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Preface

When in 2015, the first two volumes of our treatise on Fluid and Thermodynamics
(FTD) were submitted to the publisher, it was not certain whether we would still be
able to add a third volume. The aims were to add chapters on mixture and multi-
phase theories for the developments of which both of us had contributed, but not
enough to fill a complete volume. However, in combination with the thermody-
namic formulations of fluid materials exhibiting microstructure and/or anisotropy
effects, a book on FTD of structured and mixture materials could be designed and
we felt secure to be able to design a volume on advanced topics of FTD. This
simultaneously brought the advantage to extend the class of BoLTzZMANN continua to
polar media, to naturally include two chapters on FTD of the kinematics and
dynamics of Cosserat continua and concepts of thermodynamics of these.

General accounts on these subjects are treated in Chaps. 21-23. It opened the
doors for a presentation of basic formulations of continuum theories of liquid
crystals, one of the most important applications of continua exhibiting spin
responses, introduced by ERricksen and LEsLIE in the 1960s and 1970s by use of
directors (vector quantities identifying orientation) attached to the material particles.
Their elastic response was already mathematically described by Sir JaAMEs FRANK in
1958 and the restriction of the coefficients by thermodynamic ONSAGER relations is
due to Parobi in the 1970s (Chap. 25). This ELP-director theory has been extended
by introducing tensorial order parameters of second and higher rank in the 1980s
and later. These theories resolve the subgrid structure of the material better but must
necessarily also be in conformance with the angular momentum balance (Chap. 26).

Multiphase fluids are understood as mixtures of immiscible constituents. These
often occupy disjoint regions of space with impermeable material surfaces and/or
lines separating the different constituents; these are treated as flexible two- and
one-dimensional material objects, interacting with the higher dimensional neigh-
boring fluids of three or two dimensions. Derivation of an entropy principle for the
bulk, interface surfaces and contact lines is the topic of Chaps. 27 and 28. This
theoretical concept is presented for multiphase fluids within a BoLTzMANN-type
formulation.
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Whereas the chapters on multiphase media do not operate with additional
equations modeling the substructure through three-dimensional space, but employ
the concept of physical balance Laws on “singular regions” of lower dimensions,
Chaps. 29-31 are devoted to situations, in which the fluid substructure is described
by fields throughout the three-dimensional space. Granular materials as assem-
blages require the description of the temporal changes of the solid volume fraction
(generally the space filled by the grains). The original description of the variation of
this space is described by a scalar balance law, interpreted as a scalar momentum
equation, called equilibrated force balance. Application of the concept to the
entropy principle of MULLER-LIu and Crausius—DuUHEM, respectively, generates
distinct results and demonstrates that the ultimate form of the second law is still not
found. Chapter 30 extends the concepts applied to a single constituent assemblage
to a mixture of different grains; here, each grain constituent is modeled by postu-
lating its own equilibrated force balance. The thermodynamic model is analogous to
that of a single granular assemblage of distinct grains, but more complicated in
detail.

Granular systems are often capable of performing slow and smooth—Ilaminar—
flows and rapid and fluctuating—turbulent—motions. When performing an ergodic
(ReynoLDs) average of the basic equations, then equations for the mean motion
emerge, that are complemented by turbulent correlation terms and additional bal-
ance laws for the classical and configurational turbulent kinetic energies and dis-
sipation rates. These play analogous roles as the additional balance laws play in
other theories where substructure processes are accounted for. So, the turbulent
closure schemes can be interpreted as describing the microstructure effects of a
hypothetical medium that performs the mean motion.

In the subsequent pages, the contents of the three volumes will be summarized.

Fluid and Thermodynamics—Volume 1: Basic Fluid Mechanics

This volume consists of 10 chapters and begins in an introductory Chap. 1 with
some historical facts, definition of the subject field and lists the most important
properties of liquids.

This descriptive account is then followed in Chap. 2 by the simple mathematical
description of the fundamental hydrostatic equation and its use in analyses of
equilibrium of fluid systems and stability of floating bodies, the derivation of the
ArcHIMEDEan principle and determination of the pressure distribution in the
atmosphere.

Chapter 3 deals with hydrodynamics of ideal incompressible (density pre-
serving) fluids. Streamlines, trajectories, and streaklines are defined. A careful
derivation of the balances of mass and linear momentum is given and it is shown
how the BERNOULLI equation is derived from the balance law of momentum and how
itis used in applications. In one-dimensional smooth flow problems, the momentum
and BERNOULLI equations are equivalent. For discontinuous processes with jumps,
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this is not so. Nevertheless, the BERNOULLI equation is a very useful equation in
many engineering applications. This chapter ends with the balance law of moment
of momentum and its application for EULER’s turbine equation.

The conservation law of angular momentum, presented in Chap. 4, provides the
occasion to define circulation and vorticity and the vorticity theorems, among them
those of HELMHOLTZ and ERTEL. The goal of this chapter is to build a fundamental
understanding of vorticity.

In Chap. 5, a collection of simple flow problems in ideal fluids is presented. It is
shown how vector analytical methods are used to demonstrate the differential
geometric properties of vortex free flow fields and to evaluate the motion-induced
force on a body in a potential field. The concept of virtual mass is defined and
two-dimensional fluid potential flow is outlined.

This almanac of flows of ideal fluids is complemented in Chap. 6 by the pre-
sentation of the solution techniques of two-dimensional potential flows by
complex-valued function theoretical methods using conformal mappings. Potential
flows around two-dimensional air foils, laminar free jets, and the ScHWARZ—
CHRYSTOFFEL transformations are employed to construct the mathematical descrip-
tions of such flows through a slit or several slits, around air wings, free jets, and in
ducts bounding an ideal fluid.

