Rongqing Zhang · Liping Xie Zhenguang Yan

Biomineralization Mechanism of the Pearl Oyster, *Pinctada fucata*

Biomineralization Mechanism of the Pearl Oyster, *Pinctada fucata*

Rongqing Zhang • Liping Xie • Zhenguang Yan

Biomineralization Mechanism of the Pearl Oyster, *Pinctada fucata*

Rongqing Zhang School of Life Sciences Tsinghua University Beijing, China

Zhenguang Yan Chinese Research Academy of Environmental Sciences Beijing, China Liping Xie School of Life Sciences Tsinghua University Beijing, China

ISBN 978-981-13-1458-2 ISBN 978-981-13-1459-9 (eBook) https://doi.org/10.1007/978-981-13-1459-9

Library of Congress Control Number: 2018950551

© Springer Nature Singapore Pte Ltd. 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

1	Mol	ecular B	Basis of Biomineralization in <i>Pinctada fucata</i>			
	1.1	Introdu	ction			
	1.2	Genera	I Features of Biomineralization in <i>Pinctada fucata</i>			
		1.2.1	The CaCO ₃ Crystalline Forms in <i>Pinctada fucata</i>			
		1.2.2	The Structure of the Shell			
		1.2.3	The Process of Shell Formation			
		1.2.4	Shell Matrix Proteins			
	1.3	Calciur	n Metabolism During Shell Formation			
		1.3.1	Calcium Absorption			
		1.3.2	Calcium Transportation			
		1.3.3	Calcium Storage			
		1.3.4	The Maintain of Calcium Balance			
	Refe	erences.				
2	Ider	ntificatio	n and Characterization of Biomineralization-Related			
-	Genes					
	2.1	Materia	als and Methods.			
		2.1.1	Ethics Statement			
		2.1.2	Animals			
		2.1.3	RNA Extraction and cDNA Synthesis			
		2.1.4	Suppression Subtractive Hybridization and Library			
			Construction			
		2.1.5	Sequence Analysis and Bioinformatics			
		2.1.6	<i>P. fucata</i> Oligonucleotide Microarray			
		2.1.7	Candidate Biomineralization-Related Gene Screening and			
			Bioinformatics			
		2.1.8	Gene Expression Analysis by RT-PCR Assay			
		2.1.9	Tissue Specificity Analysis by Semiguantitative PCR			
		2.1.10	In Situ Hybridization			
		2 1 11	RNAi Experiments			
		2.1.11				

	2.1.12	Recombinant Protein Expression and Purification	29
	2.1.13	Preparation of Recombinant Protein Antibody	30
	2.1.14	Ca ²⁺ -Dependent Electrophoretic Migration and ⁴⁵ Ca	
		Overlay Analyses	30
	2.1.15	Circular Dichroism Spectropolarimetry and Fluorescence	
		Spectra	30
	2.1.16	Preparation of Recombinant Oyster CaLP and CaM	
		Affinity Chromatography Columns and Affinity	
		Chromatography	31
	2.1.17	Localization of CaM and CaLP in Primary Cultured	
		Mantle Cell	31
	2.1.18	Subcellular Localization of CaM and CaLP in Mantle	
		Epithelium	32
	2.1.19	Cell Culture and Transfection	32
	2.1.20	Fluorescence Confocal Microscopy	32
	2.1.21	Preparation of Nuclear and Cytoplasmic Fractions	32
	2.1.22	Co-immunoprecipitation	33
	2.1.23	Domain–Domain Interaction Assay	33
	2.1.24	ANS Fluorescence Assay	34
	2.1.25	Structural Stability Studies	34
	2.1.26	Isolation of EDTA-Soluble Matrix Protein from Nacre	
		in <i>P. fucata</i>	35
	2.1.27	Preparation of Biotinylated CaLP and Protein Blotting	35
	2.1.28	Protein Blotting	35
	2.1.29	CaCO ₃ Crystallization Experiments In Vitro	35
	2.1.30	Immunohistological Staining	36
	2.1.31	Cell Cycle Synchronization in G ₀ Phase by Serum	
		Starvation and Cell Cycle Analysis	36
	2.1.32	Calcineurin Enzymatic Activity Assay	37
	2.1.33	Quantitative Measurement of Interleukin-2 (IL-2)	
		in Serum by ELISA	38
	2.1.34	Quantitative Measurement of iNOS in Cultured	
		Hemocytes	38
	2.1.35	NO Detection Assay	39
	2.1.36	Effect of Cyclosporin A (CsA) on Bacterial Clearance	
		In Vivo	39
	2.1.37	Southern Blot Analysis	40
	2.1.38	Northern Blotting	40
2.2	The Ac	quisition of Biomineralization Genes	40
	2.2.1	Identification of Genes Directly Involved in Shell	
		Formation and Their Functions in Pearl Oyster,	
		Pinctada fucata	40
	2.2.2	Microarray: A Global Analysis of Biomineralization-	
		Related Gene Expression Profiles During Larval	
		Development in the Pearl Oyster, <i>Pinctada fucata</i>	54

