separ at ed scales- a local scale
and a large scale . The case of addit ional appropriately widely separated
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scales may be understood from this. Examples in Section 4 illustrate the
emergence of non-Gaussian phases in between Gaussian ones.

Before concluding this introduction, let us mention the classical work
of Richardson (1926) who looked at already existing data on diffusion in
air over 12 or so different orders of spatial scale, and conjectured that the
diffusivity DL at the spatial scale L satisfies

(1.4)

This was related later by Batchelor (1952) to the turbulence spectrum
v ex L1/ 3 derived by Kolmogorov (1941). The length scale L(t) and the
diffusion coefficient DL(t), as functions of time t, are now related using L(t)
as the root mean squared distance from the mean flow (see Ben Arous and
Owhadi (2002)): L2(t) ex DL(t)t ex L4/3(t)t, leading to L(t) ex t3/2 and
DL(t) ex t2. This was also derived by Obhukov (1941) by a dimensional
argument similar to that of Kolmogorov (1941). In particular, DL(t) ---+ 00

as t ---+ 00 , that is, this is a case of super-diffusivity. For a precise analysis of
a two-dimensional model with constant D( .) = D and a stationary ergodic
v( ·), we refer to Avellaneda and Majda (1990), (1992).

2. A general model with two spatial scales: The first phase
of asymptotics and the time scale for its breakdown. Consider the
general model (1.1) with v(·) of the form

(2.1) v(y) = b(y) + I'(~) ,

where a is a large parameter, b(.), and 1'(-!a) represent the local and large
scale velocities, respectively. The solution to (1.1) is the fundamental so­
lution p(t;x, y) . Consider a diffusion X(t) , t 2 0, on Rk with transition
probability density p, starting at x = X (0). To avoid the artificial impor­
tance of the origin, take the initial point x to be

(2.2) x = axo

where Xo is a given point in Rk, so that the initial value of I'Ua) is I'(xo).
One may represent such a diffusion as the solution to the stochastic integral
equation

X(t)
(2.3)

axo + it {b(X(S)) + d(X(s)) + 1'(X~s)) }dS

+ it a(X(s))dB(s) ,

where a(x) JD(x), d(x) (d1(x) , .. . ,dk(x))', dj(x)
L.i(fJ/fJXi) Dij(x), and BC) is a standard k-dimensional Brownian mo­
tion. Since I'(-!a) changes slowly, at the rate of s.]«, one expects that for
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an initial period of time the process X (.) will behave like the diffusion Y(.)
governed by

(2.4)
Y(t) = axo + it {b(Y(s)) + d(Y(s)) }ds + t,8(xo)

+ it (1(Y(s))dB(s) .

Indeed, the £i-distance between p(t;x, y) and the tr ansition density
q(t;x, y) of Y(t) is negligible for the times t « a2

/
3

. Actually, the to­
tal variation distance l!Poot - QO,tllv between the distributions Poot of the
process {X (s) : 0 'S s 'S t} and the distribution QO,t of the process
{Y(s) : 0 'S s 'S t} goes to zero in this range . More precisely, one has
the following result obtained in [12] (also see [9]).

THEOREM 2.1. Assume b(.) and its first order derivatives are bounded,
as are D( ·), ,8( .) and their first and second order derivatives. Assume also
that the eigenvalues of D( .) are bounded away from zero and infinity. Then

(2.5) l!Poot - QO,tIlv -----. 0
t

as a2/ 3 -----. O.

Proof By the Cameron-Martin-Girsanov Theorem (Ikeda and Watan­
abe (1981), pp. 176-181) ,

(2.6)

Z(t) := it (1-1(Y(S)){ ,8(Y~S)) - ,8(Y~O)) }dB(S)

_~ it 1(1- 1(Y(S)){ ,8(Y~s)) _ ,8 ( Y~O) ) }1 2

ds.

Since Eexp{Z(t)} = 1, Ell - exp{Z(t)}1 = 2E(1 - exp{Z(t)})+ 'S
2[EIZ(t)1 /\ 1]. Now the expected value of the second integral in (2.6) can
be shown, using Ito 's Lemma ([26]), to be bounded by [C1t2j a2+C2t3ja2+
c3t3ja4]jA where A is the infimum of all eigenvalues of D(.), and C1,C2,C3,
depend only on the upper bounds of the components of b( ·), ,8( .),D( ·) and
of their first order derivatives, and also of the second order derivatives of
,8( .). Since the expected value of the square of the norm of the stochastic
integral equals the expected value of the Reimann integral of the squared
norm of the integrand, one has

1 1/2l!Poot - QOotllv 'S (} + 2(}

where () = [C1t2 ja2+ C2t3ja2+ C3t3 ja4]jA. 0
One may show by examples (see Section 4) that the large scale fluc­

tuations (namely, fluctuations of ,8Ua)) can not be ignored in general for
times t of the order a2/ 3 or larger, i.e., the time scale in (2.5) is precise.
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Theorem 2.1 implies that a first homogenization occurs for t imes 1 «
t « a2/3, provided y( .) defined by (2.4) is asymptotically Gaussian. This
is the case, e.g., if b(·),D( ·) are period ic, or are ergodic random fields
satisfying some addit ional condit ions ([1- 3, 14, 34,38]). No assumption is
needed on f3 (.), except the smoothness and boundedness condit ions imposed
in Theorem 2.1. To illustrat e thi s, let b(.) and D( ·) be periodic with the
same period lattice, say, zr. and assume for simplicity that

(2.7) divb(·) = o.