The mathematical physical study of viscous flows starts in Chap. 7 with the
derivation of the general stress—strain rate relation of viscous fluids, in particular
NaviEr—StokEs fluids and more generally, non-Newtonian fluids. Application
of these equations to viscometric flows, liquid films, PoiseuiLLE flow, and the slide
bearing theory due to ReynoLDs and SOMMERFELD demonstrate their use in an
engineering context. Creeping flow for a pseudo-plastic fluid with free surface then
shows the application in the glaciological-geological context.

Chapter 8 continues with the study of two-dimensional and three-dimensional
simple flows of the NAaVIER—STOKES equations. HAGEN—PoiseuiLLE flow and the
Exman theory of the wall-near wall-parallel flow on a rotating frame (Earth) and its
generalization are presented as solutions of the NAVIER-STOKES equations in the
half-space above an oscillating wall and that of a stationary axisymmetric laminar
jet. This then leads to the presentation of PRANDTL’s boundary layer theory with
flows around wedges and the Brasius boundary layer and others.

In Chap. 9, two- and three-dimensional boundary layer flows in the vicinity of a
stagnation point are studied as are flows around wedges and along wedge sidewalls.
The flow, induced in the half plane above a rotating plane, is also determined. The
technique of the boundary layer approach is commenced with the Brasius flow, but
more importantly, the boundary layer solution technique for the NAVIER—STOKES
equations is explained by use of the method of matched asymptotic expansions.
Moreover, the global laws of the steady boundary layer theory are explained with
the aid of the HoLsTEIN-BoHLEN procedure. The chapter ends with a brief study of
nonstationary boundary layers, in which, e. g., an impulsive start from rest, flows in
the vicinity of a pulsating body, oscillation induced drift currents, and nonstationary
plate boundary layers are studied.
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In Chap. 10, pipe flow is studied for laminar (HaAGEN—PoISEUILLE) as well as for
turbulent flows; this situation culminates via a dimensional analysis to the
well-known Moopy diagram. The volume ends in this chapter with the plane
boundary layer flow along a wall due to PRANDTL and von KARMAN with the famous
logarithmic velocity profile. This last problem is later reanalyzed as the contro-
versies between a power and logarithmic velocity profile near walls are still
ongoing research today.

Fluid and Thermodynamics—Volume 2: Advanced Fluid
Mechanics and Thermodynamic Fundamentals

This volume consists of 10 chapters and commences in Chap. 11 with the deter-
mination of the creeping motion around spheres at rest in a NEwtonian fluid. This is
a classical problem of singular perturbations in the form of matched asymptotic
expansions. For creeping flows, the acceleration terms in NEwTON’s law can be
ignored to approximately calculate flows around the sphere by this so-called STOKES
approximation. It turns out that far away from the sphere, the acceleration terms
become larger than those in the STOKES solution, so that the latter solution violates
the boundary conditions at infinity. This lowest order correction of the flow around
the sphere is due to OsgeN (1910). In a systematic perturbation expansion, the outer
—Oseen—series and the inner—STokeEs—series with the small REyNOLDS number
as perturbation parameter must be matched together to determine all boundary and
transition conditions of inner and outer expansions. This procedure is rather tricky,
i.e., not easy to understand for beginners. This theory, originally due KapLun and to
LAGERSTROM has been extended, and the drag coefficient for the sphere, which also
can be measured is expressible in terms of a series expansion of powers of the
REynoLDs number. However, for REyNoLDs numbers larger than unity, convergence
to measured values is poor. About 20-30 years ago, a new mathematical approach
was designed—the so-called Homotopy Analysis Method; it is based on an entirely
different expansion technique, and results for the drag coefficient lie much closer to
the experimental values than values obtained with the “classical” matched
asymptotic expansion, as shown, e.g., in Fig. 11.11. Incidentally, the laminar flow
of a viscous fluid around a cylinder can analogously be treated, but is not contained
in this treatise.

Chapter 12 is devoted to the approximate determination of the velocity field in a
shallow layer of ice or granular soil, treated as a non-NEwTONian material flowing
under the action of its own weight and assuming its velocity to be so small that
StokEs flow can be assumed. Two limiting cases can be analyzed: (i) In the first, the
flowing material on a steep slope (which is the case for creeping landslides or snow
on mountain topographies with inclination angles that are large). (ii) In the second
case, the inclination angles are small. Situation (ii) is apt to ice flow in large ice
sheets such as Greenland and Antarctica, important in climate scenarios in a
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warming atmosphere. We derive perturbation schemes in terms of a shallowness
parameter in the two situations and discuss applications under real-world
conditions.

In shallow rapid gravity driven free surface flows, the acceleration terms in
Newton’s law are no longer negligible. Chapter 13 is devoted to such granular
flows in an attempt to introduce the reader to the challenging theory of the
dynamical behavior of fluidized cohesionless granular materials in avalanches of
snow, debris, mud, etc. The theoretical description of moving layers of granular
assemblies begins with the one-dimensional depth integrated MoHrR—CoULOMB
plastic layer flows down inclines—the so-called SAvaGe-HUTTER theory, but then
continues with the general formulation of the model equations referred to topog-
raphy following curvilinear coordinates with all its peculiarities in the theory and
the use of shock-capturing numerical integration techniques.