2.3	The Sig	gnificant Roles Calmodulin and Calmodulin-Like Protein	
	(CLP)	Play During Calcium Metabolism	68
	2.3.1	Cloning and Expression of a Pivotal Calcium Metabolism	
		Regulator: Calmodulin Involved in Shell Formation from	
		Pearl Oyster (<i>Pinctada fucata</i>)	68
	2.3.2	cDNA Cloning and Characterization of a Novel	
		Calmodulin-Like Protein from Pearl Oyster	
		Pinctada fucata	76
	2.3.3	Significance of the Extra C-Terminal Tail of CaLP,	
		a Novel Calmodulin-Like Protein Involved in Ovster	
		Calcium Metabolism	86
	2.3.4	Localization of Calmodulin and Calmodulin-Like	
		Protein and Their Functions in Biomineralization	
		in <i>P</i> fucata	96
	235	Significance of the C-Terminal Globular Domain	10
	2.3.3	and the Extra Tail of the Calmodulin-Like Protein	
		(<i>Pinctada fucata</i>) in Subcellular Localization	
		and Protein_Protein Interaction	103
	236	The Extra C-Terminal Tail Is Involved in the	105
	2.3.0	Conformation Stability Changes and the N/C-Domain	
		Interactions of the Calmodulin-Like Protein from Pearl	
		Ovster Pinetada fucata	100
	237	Biomineralization: Functions of Calmodulin I ike Protein	10)
	2.3.1	in the Shell Formation of Pearl Oyster	120
	238	Investigation of Phosphorylation Site Responsible for	120
	2.3.0	Cal P (P. fucata) Nucleocytoplasmic Shuttling Triggered	
		by Overexpression of p_{21}^{Cip1}	127
	230	Cloping and Characterization of a Homologous	127
	2.3.9	$Co^{2+}/Colmodulin Dependent Protein Kinose PSKH1$	
		from Doorl Oveter <i>Binetada</i> fuerta	126
o ₄	The Id	antification and Eurotion Analysis of Calcinourin	130
2.4	241	Cloping Characterization and Immunolocalization	141
	2.4.1	of Two Sykupits of Coloinourin from Doorl Oyston	
		(<i>Dinota da fuesta</i>)	1.4.1
	242	(Pinciaaa jucaia)	141
	2.4.2	Calcineurin Plays an Important Kole in the Shell	151
	2.4.2	Formation of Pearl Oyster (<i>Pinctada fucata</i>)	151
	2.4.3	Calcineurin Mediates the Immune Response of Hemocytes	
		Direct of the state of the stat	1.00
~ ~	D 11	(Pinctada fucata)	160
2.5	Prelim	inary Exploration of Calcium Channel and Calcium	170
	1 ransp	ortation	1/0
	2.5.1	Cioning, Characterization, and Expression Analysis	
		of Calcium Channel β-Subunit from Pearl Oyster	1.70
		(<i>Pinctada fucata</i>)	170

		2.5.2	Cloning, Characterization, and Expression Patterns of Three Series (Tradard Lemmis Deticulum: Cr^{2+} ATPage	
			Infee Sarco-/Endoplasmic Keliculum Ca -ATPase	170
		2.5.3	Cloning, Characterization, and Expression Analysis of	179
			Calreticulin from Pearl Oyster <i>Pinctada fucata</i>	186
		2.5.4	Molecular Cloning and Distribution of a Plasma	
			Membrane Calcium ATPase Homolog from the Pearl	
			Oyster <i>Pinctada fucata</i>	192
		2.5.5	Cloning and Characterization of a Novel G Protein	
			β -Subunit of Pearl Oyster (<i>Pinctada fucata</i>) and Its	
			Interaction Sites with Calmodulin	198
		2.5.6	Cloning, Characterization, and Distribution of an mRNA	
			Encoding a H ⁺ -ATPase α -Subunit in the Mantle of Pearl	
			Oyster, <i>Pinctada fucata</i>	208
		2.5.7	Cloning and Characterization of an mRNA Encoding	
			F1-ATPase Beta-Subunit Abundant in Epithelial Cells	
			of Mantle and Gill of Pearl Oyster, <i>Pinctada fucata</i>	213
	2.6	Suppler	nentary Table 2.1	220
	Refe	erences		227
3	Ider	tification	n (Characterization) and Function Studies of Matrix	
	Prot	tein from	the Oyster Pinctada fucata	249
	3.1	Introdu	action of Matrix Protein of <i>Pinctada fucata</i>	249
	3.2	Materi	als and Methods	250
		3.2.1	Extraction of SMPs from Shell	250
		3.2.2	Extraction of the EPFMP from Extrapallial Fluid	252
		3.2.3	Identification of the Complete Gene Sequence	252
		3.2.4	Recombinant Protein Expression and Purification	252
		3.2.5	Preparation of Polyclonal Antibodies Against the	
			Recombinant Protein	253
		3.2.6	Gene Expression Analysis by RT-PCR	253
		3.2.7	In Situ Hybridization	253
		3.2.8	Detection of Native Protein in Shell Extracts	254
		3.2.9	Immunolocalization with Gold Particles	254
		3.2.10	In Vivo Inhibition of Native Protein	254
		3.2.11	Chitin and Calcium Carbonate Crystal Binding Assay.	255
		3.2.12	Calcium Carbonate Precipitation Assay	255
		3.2.13	In Vitro Calcium Carbonate Crystallization Assay	256
		3.2.14	Transition of ACC to Stable Crystals	256
		3.2.15	CD Spectroscopy and Fluorescence Quenching	256
		3.2.16	Primers	256