Then, by Bensoussan et al. (1978) (or, Bhattacharya (1985)), and Theorem
2.1, one has

(2.8) lim EX(-; )- ! [b + f3 (xo)]~ BM(O, K ),
<:10, <:a 1/ 3 --. OQ E E

where the right side is a Brownian motion with 0 drift and a (const ant)
diffusion matrix K :

b = r b(x)dx ,
JIO,llk

jj = r D(x)dx ,
J[O,1Jk

K jj + r Grad \lJ(x)D(x)(Grad \lJ(x ))'dx
J[O ,1Jk

(2.9)

\lJ(x)

r {Grad \lJ(x)D(x) + D( x)(Grad \lJ(x)) '}dx,
J[O ,1Jk

[

grad 7P1 (x) J
grad 7/J2 (X)

Grad \lJ(x) =

grad'l/Jdx)

where 'l/Jr is the mean-zero periodic solution of

(1 ::; r ::; k) ,

(2.10)
Lo : =

1
"2V , D(·)V + (b( .) + d(·) + f3 (xo))' V.

Note that (2.8), (2.9) imply that with appropriately large unit s of space
and time (of the orders of l /E and 1/ E2, respectively, with El 0, E» a- i / 3 ,

the diffusion X(·) governed by L = ~V· D(·)V + (be) + f3U a)) . v may
be approximated by a Brownian motion generated by L = ~ V . KV + (b+
f3 (xo)) . V.
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(3.3)

3. The second Gaussian phase and its time scale, examples of
non-Gaussian int er med iat e phases. We now consider the model (1.1)
with a constant D(·) = D for simplicity and with v(·) = b(·) + (3( ·ja), as
in (2.1), satisfying the following assumptions:

AI : b(·), (3(.) are periodic with period lattice tr,
(3.1) A2: div b(·) = 0 = div (3(.);

A3: a is a positive integer.

One may take a (in A3) to be rational, and an arbitrary period lattice
rather than 'l} (in AI).

The diffusion X (.) is now governed by

(3.2) X(t) = x +I t

{b(X(S)) + (3 ( X~s)) }dS+aB(t) t ~ 0,

where a = VD. Then X(t) := X(t) mod a == (X1(t) mod a, . . . , Xk(t) mod
a), t ~ 0, is a diffusion on the big torus Ta = {x mod a : x E ]Rk} . As in
(2.8), (2.9) the asymptotic distribution of X(t), t ~ 0, is given by ([6, 8])

lim«x (~) - ! (b + j3) ~ BM(O, K) ,
dO e e

K = D + r Grad III (x)D(Grad llI(x))' l
k

dx,
J[O ,ajk a

where III = ('ljJ1l 'ljJ2 , " " 'ljJk)' and 'ljJr is the mean zero periodic (with pe­
riod a) solution of

(3.4)

For large a, that is, as a --+ 00, we need to determine how large must
t be for X(t) to have the Brownian limit (3.3) or, equivalently, for the
homogenization of La in the form

(3.5)
_ 1 ~ {)2 __

La = 2 Z:: K i j {)x .{)x . + (b + (3) . 'V.
i,j=l 'J

A related, and at least equally important , problem is to analyze the asymp­
totic dispersion K as a function of a.

Two crucial ingredients for this final phase analysis are 1) the speed
at which X(t) approaches the uniform (equilibrium) distribution on Ta (as
a --+ 00), and 2) the asymptotic relation between a and the dispersion
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matrix of the limiting Gaussian in the final phase. By spectral methods
analogous to those of Diaconis and Stroock (1991) and Fill (1991) , the £1­
distance between the distributions of X(t) , with arbitrary X(O), and the
equilibrium distribution is bounded above by cak / 2 exp{ -c'tja2 ]} for some
positive constants c and c' (see [9, 12]). Unfortunately, the presence of
the factor ak / 2 leads to the relaxation time to equilibrium as t » a2log a,
appearing with a logarithmic factor. A fascinating result of Franke (2004) ,
on the other hand, provides the correct rate t » a2 . To state this let us
scale X (t) as follows

a

Y(t) = Y(t) mod a ,
a

a{b(aY(t)) + j3(Y(t))}dt + I7dB(t) ,

B(a2t )
B(t) :=

X(a 2t)

Y(t) :=

dY(t) =(3.6)

Then one unit of time of Y (.) equals a2 units of time of X (.) and one
spatial unit of y(.) equals a spatial units of X(·). Note that Y(t), t » 0,
is a diffusion on the unit torus Ti . The generator of y( .) (which is also the
gener ator of Y(.) when the domain is restricted to periodic functions) is

(3.7)
1 02

Aa :="2 L o., ox .ox . + (ab(a·) + aj3( ·)) . \1.
l ::;i ,j::;k t J

In order to determine the speed of convergence of Y(.) to equilibrium we
will make use of the main result in Franke (2004) , which says the follow­
ing: Suppose qv,D(t; x , y) is the transition probability density of a diffusion
on the torus Tt having a constant nonsingular diffusion matrix D and a
divergence-free drift velocity vC). Then

(3.8) :0~ {min[qv,D(l ; x, y): x ,yE Til} == J > O.

Thus the transition density qa(t;x ,y), say, of Y(.) satisfies Doeblin's con­
dition with the same lower bound J > 0 (at t = 1) and, therefore, one has
(see, e.g., [15, pp. 214, 215])

(3.9) sup r Iqa(t;x,y)-lldx~c'e-fJt ,
a E Z\{O}, x E T1 iT

1

t 2 0,

for some positive constants c',J. For the transition density Pa of the diffu­
sion XC) on the big torus Ta, (3.9) implies