Chapter 14 on uniqueness and stability provides a first flavor into the subject of
laminar-turbulent transition. Two different theoretical concepts are in use and both
assume that the laminar-turbulent transition is a question of loss of stability of the
laminar motion. With the use of the energy method, one tries to find upper bound
conditions for the laminar flow to be stable. More successful for pinpointing, the
laminar-turbulent transition has been the method of linear instability analysis, in
which a lowest bound is searched for, at which the onset of deviations from the
laminar flow is taking place.

In Chap. 15, a detailed introduction to the modeling of turbulence is given.
Filter operations are introduced to separate the physical balance laws into evolution
equations for the averaged fields on the one hand, and into fluctuating or pulsating
fields on the other hand. This procedure generates averages of products of fluctu-
ating quantities, for which closure relations must be formulated. Depending upon
the complexity of these closure relations, so-called zeroth, first and higher order
turbulence models are obtained: simple algebraic gradient-type relations for the flux
terms, one or two equation models, e.g., k-¢, k-, in which evolution equations for
the averaged correlation products are formulated, etc. This is done for density
preserving fluids as well as so-called Boussinesq fluids and convection fluids on a
rotating frame (Earth), which are important models to describe atmospheric and
oceanic flows.

Chapter 16 goes back one step by scrutinizing the early zeroth order closure
relations as proposed by PrRANDTL, vON KARMAN and collaborators. The basis is
BossiNesQ’s (1872) ansatz for the shear stress in plane parallel flow, 71,, which is
expressed to be proportional to the corresponding averaged shear rate 9v; /0x, with
coefficient of proportionality pe, where p is the density and ¢ a kinematic turbulent
viscosity or turbulent diffusivity [m?s~!]. In turbulence theory, the flux terms of
momentum, heat, and suspended mass are all parameterized as gradient-type rela-
tions with turbulent diffusivities treated as constants. PRANDTL realized from data
collected in his institute that ¢ was not a constant but depended on his mixing length
squared and the magnitude of the shear rate (PrRanDTL 1925). This proposal was
later improved (PRANDTL 1942) to amend the unsatisfactory agreement at positions
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where shear rates disappeared. The 1942-law is still local, which means that the
REYNOLDS stress tensor at a spatial point depends on spatial velocity derivatives at
the same position. PRANDTL in a second proposal of his 1942-paper suggested that
the turbulent diffusivity should depend on the velocity difference at the points where
the velocity of the turbulent path assumes maximum and minimum values. This
proposal introduces some nonlocality, yielded better agreement with data, but
PranDTL left the gradient-type dependence in order to stay in conformity with
Boussingesq. It does neither become apparent or clear that PRANDTL or the modelers
at that time would have realized that nonlocal effects would be the cause for better
agreement of the theoretical formulations with data. The proposal of com-
plete nonlocal behavior of the REYNOLDs stress parameterization came in 1991 by
P. EcoLF and subsequent research articles during ~ 20 years, in which also the local
strain rate (= local velocity gradient) is replaced by a difference quotient. We
motivate and explain the proposed difference quotient turbulence model (DQTM)
and demonstrate that for standard two-dimensional configurations analyzed in this
chapter its performance is superior to other zeroth order models.

The next two chapters are devoted to thermodynamics; first, fundamentals are
attacked and, second a field formulation is presented and explored.

Class experience has taught us that thermodynamic fundamentals (Chap. 17) are
difficult to understand for novel readers. Utmost caution is therefore exercised
to precisely introduce terminology such as “states”, “processes”, “extensive”,
“intensive”, and “molar state variables” as well as concepts like “adiabatic”, and
“diathermal walls”, “empirical” and “absolute temperature”, “equations of state”,
and “reversible” and “irreversible processes”. The core of this chapter is, however,
the presentation of the First and Second Laws of Thermodynamics. The first law
balances the energies. It states that the time rate of change of the kinetic plus
internal energies are balanced by the mechanical power of the stresses and the body
forces plus the thermal analogies, which are the flux of heat through the boundary
plus the specific radiation also referred to as energy supply. This conservation law
then leads to the definitions of the caloric equations of state and the definitions of
specific heats. The Second Law of thermodynamics is likely the most difficult to
understand and it is introduced here as a balance law for the entropy and states that
all physical processes are irreversible. We motivate this law by going from easy and
simple systems to more complex systems by generalization and culminate in this
tour with the Second Law as the statement that entropy production rate cannot be
negative. Examples illustrate the implications in simple physical systems and show
where the two variants of entropy principles may lead to different answers.

Chapter 18 extends and applies the above concepts to continuous material
systems. The Second Law is written in global form as a balance law of entropy with
flux, supply, and production quantities, which can be written in local form as a
differential statement. The particular form of the Second Law then depends upon,
which postulates the individual terms in the entropy balance are subjected to. When
the entropy flux equals heat flux divided by absolute temperature and the entropy
production rate density is requested to be nonnegative, the entropy balance law
appears as the CLAausius—DUHEM inequality and its exploitation follows the axiomatic
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procedure of open systems thermodynamics as introduced by CoLEMAN and NOLL.
When the entropy flux is left arbitrary but is of the same function class as the other
constitutive relations and the entropy supply rate density is identically zero, then the
entropy inequality appears in the form of MULLER. In both cases, the Second Law is
expressed by the requirement that the entropy production rate density must be
nonnegative, but details of the exploitation of the Second Law in the two cases are
subtly different from one another. For standard media such as elastic and/or viscous
fluids the results are the same. However, for complex media they may well differ
from one another. Examples will illustrate the procedures and results.