3.3	In-dep	th Proteomic Analysis of Shell Matrix Proteins	
	of Pine	<i>ctada fucata</i>	257
	3.3.1	Protein Composition in the Prismatic and Nacreous	
		Matrix	257
	3.3.2	Immunolocalization of Proteins	259
	3.3.3	Identification and Quantification of Matrix Genes	
		by Real-Time PCR	263
	3.3.4	Putative Functions of the SMPs According	
		to Domains	266
	3.3.5	The Hint of Proteomics on the Shell Mineralization	
		Mechanism	270
3.4	Shell N	Matrix Protein from Nacre Layer	272
	3.4.1	Extraction and Purification of Matrix Protein P14 from	
		the Nacre of Pearl Oyster <i>Pinctada fucata</i>	272
	3.4.2	A Novel Matrix Protein p10 from the Nacre of Pearl	
		Oyster (<i>Pinctada fucata</i>) and Its Effects on Both CaCO ₃	
		Crystal Formation and Mineralogenic Cells	274
	3.4.3	N40, a Novel Nonacidic Matrix Protein from Pearl	
		Oyster Nacre, Facilitates Nucleation of Aragonite	
		In Vitro	283
	3.4.4	Novel Basic Protein, PfN23, Functions as Key	
		Macromolecule During Nacre Formation	287
3.5	Shell N	Matrix Protein from Prismatic Layer	296
	3.5.1	A Novel Matrix Protein Family Participating in the	
		Prismatic Layer Framework Formation of Pearl Oyster,	
		Pinctada fucata	296
	3.5.2	Dual Roles of the Lysine-Rich Matrix Protein (KRMP)-3	
		in Shell Formation of Pearl Oyster, <i>Pinctada fucata</i>	302
	3.5.3	Cloning and Characterization of Prisilkin-39, a Novel	
		Matrix Protein Serving a Dual Role in the Prismatic	
		Layer Formation from the Oyster <i>Pinctada fucata</i>	310
3.6	Shell N	Matrix Protein from Both Prismatic and Nacre Layer	330
	3.6.1	A Novel Matrix Protein Participating in the Nacre	
		Framework Formation of Pearl Oyster, Pinctada	
		fucata	330
	3.6.2	The Structure–Function Relationship of MSI7, a Matrix	
		Protein from Pearl Oyster <i>Pinctada fucata</i>	336
	3.6.3	A Novel Acidic Matrix Protein, PfN44, Stabilizes	
		Magnesium Calcite to Inhibit the Crystallization of	
		Aragonite	339
	3.6.4	A Novel Matrix Protein, PfY2, Functions as a	
		Crucial Macromolecule During Shell Formation	351

	3.7	Extrap	allial Fluid Matrix Protein	366
		3.7.1	A Novel Extrapallial Fluid Protein Controls the	
			Morphology of Nacre Lamellae in the Pearl Oyster,	
			Pinctada fucata	366
		3.7.2	Structural Characterization of Amorphous Calcium	
			Carbonate-Binding Protein: An Insight into the Mechanism	
			of Amorphous Calcium Carbonate Formation	377
		3.7.3	Transformation of Amorphous Calcium Carbonate	
			Nanoparticles into Aragonite Controlled by ACCBP	385
		3.7.4	Influence of the Extrapallial Fluid of <i>Pinctada fucata</i>	
			on the Crystallization of Calcium Carbonate and Shell	
			Biomineralization	393
	3.8	Extrac	ellular Matrix Protein Expressed by Mantle	402
		3.8.1	A Novel Extracellular EF-Hand Protein Involved in the	
			Shell Formation of Pearl Oyster	402
		3.8.2	A Novel Ferritin Subunit Involved in Shell Formation	
			from the Pearl Oyster (<i>Pinctada fucata</i>)	408
	3.9	Ubiqu	itylation Functions in the Calcium Carbonate	
		Biomi	neralization in the Extracellular Matrix	418
		3.9.1	Ubiquitylated Proteins in the Prismatic Layer	418
		3.9.2	In Vivo Investigation of the Role of Ubiquitylated	
			Proteins During Shell Mineralization	421
		3.9.3	Immunoaffinity Chromatography of the Ubiquitylated	
			Proteins	421
		3.9.4	Interactions Between the Matrices of the Different	
			Shell Layers	423
		3.9.5	In Vitro Effect of Ubiquitylated Proteins on Calcium	
			Carbonate Crystallization	425
		3.9.6	The Function of Ubiquitin	429
	3.10	Supple	ementary Table 3.1	430
	Refe	rences		433
4	The	Study or	n Enzymes Related to Biomineralization	
÷.	of P	inctada f	fucata	445
	4.1	Introdu	ction	445
		4.1.1	Enzymes	445
		4.1.2	Alkaline Phosphatase	446
		4.1.3	Acid Phosphatase	447
		4.1.4	Carbonic Anhydrase	447
		4.1.5	Tvrosinase	448
		4.1.6	Glycosylphosphatidylinositol–Anchored Alkaline	
			Phosphatase	449
	4.2	Materia	ls and Methods	450
		4.2.1	Materials	450
		4.2.2	Gene Sequence Acquisition	450
		4.2.3	Gene Expression Analysis	452