Chapter 19 on gas dynamics illustrates a technically important example of a
fluid field theory, where the information deduced by the Second Law of
Thermodynamics delivers important properties, expressed, e.g., by the thermal and
caloric equations of state of, say, ideal and real gases. We briefly touch problems of
acoustics, steady isentropic flow processes, and their stream filament theory. The
description of the propagation of small perturbations in a gas serves in its
one-dimensional form ideally as a model for the propagation of sound, e.g., in a
flute or organ pipe, and it can be used to explain the DoppLER shift occurring when
the sound source is moving relative to the receiver. Moreover, with the stream
filament theory the sub- and supersonic flows through a nozzle can be explained. In
a final section the three-dimensional theory of shocks is derived as the set of jump
conditions on surfaces for the balance laws of mass, momentum, energy and
entropy. Their exploitation is illustrated for steady surfaces for simple fluids under
adiabatic flow conditions. These problems are classics; gas dynamics, indeed forms
an important advanced technical field that was developed in the 20th century as a
subject of aerodynamics and astronautics and important specialties of mechanical
engineering.

Chapter 20 is devoted to the subjects “Dimensional analysis, similitude and
physical experimentation at laboratory scale”, topics often not systematically taught
at higher technical education. However, no insider would deny their usefulness.
Books treating these subjects separately and in sufficient detail have appeared since
the mid 20th century. We give an account of Dimensional analysis, define
dimensional homogeneity of functions of mathematical physics, the properties of
which culminate in BuckingHAM’s theorem (which is proved in an appendix to the
chapter); its use is illustrated by a diversity of problems from general fluid
dynamics, gas dynamics and thermal sciences, e.g., propagation of a shock from a
point source, rising gas bubbles, RAYLEIGH-BENARD instability, etc. The theory of
physical models develops rules, how to down- or upscale physical processes from
the size of a prototype to the size of the model. The theory shows that in general
such scaling transformations are practically never exactly possible, so that scale
effects enter in these cases, which distort the model results in comparison to those in
the prototype. In hydraulic applications, this leads to the so-called Froupe and
REeyNoLDs models, in which either the FRouDE or REYNOLDs number, respectively,
remains a mapping invariant but not the other. Application on sediment transport in
rivers, heat transfer in forced convection, etc. illustrate the difficulties. The chapter
ends with the characterization of dimensional homogeneity of the equations
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describing physical processes by their governing differential equations. The
Navier—STokES-FourierR-Fick fluid equations serve as illustration.

Fluid and Thermodynamics—Volume 3: Structured
and Multiphase Fluids

In Chap. 21, the fundamental assumption of continuous systems in classical
physics is the conjecture that the physical space is densely filled with matter. This
hypothesis is applied to single and multiphase continua as well as mixtures con-
sisting of a finite number of constituents. Three classes of mixtures are defined: In
the most complex case, class III, balance laws of mass, momenta, energy are
formulated for each constituent, which possess their own mass, momenta, energy
(and, therefore temperature). In class II mixtures, all components possess the same
temperature, but the constituents possess their individual momenta and masses.
Finally, in class I mixtures, the constituents do have the same temperature and
common velocity—there is no slip between them—but each component has its own
mass.

The modern theories of continuous bodies differentiate between BoLTzmMANN and
polar continua. In the former, the balance of angular momentum is applied as
moment of momentum. In such continua, the CAUCHY stress tensor of the mixture is
symmetric. In the latter, angular momentum is expressed as moment of momentum
plus spin with all its peculiar consequences. The balance laws of mass, momenta,
and energy are formulated for the constituents for both cases in global and local
forms in detail. The results for BoLtzmaNN continua are well known. However, for
polar media, different sub-theories emerge, depending upon how the specific spin is
parameterized. In COSSERAT continua, the specific spin is motivated by rigid body
dynamics as the “product of the tensor moment of inertia times angular velocity”,
see (21.32). If the micromotion is a pure rotation of the particles, i.e., the tensor of
moments of inertia of the constituents do not change under motion, the mixture is
called micro-polar, else micro-morphic.

The chapter is closed by formulating the physical balance laws of the mixture as
a whole and stating the relations of the physical variables of the mixture in terms of
those of the constituents.

The aim of Chap. 22 is the presentation of the kinematics of classical
(BoLtzmANN) and polar (COSSERAT) continuous mixtures. The motions of material
points of constituent o are first mathematically introduced for a classical mixture as
mappings from separate constituent points onto a single point in the present con-
figuration, Fig. 22.3. This guarantees that material points in physical space are a
merger of all constituents. This motion function then yields through spatial and
temporal differentiations the well-known definitions of the classical deformation
measures: deformation gradient, right and left CAucHy—GREEN deformation tensors,
EULER-LAGRANGE strains and associated strain rates. Of importance is the polar
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decomposition, which splits the deformation gradient into a sequence of pure strain
and rotation or vice versa.

Whereas the classical stretch and stretching measures are obtained by inner
products of the constituent vectorial line element with itself, deformation measures
of CosseraT kinematics are generated by inner products between vectorial material
line increments and the directors. The mappings of the latter between the reference
and present configurations are postulated to be pure rotations (Fig. 22.5). This then
yields the various COSSERAT strain measures, which are analogous to, but not the
same as those of the classical theory.

The kinematically independent rotation of the directors gives rise to the intro-
duction of skew symmetric rank-3 and full rank-2 curvature tensors, quasi as
measures of the spatial variation of the microrotation. Analogous to the additive
decomposition of the velocity gradient into stretching and vorticity tensors in the
classical formulation, two additional decompositions of the velocity gradient are
introduced using the polar decomposition and leads to nonsymmetric strain rate and
the so-called gyration tensors, and objective time derivatives of the COSSERAT
version of the ALMANsI tensor and the curvature tensors. All these quantities are also
written relative to the natural basis system.

The chapter ends with the presentation of the balance law of micro-inertia. It is
based on the assumption that material points of micro-polar continua move like
rigid bodies.

In Chap. 23, two versions of mixtures of BoLTZMANN-type continua are subject
to thermodynamic analyses for viscous fluids. Of the two forms of the Second Law
that were introduced—the Crausius—DUHEM inequality applied to open systems and
the entropy principle of I. MULLER—the latter principle is employed in the process
of deduction of the implications revealed by the particular Second Law. The goal in
the two parts of the chapter is to derive the ultimate forms of the governing
equations, which describe the thermomechanical response of the postulated con-
stitutive behavior without violation of the Second Law of thermodynamics. The
versions of mixtures which are analyzed are

e Diffusion of tracers in a classical fluid: The conceptual prerequisites of this type
of processes are mixtures of class I, in which the major component is the bearer
fluid within which a finite number of constituents with minute concentration are
suspended or solved in the bearer fluid. The motion of these tracers is described
by the difference of the constituent velocities relative to the barycentric velocity
of the mixture as a whole. For the dissipative constitutive class applied to the
entropy principle, the existence of the KELvIN temperature is proved, the form
of the GiBBs relation could be determined as could the conditions of thermo-
dynamic equilibrium and the constitutive behavior in its vicinity.

o Thermodynamics of a saturated mixture of nonpolar solid—fluid constituents:
Conceptually, these systems are treated as classical mixtures of class I, in which
the individual motions of the constituents are separately accounted for by their
own balances of mass and momentum, but subject to a common temperature.
The analysis of the dissipation inequality is performed subject to the assumption
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of constant true density of all constituents and the supposition of saturation
of the mixture. The constitutive relations are postulated for a mixture of viscous
heat conducting fluids. The explanation of the entropy principle is structurally
analogous to that of the class I-diffusion theory, but is analytically much more
complex. Unfortunately, intermediate ad hoc assumptions must be introduced to
deduce concrete results that will lead to fully identifiable fluid dynamical
equations, which are in conformity with the Second Law for the presented type
of mixtures.

Chapter 24 demonstrates how complex it is to deduce a saturated binary solid—
fluid CosserAT mixture model that is in conformity with the second law of ther-
modynamics and sufficiently detailed to be ready for application in fluid dynamics.
The second law is formulated for open systems using the Crausius—DUHEM
inequality without mass and energy production under phase change for class II
mixtures of elastic solids and viscoelastic fluids. It turns out that even with all these
restrictions, the detailed exploitation of the entropy inequality is a rather involved
endeavor. Inferences pertain to extensive functional restrictions of the fluid and
solid free energies and allow determination of the constitutive quantities in terms
of the latter in thermodynamic equilibrium and small deviations from it. The theory
is presented for four models of compressible—incompressible fluid-solid con-
stituents. Finally, explicit representations are given for the free energies and for the
constitutive quantities that are obtained from them via differentiation processes.

Chapter 25 presents a continuum approach to liquid crystals. Liquid crystals
(LCs) are likely the most typical example of a polar medium of classical physics, in
which the balance of angular momentum is a generic property, not simply
expressed as a symmetry requirement of the CaucHy stress tensor. They were
discovered in the second half of the nineteenth century. Liquid crystals are mate-
rials, which exhibit fluid properties, i.e., they possess high fluidity, but simulta-
neously exhibit crystalline anisotropy in various structural forms. We present an
early phenomenological view of the behavior of these materials, which conquered a
tremendous industrial significance in the second half of the twentieth century as
liquid crystal devices (LCD) (Sect. 25.1). The theoretical foundation as a continuum
of polar structure was laid in the late 1950s to 1990s by ERICKSEN, LESLIE, FRANK
and Paropbi, primarily for nematic LCs by postulating their general physical con-
servation laws, hydrostatics and hydrodynamics, thus, illustrating their connection
with nontrivial balance laws of angular momentum (Sect. 25.2). This is all done by
treating nematics as material continua equipped with continuous directors (long
molecules), which by their orientation induce a natural anisotropy. The thermo-
dynamic embedding (Sect. 25.3) is performed by employing an entropy balance law
with nonclassical entropy flux and the requirement of EucLipian invariance of the
constitutive quantities, which are assumed to be objective functions of the density,
director, its gradient and velocity, as well as stretching, vorticity, temperature, and
temperature gradient. This is specialized for an incompressible LC with directors of
constant length (Sect. 25.4). Constitutive parameterizations with an explicit pro-
posal of the free energy as a quadratic polynomial of the director and its gradient
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(according to Frank) are reduced to obey objectivity. Based on this, the objective
form of the free energy is derived (Appendix 25.A), as are the linear dissipative
CaucHy stress, director stress and heat flux vector for the cases that the ONSAGER
relations are fulfilled. The chapter ends with the presentation of shear flow solutions
in a two-dimensional half-space and in a two-dimensional channel.

Chapter 26 goes beyond the ELP-theory of LCs by modeling the microstructure
of the liquid by a number of rank-i tensors (i = 1,..., n) (generally just one) with
vanishing trace. These tensors are called alignment tensors or order parameters.
When formed as exterior products of the director vector and weighted with a scalar
and restricted to just one rank-2 tensor the resulting mathematical model describes
uniaxial LCs. The simplest extensions of the ELP-model are theories, for which the
number of independent constitutive variables are complemented by a constant or
variable order parameter S and its gradient grad S, paired with an evolution equation
for it. We provide a review of the recent literature.