		4.2.4	Enzyme Purification and Activities	453
		4.2.5	Enzyme Modification and Functional Analysis	456
		4.2.6	Cell Culture and MTT Assay	459
		4.2.7	Statistical Analysis	460
	4.3	Alkalin	e Phosphatase	460
		4.3.1	Purification and Enzymatic Characterization of Alkaline	
			Phosphatase from <i>Pinctada fucata</i>	460
		4.3.2	Chemical Modification Studies on Alkaline Phosphatase	
			from <i>Pinctada fucata</i>	465
		4.3.3	An Essential Tryptophan Residue in Alkaline	
			Phosphatase from Pearl Oyster	468
		4.3.4	Purification and Enzymatic Characterization of Inhibition	
			of Alkaline Phosphatase from Pearl Oyster Pinctada	
			<i>fucata</i> by o-Phthalaldehyde	471
	4.4	Acid Ph	nosphatase	472
		4.4.1	Partial Purification and Properties of an Acid Phosphatase	
			from <i>Pinctada fucata</i>	472
		4.4.2	Purification and Partial Characterization of Two Acid	
			Phosphatase Forms from Pearl Oyster	475
		4.4.3	Immunolocalization of an Acid Phosphatase from	
			Pinctada fucata and Its In Vitro Effects on Calcium	
			Carbonate Crystal Formation	479
	4.5	A Nove	l Carbonic Anhydrase	482
		4.5.1	A Novel Carbonic Anhydrase from the Mantle of the	
			Pearl Oyster (<i>Pinctada fucata</i>)	482
	4.6	A Nove	Putative Tyrosinase	487
		4.6.1	A Novel Putative Tyrosinase Involved in Periostracum	
			Formation from the Pearl Oyster (<i>Pinctada fucata</i>)	487
	4.7	A Nove	Astacin-Like Metalloproteinase	495
		4.7.1	Pf-ALMP, a Novel Astacin-Like Metalloproteinase with	
			Cysteine Arrays, Is Abundant in Hemocytes of Pearl	
			Oyster <i>Pinctada fucata</i>	495
	Refe	erences		501
5	Cell	ular Reg	gulation of Biomineralization in <i>Pinctada fucata</i>	509
	5.1	Introduc	ction	510
	5.2	Materia	ls and Methods	511
		5.2.1	Chemicals	511
		5.2.2	Primers	511
		5.2.3	Histochemistry of Mantle Tissue	511
		5.2.4	TEM and SEM Observation of Mantle Tissue	512
		5.2.5	BrdU Labeling of Mantle Epithelia	512
		5.2.6	Changes of Mantle Cell Proliferation During	
			the Tidal Cycle	513
		5.2.7	Primary Cell Culture of Mantle Tissue	513

	5.2.8	Density Gradient Centrifugation of Mantle Cells	514
	5.2.9	Immunolabeling Analysis of Epithelial Cells	515
	5.2.10	RNA Extraction and RT-PCR	515
	5.2.11	Alkaline Phosphatase and Carbonic Anhydrase	
		Activities	515
	5.2.12	Preparation of Recombinant and Natural Proteins	
		of Nacrein	516
	5.2.13	Antibody Preparation	516
	5.2.14	Immunoaffinity Reaction Analysis	516
	5.2.15	Sandwich ELISA	516
	5.2.16	Western Blot Analysis	517
	5.2.17	Calcium Ion Detection	517
	5.2.18	In Vitro Calcium Carbonate Crystallization Assay	517
	5.2.19	Cell–Mediated Calcium Carbonate Crystallization	517
	5.2.20	SEM and Energy–Dispersive Spectrometry (EDS)	518
	5.2.21	Examination of Calcium Deposition	518
	5.2.22	Hemolymph Collection	519
	5.2.23	Hemocyte Morphology and Classification	519
	5.2.24	Shell Notching and Staining	519
	5.2.25	Fluorescence–Tracking of EPS Hemocytes	520
	5.2.26	Determination of Immune Parameters	
		in the Hemolymph	520
	5.2.27	Determination of the pH Value in Extrapallial Fluid	
		and Hemolymph	521
	5.2.28	Calcium Contents in Hemocyte and Hemolymph	521
	5.2.29	Extrapallial Fluid (EPF) Observation	521
	5.2.30	Proteome Analysis	521
	5.2.31	Statistical Analysis	522
5.3	Morpho	logy of the Mantle Tissue	522
	5.3.1	Histology and Ultrastructure	522
	5.3.2	Cell Types in the Outer Surface of Mantle	526
	5.3.3	Cell Proliferation in Mantle Tissue	526
5.4	Primary	Cell Culture of the Mantle Tissue	531
	5.4.1	Maintenance of Primary Cell Culture	531
	5.4.2	Cell Separation and Identification	533
5.5	Cellular	Control of Biomineralization by Mantle Tissue	536
	5.5.1	Shell Matrix Protein Secretion	536
	5.5.2	Control of the CaCO ₃ Precipitation In Vivo and	
		In Vitro	541

	5.6	Roles of	of Hemocytes in Shell Formation	551
		5.6.1	Identification and Classification of Hemocytes	552
		5.6.2	Migration of the Hemocytes in Between the EPS	
			and the Circulation System	556
		5.6.3	Hemocytes Participate in Shell Regeneration	558
	5.7	Conclu	ision	564
	5.8	Supple	mentary Table 5.1	566
	Refe	erences.	·····	567
6	Mol	ecular I	Regulation Mechanism of Biomineralization	
Č	of P	inctada	fucata	575
	6.1	Introdu	, 1ction	575
	6.2	Experi	mental Materials and Methods	581
		6.2.1	Molecular Cloning of the Promoter from Oyster	581
		6.2.2	Cell Culture and Transient Transfection	581
		6.2.3	Luciferase Assay	582
		6.2.4	Electrophoretic Mobility Assay (EMSA)	582
		6.2.5	Yeast Two Hybridization (Y2H)	583
		6.2.6	Pearl Sac Selection	583
		6.2.7	Subcellular Localization in HEK-293T Cells	583
		6.2.8	Measurement of Alkaline Phosphatase (ALP) Activity	584
		6.2.9	cAMP Assay	584
	6.3	NF-κB	Pathway	584
		6.3.1	Introduction	584
		6.3.2	Pf-Rel: A Rel/Nuclear Factor-κB Homolog	585
		6.3.3	Pf-IKK: The IkB Kinase Homolog in <i>P. fucata</i>	587
		6.3.4	NF- κ B Signaling Regulates the Transcription	
			of Nacrein	591
	6.4	TGFB	Signaling Pathway	593
		6.4.1	Introduction	593
		6.4.2	The Receptors of the Pathway	595
		6.4.3	Downstream Response Protein	603
		6.4.4	The Relationship of the TGF β Signaling Pathway	
			and the Biomineralization	610
		6.4.5	The Network of the TGF β Pathway	615
	6.5	Wnt Si	gnaling Pathway	617
		6.5.1	Introduction	617
		6.5.2	Pf-β-Catenin: A Key Factor Wnt Pathway	617
		6.5.3	Pf-Dvl: A Member of Wnt Pathway	619
		6.5.4	Pf-TCF: Component of Wnt Pathway	620
		6.5.5	The Three Wnt Pathway Members Interact	
			with Each Other	621

	6.6	G Prote	ein-Mediated Pathway	626
		6.6.1	Introduction	626
		6.6.2	G Protein α-Subunit Involved in Regulation of	
			Biomineralization	627
		6.6.3	G Protein β-Subunit Interacted with CaM	
			and Modulating Cellular Functions	630
	6.7	Transcr	ription Factors	633
		6.7.1	Introduction	633
		6.7.2	Pf-POU3F4 Regulating the Expression of the Matrix	
			Proteins	633
		6.7.3	Pf-AP-1 Activates Transcription of Multiple Biomineral	
			Proteins	635
		6.7.4	<i>Pf</i> -YY-1's Role in Biomineralization	643
		6.7.5	Pf-Sp8/9 Involved in Mantle-Related Physiological	
			Activities	646
	6.8	Suppler	mentary Table 6.1	649
	Refe	erences.	- 	655
-	Fac		tudy on Diominoralization in <i>Directoda fuesta</i>	661
′	7 1	Introdu	ction	662
	7.1	Materia	ale and Methode	663
	1.2	7 2 1	Chemicals	663
		7.2.1	Drimers	663
		7.2.2	Experimental Design for $\Omega\Lambda$ and ΩW Treatments	663
		7.2.3	Transcriptome Sequencing	665
		7.2.4	Net Calcification Pate (NCP)	666
		7.2.5	ALP Activity Measurement	666
		7.2.0	V ray Photoelectron Spectroscopy (VPS)	666
		7.2.7	Seenning Electron Microscopy (SEM)	667
		7.2.0	Liquid Chromatography Tandem Mass Spectrometry	007
		1.2.9	(I C MS/MS)	667
		7 2 10	(LC-WS/WS)	667
		7.2.10	Hemolymph Collection	668
		7.2.11	Determination of the pH Value in Extrapallial Eluid	008
		1.2.12	and Hemolymph	668
		7 2 12	Calcium Contents in Homosute and Homolymph	668
		7.2.13	Elew Cutemetry Analysis	660
		1.2.14	Copper Exposure	660
		7.2.13	Copper Exposure	009
		1.2.10	and Picehamical Assaus	640
		7 2 17	California Analysis	670
		1.2.17		0/0