Two different approaches to deduce LC-models exist; they may be coined the
balance equations models, outlined already in Chap. 25 for the ELP model, and the
variational LAGRANGE potential models, which, following an idea by LorDp
RAYLEIGH, are extended by a dissipation potential. The two different approaches
may lead to distinct anisotropic fluid descriptions. Moreover, it is not automatically
guaranteed in either description that the balance law of angular momentum is
identically satisfied. The answers to these questions cover an important part of the
mathematical efforts in both model classes.

A significant conceptual difficulty in the two distinct theoretical concepts are the
postulations of explicit forms of the elastic energy W and dissipation function R.
Depending upon, how W and R are parameterized, different particular models
emerge. Conditions are formulated especially for uniaxial models, which guarantee
that the two model classes reduce to exactly corresponding mathematical models.

In Chap. 27, a general continuum description for thermodynamic immiscible
multiphase flows is presented with intersecting dividing surfaces, and three-phase
common contact line, taking the contribution of the excess surface and line ther-
modynamic quantities into account. Starting with the standard postulates of con-
tinuum mechanics and the general global balance statement for an arbitrary physical
quantity in a physical domain of three bulk phases including singular material or
nonmaterial phase interfaces and a three-phase contact line, the local conservation
equations on the phase interfaces and at the contact line are derived, in addition to
the classical local balance equations for each bulk phase. Then, these general
additional interface and line balance laws are specified for excess surface and line
physical quantities, e.g., excess mass, momentum, angular momentum, energy and
entropy, respectively. Some simplified forms of these balance laws are also pre-
sented and discussed. In particular, for the massless phase interfaces and contact
line, these balance laws reduce to the well-known jump conditions.

In Chap. 28, a thermodynamic analysis, based on the MULLER-LIu thermody-
namic approach of the second law of thermodynamics, is performed to derive the
expressions of the constitutive variables in thermodynamic equilibrium.
Nonequilibrium responses are proposed by use of a quasi-linear theory. A set of
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constitutive equations for the surface and line constitutive quantities is postulated.
Some restrictions for the emerging material parameters are derived by means of the
minimum conditions of the surface and line entropy productions in thermodynamic
equilibrium. Hence, a complete contintum mechanical model to describe excess
surface and line physical quantities is formulated.

Technically, in the exploitation of the entropy inequality, all field equations are
incorporated with LAGRANGE parameters into the entropy inequality. In the process
of its exploitation the LAGRANGE parameter of the energy balance is identified with
the inverse of the absolute temperature in the bulk, the phase interface and in the
three-phase contact line. Interesting results, among many others, are the GIBBs
relations, which are formally the same in the bulk, on the interface and along the
contact line, with the pressure in the compressible bulk replaced by the surface
tension on the interface and by the line tension along the contact line, see (28.45
and 28.87).

Chapter 29 presents a continuum theory of a dry cohesionless granular material
proposed by Goopman and CowiN (1972) in which the solid volume fraction v is
treated as an independent kinematic field for which an additional balance law of
equilibrated forces is postulated. They motivated this additional balance law as an
equation describing the kinematics of the microstructure and employed a variational
formulation for its derivation. By adopting the MULLER-LIu approach to the
exploitation of the entropy inequality, we show that in a constitutive model con-
taining v,v and gradv as independent variables, results agree with the classical
CoLemaN-NoLL approach only, provided the HeLmHOLTZ free energy does not
depend on v, for which the Goobpman—CowIN equations are reproduced. This
reduced theory is then applied to the analyses of steady fully developed horizontal
shearing flows and gravity flows of granular materials down an inclined plane and
between parallel plates. It is demonstrated that the equations and numerical results
presented by Passman et al. (1980) are false, and they are corrected. The results
show that the dynamical behavior of these materials is quite different from that of a
viscous fluid. In some cases, the dilatant shearing layers exist only in the narrow
zones near the boundaries. They motivated this additional balance law as an
equation describing the kinematics of the microstructure and employed a variational
formulation for its derivation. In an appendix, we present a variational formulation,
treating the translational velocity and solid volume fraction as generalized coor-
dinates of a LaGraNGEan formulation.

In Chap. 30, a continuum theory of a granular mixture is formulated. In the
basic balance laws, we introduce an additional balance of equilibrated forces to
describe the microstructural response according to GoopmMaN & CowiN and PAssSMAN
et al. for each constituent. Based on the MULLER-Liu form of the second law
of thermodynamics, a set of constitutive equations for a viscous solid—fluid mixture
with microstructure is derived. These relatively general equations are then reduced
to a system of ordinary differential equations describing a steady flow of the solid—
fluid mixture between two horizontal plates. The resulting boundary value problem
is solved numerically and results are presented for various values of parameters and
boundary conditions. It is shown that simple shearing generally does not occur.
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Typically, for the solid phase, in the vicinity of a boundary, if the solid volume
fraction is small, a layer of high shear rate occurs, whose thickness is nearly
between 5 and 15 grain diameters, while if the solid volume fraction is high, an
interlock phenomenon occurs. The fluid velocity depends largely on the drag force
between the constituents. If the drag coefficient is sufficiently large, the fluid flow is
nearly the same as that of the solid, while for a small drag coefficient, the fluid
shearing flow largely decouples from that of the solid in the entire flow region.
Apart from this, there is a tendency for solid particles to accumulate in regions of
low shear rate.