Contents	s

	7.3	The Im	pact of Ocean Warming and Oceanic Acidification	
		on Bior	nineralization	670
		7.3.1	Responses of Mantle Tissue to OA and OW	670
		7.3.2	Responses of Hemocytes to OA and OW	679
	7.4	The Im	pact of Pollution on Biomineralization	682
		7.4.1	The Impact of Copper on Immune Defense	683
	7.5	Conclus	sion	686
	7.6	Suppler	nentary Table 7.1	688
	Refe	erences.		690
8	Stud	ly of She	ll Structure	695
	8.1	Materia	l and Methods	695
		8.1.1	Shell Preparation and Protein Extraction	695
		8.1.2	Preparation of FITC–Labeled Proteins	696
		8.1.3	Preparation of Cy5-Labeled Proteins	696
		8.1.4	Crystallization of CaCO ₃ Using FITC Proteins as the	
			Additives	696
		8.1.5	SEM	697
		8.1.6	Raman Spectroscopy	697
		8.1.7	CLSM Imaging	697
		8.1.8	The X–ray Diffraction	697
		8.1.9	Stochastic Optical Reconstruction Microscopy Imaging	697
		8.1.10	Rabbit Polyclonal Antibodies (P-anti-NCA) and a	
			Mouse Monoclonal	698
		8.1.11	Immunoblot Analysis	699
		8.1.12	Shell Decalcification	699
		8.1.13	Immunolabeling of Nacre	699
		8.1.14	In Vitro Crystallization Experiment	700
		8.1.15	X-ray Photoelectron Spectroscopy (XPS) Analysis	700
		8.1.16	Mg Content of the Prismatic Layer	700
		8.1.17	Isolation of the Film Proteins	700
		8.1.18	Amino Acid Analysis of the Film Proteins	701
		8.1.19	CaCO ₃ Precipitation Experiment	701
		8.1.20	Crystallization in the Presence of the Inner–Shell Film	701
		8.1.21	Implantation Procedure and Sample Collection	701
		8.1.22	Typical Pearl and Pearl Sac Selection	702
		8.1.23	FTIR	702
		8.1.24	Statistical Analysis	702
		8.1.25	Primers	703
	8.2	Study E	Biomineralization by Using In Vitro Model	703
		8.2.1	Localization of Shell Matrix Proteins in Biominerals	
			or CaCO ₃	703
		8.2.2	Tuning Calcite Magnesium Content by Soluble	
			Shell Matrix	711

8.3	3 The Function of Inner Film in Biomineralization		714
	8.3.1	The Inner–Shell Film Is an Immediate Structure	
		Participating in Shell Formation	714
	8.3.2	In Vivo and In Vitro Biomineralization in the Presence	
		of the Inner-Shell Film	717
	8.3.3	Matrix Proteins Regulate Aragonite Nucleation	
		and Growth with the Inner–Shell Film In Vivo	718
8.4	Theories for Shell Growth and Pearl Production		725
	8.4.1	Jumping Development Theory	725
	8.4.2	Nacre–Prism Transition Layer Theory	726
	8.4.3	The Role of Matrix Proteins in the Control of Nacreous	
		Layer Deposition During Pearl Formation	731
8.5	Supplementary Table 8.1		735
References			735

Chapter 1 Molecular Basis of Biomineralization in *Pinctada fucata*

Abstract Biomineralization is the accumulation and formation of minerals regulated by living organisms transforming into biological structures and tissues. This is an extremely widespread phenomenon since we've found many creatures in all six taxonomic kingdoms which could form biominerals, and more than 60 different types of them have been identified, such as silicates in diatoms and algae, carbonates in invertebrates, and carbonates and calcium phosphates in vertebrates. These minerals often form structures like sea shells and the bone in mammals and birds.

The study of biomineralization started at the first half of the twentieth century by the extensive use of optical microscopy, which helped a lot to identify various types and patterns of structures. It was not until the 1960s and 1970s, with the application of transmission electron microscopy (TEM), the scanning electron microscopy (SEM), radioisotope, the biochemical research on membrane transport, the analysis of bone-related organic materials, and the understanding of the ultrastructure of mineralized materials, was the initial idea of the biomineralization formed. Though some progress has been made in revealing the principles of these processes during the past few decades, there are still a lot of unknowns waiting for more exploration. The main content in this book primarily focused on the following aspects: the identification and function characterization of biomineralization-related genes, including those that encode shell matrix proteins and enzymes and participate in calcium metabolism; the cellular regulation such as cell signaling pathways during biomineralization process; and the ecological studies on biomineralization in *Pinctada fucata*.

Keywords Pinctada fucata · Biomineralization · Molecular basis · Introduction · Calcium metabolism

1.1 Introduction

Biomineralization is an extremely widespread phenomenon, the process of which is conducted by reaction and precipitation converting ions into solid minerals [1, 2]. Specifically, biomineralization refers to organisms using their synthetic organic macromolecules manipulating the process of the inorganic crystal nucleation, growth, and molecular arrangements, eventually producing minerals with special optical, magnetic, and/or mechanical properties [2, 3]. Biomineralization involves biologists, chemists, and geologists in interdisciplinary studies at the interfaces between Earth and life.

Almost all living creatures, from lower unicellular organisms or the plants to higher animals, are closely associated with the products of biomineralization, biominerals. But the biomineralization mechanisms involved in different biological systems are quite complicated and exhibit a large diversity, and more than 60 different biominerals have been identified, including bones responsible for supporting and movements in vertebrates; shells functioning on protecting soft tissues in bivalves, brachiopods, and foraminifers; otoliths in fishes and mammals for balancing movements; magnetosomes found in magnetotactic bacteria sensing the changes of geomagnetic field; etc. [4]. The main chemical compositions of these biominerals mentioned above contain calcium phosphate, calcium carbonate, and oxidation silicon. Among them, mollusk shells are composed of calcium carbonate or calcium magnesium carbonate, while the bones and teeth in mammals are mainly calcium and magnesium phosphate [4–6].

Biomineralization processes could divided into two fundamentally different categories based upon their degree of biological control, namely, biologically induced biomineralization and biologically controlled biomineralization [4, 6]. Bio-induced mineralization refers to the deposition of inorganic minerals formed by the reaction of the metabolites at the cell wall when they are expelled or into the cell wall, common in protists, alga, and lower prokaryotes. Characterized by the low-degree control of this process, the crystals or biominerals formed during bio-induced mineralization usually lack unique morphologies, most of which are irregular and disorganized. In contrast, in "biologically controlled" mineralization, the organism uses cellular activities to direct the nucleation, growth, morphology, and final location of the minerals which are deposited. While the degree of control varies across species, almost all controlled mineralization processes occur in an isolated environment. The results can be remarkably sophisticated, species-specific products that give the organism specialized biological functions [1, 7, 8]. In conclusion, elucidating the underlying mechanisms of biomineralization will lead to innovative understanding of the field of materials and medicine sciences and also provide significant technical supports for pearl shellfish farming and pearl production.

1.2 General Features of Biomineralization in *Pinctada fucata*

1.2.1 The CaCO₃ Crystalline Forms in Pinctada fucata

There are six different types of natural $CaCO_3$ biominerals, calcite, aragonite, vaterite, $CaCO_3 \bullet H_2O$, $CaCO_3 \bullet 6H_2O$, and amorphous calcium carbonate (ACC), the chemical compositions of which are exactly the same; nevertheless, their crystal structures are totally different. Among these different crystalline forms, calcite and aragonite are thermodynamically stable and most common in mollusk shells [9]. Aragonites could be induced in calcite crystallization system with the addition of 50 mM Mg^{2+} . Vaterite is the metastable status of CaCO₃ and the most unstable crystalline. And it could be transformed to calcite or aragonite spontaneously in aqueous solution. Vaterite has not been found in our animal model P. fucata, while some exceptions have been reported in other close-related species. A new morphology of vaterite was confirmed in lackluster pearls of Hyriopsis cumingii [10]. Moreover, it also formed in the abnormal shells of *Corbicula fluminea* [11]. ACC has been found in plant larvae and the initial stage of shell biomineralization. ACC is usually considered as the precursor in shell formation [12]. In spite of the rapid transformation from ACC to other stable crystals in aqueous solution, it is still relatively stable due to the adhesion of the macromolecules like polysaccharide to its surface. Organisms control the biomineralization process by the regulation of the formation, stabilization, destabilization, and transformation of ACC [13].

1.2.2 The Structure of the Shell

Pearl oysters, *Pinctada fucata*, famous as important economical pearl production species, are one of the best studied biomineralization models [14]. The shell can be divided into two distinct layers, the periostracum and the calcified layer (Figs. 1.1 and 1.2).

The periostracum is the organic layer of the hardened organic products on the outer surface of the shell [16]. The hardened part is mainly composed of insoluble Quinone tannin containing dopa [17]. Besides protecting the shell from the destruction of acidic substances and parasites, periostracum also plays important roles during biomineralization. It could block the extrapallial space on the ventral side, isolating the extrapallial fluid from the external environment, delimitating, and sealing the space where the biomineralization takes place thus provides a supersaturation niche for crystal deposition. What's more, the periostracum may also function as a substrate for Ca²⁺ deposition and even affect the formation of prismatic layer [18, 19].

The calcified layer could be subdivided into prismatic layer and nacreous layer, where $CaCO_3$ crystals are deposited as calcite and aragonite, respectively [20–

Fig. 1.1 Diagram of the cross section of the shell and the mantle of *P. fucata* [15]

Fig. 1.2 The shells of *P. fucata* [23](a) The inner shell of *P. fucata* and (b) SEM pictures of the inner surfaces. *N* nacreous layer, *P* prismatic layer. The square frame indicated the growth zone

22]. Our concerns on biomineralization studies primarily focused on these two layers (Fig. 1.2). The shell calcification is mainly composed of calcium carbonate crystals with a total weight of more than 95% and much more smaller amount of organic substrates (mainly proteins and polysaccharides) [4].

The initiation of prisms occurs in the proximal region of the outer surface of the outer mantle fold in the pallial space bounded externally by the periostracum [24]. SEM pictures showed that prismatic layer is composed of a great amount of parallel column calcites perpendicular to the shell surface, the cross section of which are regular polygons, and the edges of these "polygons" are surrounded with organic matrix [24, 25] (Fig. 1.3). A lot of studies have proved that the organic matrix could regulate the growth of these calcites in prismatic layer and its main components are proteins and chitin [26, 27]. The cells form mantle edge are commonly believed to be responsible for the formation of prisms [17] (Fig. 1.1).

Fig. 1.3 SEM images of the prismatic layer of *P. fucata* etched by EDTA [28] (a) Cross section of the prismatic layer in *P. fucata*, (b) enlarged view of the grooves, and (c) longitudinal cross section of the prismatic layer. The arrow indicated the growth direction.

Fig. 1.4 Nacre structure of *P. fucata* [31] (a) The cross section of nacreous layer, composed of continuous parallel lamellae; (b) each lamellae is composed of polygonal aragonitic tablets, sealing each other by the intertabular matrix.