Chapter 31 is devoted to a phenomenological theory of granular materials
subjected to slow frictional as well as rapid flows with intense collisional interac-
tions. The microstructure of the material is taken into account by considering the
solid volume fraction as a basic field. This variable enters the formulation via the
balance law of configurational momentum, including corresponding contributions
to the energy balance, as originally proposed by Goobman and Cowin, but modified
here by adequately introducing an internal length. The subgrid motion is interpreted
as volume fraction variation in relatively moderate laminar variation and rapid
fluctuations, which manifest themselves in correspondingly filtered equations in
terms of correlation products as in turbulence theories. We apply an ergodic
(ReynoOLDs) filter to these equations as in classical turbulent RANS-modeling and
deduce averaged balances of mass, linear and configurational momenta, energy,
turbulent, and configurational kinetic energy. Moreover, we postulate balance laws
for the dissipation rates of the turbulent kinetic energy. All these comprise 10
evolution equations for a larger number of field variables. Closure relations are
formulated for the laminar constitutive quantities and the correlation terms, all
postulated to obey the material objectivity rules. To apply the entropy principle,
three coldness measures are introduced for capturing material, configurational and
turbulent dissipative quantities, they simplify the analysis of MULLER’s entropy
principle. The thermodynamic analysis delivers equilibrium properties of the con-
stitutive quantities and linear expressions for the nonequilibrium closure relations.

The intention of this treatise is, apart from presenting its addressed subjects, a
clear, detailed, and somewhat rigorous mathematical presentation of FTD on the
basis of limited knowledge as a prerequisite. Calculus or analysis of functions of a
single or several variables, linear algebra and the basics of ordinary and partial
differential equations are assumed to be known, as is Cartesian tensor calculus. The
latter is not universally taught in engineering curricula of universities; we believe
that readers not equipped with the theory of complex functions can easily famil-
iarize themselves with its basics in a few weeks reading effort.

The books have been jointly drafted by us from notes that accumulated during
years. As mentioned before, the Chaps. 1-3, 5, 7, 10, 17-20 are translated (and
partly revised) from “Fluid- und Thermodynamik—eine Einfiihrung”. Many of the
other chapters in Vols. 1 & 2 were composed in handwriting and typed by K. H.
and substantially revised and transformed to I£EX by Y. W. Volume 3 contains
chapters that were newly designed from our own papers or papers of other scientists
in the recent literature. The authors share equal responsibility for the content and the
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errors that still remain. Figures, which are taken from others, are reproduced and
mostly redrawn, but mentioned in the figure captions. Nevertheless, a substantial
number of figures have been designed by us. However, we received help for their
electronic production: Mr: Andreas Schlump, from the Laboratory of Hydraulics,
Hydrology and Glaciology at ETH Zurich designed all these figures.
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Haupr, Professor of Mechanics at the University Kassel, Germany and Dr. rer. nat.
WoLFGaNG MuscHIK, Professor of Theoretical Physics at the Technical University
Berlin, Germany. We thoroughly thank these colleagues for their extensive
help. Their criticisms and recommendations have been taken into consideration and
gratefully incorporated in the final manuscript wherever possible. We have, of
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Chapter 21 ®)
Balance Laws of Continuous System oo

Abstract The fundamental assumption of continuous systems in classical physics
is the conjecture that the physical space is densely filled with matter. This hypothesis
is applied to single and multiphase continua as well as mixtures consisting of a
finite number of constituents. Three classes of mixtures are defined: In the most
complex case, class III, balance laws of mass, momenta, energy are formulated for
each constituent, which possess their own mass, momenta, energy (and, therefore
temperature). In class II mixtures, all components possess the same temperature,
but the constituents possess their individual momenta and masses. Finally, in class
I mixtures, the constituents do have the same temperature and common velocity—
there is no slip between them—but each component has its own mass. The modern
theories of continuous bodies differentiate between BOLTZMANN and polar continua.
In the former, the balance of angular momentum is applied as moment of momentum.
In such continua, the CAUCHY stress tensor of the mixture is symmetric. In the
latter, angular momentum is expressed as moment of momentum plus spin with
all its peculiar consequences. The balance laws of mass, momenta, and energy are
formulated for the constituents for both cases in global and local forms in detail. The
results for BOLTZMANN continua are well known. However, for polar media, different
sub-theories emerge, depending upon how the specific spin is parameterized. In
COSSERAT continua, the specific spin is motivated by rigid body dynamics as the
“product of the tensor moment of inertia times angular velocity”, see (21.32). If the
micromotion is a pure rotation of the particles, i.e., the tensors of moments of inertia
of the constituents do not change under motion, the mixture is called micro-polar,
else micro-morphic. The chapter is closed by formulating the physical balance laws
of the mixture as a whole and stating the relations of the physical variables of the
mixture in terms of those of the constituents.

Keywords Multiphase continua - Class I, II, III mixtures -+ BOLTZMANN,
COSSERAT continua * Balance laws - Local balance laws
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2 21 Balance Laws of Continuous System
List of Symbols

Roman Symbols

«

¢ Mass production of density of constituent o

D¢ Angular momentum of a finite body with respect to C

da Surface increment

dv Volume element

e Specific production of energy of constituent o per unit volume.

eRuclid Euclidean-invariant energy production of constituent o

F Force

f Specific body force

g Specific spin production of constituent o

L i Euclidean-invariant spin  production of constituent «
(see Eq. (21.22))

L, Specific body couple—of constituent «

M Moment, acting on a body

m, m" Specific couple stress tensor—of constituent o

m* Specific momentum production of constituent «, or interaction
force of constituent o with the other constituents

Mg g Euclidean-invariant momentum production of constituent o

n, ng Unit normal vector (on singular surface s)
Surface production per unit area of a physical quantity

B Surface production of entropy s

q Energy (heat) flux vector of the mixture

¢ Energy supply (radiation) per unit mass of constituent o

s, 8" Entropy density—of constituent «

s, 8% Self angular momentum or specific spin—of constituent o

(Ch Micro-morphic spin production of constituent «

Lt CAUCHY stress tensor—of constituent o

U,ug Velocity of propagation of the surface s

v, v Barycentric velocity of a mixture particle—of constituent «

w Skew-symmetric rank-2 tensor

ut =v* —v Diffusion velocity of constituent o

w = dual W Axial vector, isomorphic to W. w; = (dual W); = %e,-_,-k Wi.

X0 Velocity of the point O

Greek Symbols

«a Identifier for a constituent

¢ Unspecified physical quantity of constituent o

Aw® —w Diffusive angular velocity of constituent «

€ Specific production of energy of constituent o per unit area

o Specific internal energy of constituent o

¢ Supply rate of -y for constituent o

Supply rate of entropy of constituent o
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O, @c Tensor of inertia of a finite body.

e° Specific tensor of inertia of constituent o

e Specific tensor of inertia of the mixture, @ = Zg’zl e
I Surface mass production of constituent o

EY=p“/p Mass concentration of constituent o

T Production rate of v*

p, p* Mass density of mixture and constituent o

o Specific surface production of constituent «

T Specific surface momentum production of constituent «
" Flux of v of constituent o

o Flux of s

w Material volume

w, w® Angular velocity of the mixture—of constituent «

Miscellaneous Symbols

curl v Rotation of the differentiable field v

divv Divergence of the differentiable field v

grad v Gradient of the differentiable field v

51—[ Total time derivative holding the particle fixed

% = ()@ Material time derivative following the motion of constituent «

[f1 Jump of f across a surface s into the positive side of s, [ f]] =
fr=r

ow Boundary of w

w Material volume

re”

=0 <— micro-polar <«— G6*“=0

t
dd‘? #0 <«— micro-morphic <«— G* #0.

21.1 Classification of Continuous Systems

The most common treatment of physical systems is probably their basis on the
assumption of continuity, i.e., that matter is continuously distributed in domains of
the existence of mass. Otherwise stated, it is assumed that in a body of certain extent
every spatial point is occupied by mass." This assumption is in conflict with the
atomistic structure of matter as it has undoubtedly been proved to be the realistic
view of matter. For many problems of classical physics as it was developed before
the 20th century, quantum mechanics has disproved the continuity assumption on
the atomic and molecular scale. For a large class of physical problems of classical
physics at the super-atomic and super-molecular scale, the continuity assumption
may be viewed in the spirit of spatial averaging of physical properties over so-called

IThis metaphysical principle was first spelled out by CLIFFORD AMBROSE TRUESDELL (1919—
2000) [21] and forms the basis of all physical systems whose significant length scales are substan-
tially larger than those of atomic and molecular systems.
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Fig. 21.1 Mass density of a 4 Density
specimen of a material body
plotted against the logarithm
of A\ = ¥/RVE. Below a
critical length A < At the """
continuity assumption breaks
down

~In (R opiy) ~In (A=YRVE)

representative volume elements (RVE), whose size lengths are large in comparison
to the corresponding length scales of the entities making up the body on the size of
its RVE. This situation is pictured in Fig.21.1 for the mass density of a specimen of
a body, which is plotted against a typical length scale A\ = <RV E. As this length
scale decreases and becomes small, the smooth and (roughly) constant value of the
density starts to vary, then to fluctuate until it eventually will become discontinuous.
At such short typical values of A, the continuity assumption will break down.

In ancient Greek philosophy, the word “atom” was used to describe the smallest bit
of matter; this fundamental particle was used to characterize it as being “indivisible”
or “indestructible”. The atomistic concept as a basis of Natural Philosophy goes
back to the Greek philosopher DEMOCRITUS (~460 BC to ~370 BC) from ABDERA
and his teacher LEUCRIPTOS. The continuum assumption of nature with its arbitrary
divisibility of matter was kept in Natural Philosophy until the beginning of the 20th
century, when quantum mechanics was born. Despite this, for length scales much
larger than atomic or molecular dimensions, it has proven to function as basis of
the description of processes of matter for a wealth of circumstances. Only since the
electronic computation has conquered the physical description of large assemblages
of matter, the concept of indivisible elements has regained momentum, now much like
“continuity” as a method of approximation concept. Indeed, since large electronic
computations have become feasible, the continuous methods of the physical behavior
of classical systems have become competitors in the discrete or distinct element
method (DEM). This is in particular so, e.g., in granular and porous systems. Bulk
behavior for such systems can be described by employing the classical physical laws
to the individual grains or particles and analyzing the processes of encounter actions
when particles interact in collisions. This particular view has become possible as
modern computations can be conducted for systems consisting of many thousands
of particles or element entities forming the material system in focus.

21.1.1 Balance Laws

It will be assumed in the ensuing developments that the artificial constructs of con-
tinuous bodies satisfy the basic principles of classical physics, i.e., the conservation
laws of mass, linear and angular momentum, as well as energy and balance law of