The nacreous layer is composed of aragonite tablets, and the aragonite sheet is 0.4 to 0.5 μ m in width and 5–10 μ m in thickness [29] (Fig. 1.4). These are typical nanostructures. Besides regulating crystal formation and growth, the organic matrix filled in aragonites could spread the force, significantly improving the mechanical

strength of the shell especially when subjected to external forces. The mechanical properties of the nacreous layer, also known as "dense slit brick structure," are approximately 3000 times as strong as the mineral aragonites, thus providing adequate protection for the soft tissue inside the shell [30].

1.2.3 The Process of Shell Formation

The main component of the shell is $CaCO_3$ of course; however, those macromolecules playing crucial roles in the formation of the delicate microstructures during biomineralization only account for less than 5% [32]. Studies on the regulation of matrix proteins during shell formation are one of the current research hot spots. Several different shell formation models were brought up recently [2, 33], but the specific mechanisms have not been clearly elaborated.

The life circle of *P. fucata* could be divided into six stages, including the fertilized egg, trochophore stage, D-shaped stage, umbonal stage, juvenile stage, and adult [34]. The polymorphism of CaCO₃ crystals and the shell microstructure changes a lot throughout these stages [35]. Prodissoconch I, forming during early D-shaped stage, is the original form of the shell and is considered to be composed of ACC [34, 35]. Prodissoconch II with a homogeneous structure of aragonite and a thinner layer of calcite appears at the lateral D-shaped stage or umbonal stage. The formation of prismatic and nacreous layer completes while entering the juvenile stage (Fig. 1.5).

Bar, 20 μ m in (**a**), (**b**), and (**c**); bar, 200 μ m in d. *P1* prodissoconch I shell, *P2* prodissoconch II shell, *D* dissoconch shell, *PL* prismatic layer, *NL* nacreous layer

Classically, the physiology of molluscan shell calcification can be described as a succession of compartments, the most important of which are the inner shell surface, extrapallial space, and outer mantle epithelium. The mantle tissue, coating the inner surface of the shell, with the other compartments being the extrapallial space and the shell, is the critical organ during mollusk shell formation and comprises internal and external epithelium, connective tissue, mantle muscle, and nerve fibers. The ridge between the outer and median folds is the periostracal groove, responsible for the formation of periostracum (Fig. 1.6).

Fig. 1.5 The SEM pictures of three larval development stages in *P. fucata* [36]

Fig. 1.6 Physiology of the shell calcification in a nacro-prismatic bivalve [17]

Precursor ions, calcium and bicarbonate, are transported via the hemolymph and then directed toward the outer mantle epithelium. After extrusion from the cytosols to extralpallial space, the liquid precursor ions, Ca^{2+} and CO_3^{-} , are gradually transited to solid CaCO₃ on the inner surfaces of the shell under the regulation of matrix macromolecules, especially matrix proteins [17] (Fig. 1.6). But how the organic matrix interacts with the mineral ions to produce this well-designed and fine-structured biomineral is still under debated and more investigation.

Extrapallial fluid (EPF) is a colorless, bloodlike fluid locating in the extrapallial space, where the blood, EPF, and ambient medium (e.g., seawater) carry out the frequent exchanges of substances [37]. The special roles EPF playing during shell formation hasn't gained enough attention initially, fortunately, with the developing of the research, scientists realized its importance. Some evidence suggested that matrix proteins may accomplish self-assembling in extrapallial space, which may explain the formation of shell-organic scaffolds [17, 38]. Whereas, this concept is still debated, and more proofs should be provided for further validation.

Moreover, we shouldn't ignore the functions of hemocytes, those free circulating cells of hemolymph, during shell formation and construction. The studies on hemocytes originally focused on its role in immune defense system [39] and tissue reparation process [40]. These functions have been well underlined during the past few decades, but their contribution to biomineralization may be greatly

Fig. 1.7 The molecular weight (MW) and isoelectric point (pI) distribution of partial identified shell matrix proteins [17]

The theoretical MW and pI were calculated after identification and removal of the signal peptide. (1, aspein; 2, Asp-rich proteins; 3, ASP-1; 4, ASP-2; 5, MSI31; 6, prismalin-14; 7, N14/N16/ pearlin/perline proteins masking AP7 and AP24; 8, MSI60; 9, mucoperlin; 10, nacrein from *P. fucata*; 11, MSI7; 12, dermatopontin; 13, tyrosinase-like 1; 14, nacrein from *T. marmoratus*; 15, perlucin; 16, shematrin proteins; 17, perlustrin; 18, lustrin A; 19, perlwapin; 20, N-66; 21, tyrosine-like2; 22, KRMPs)

underestimated. According to Mount et al., hemocytes could directly release the calcite crystals for successive remodeling at the biomineralization site [41]. But we still need more evidence to confirm whether this is a general metabolic pathway in bivalves or just a particular phenomenon in eastern oyster.

1.2.4 Shell Matrix Proteins

As mentioned in the introduction and detailed later, the organic matrix is a mixture of proteins, glycoproteins, chitin, and lipids. The matrix, especially matrix proteins, interacts with the mineral ions and controls the shape, deposition, and crystalline forms of the produced crystals.

The earliest systematic studies on shell matrix were conducted by Crenshaw et al. in 1972. They used EDTA, a calcium-chelating agent, effective at weak dilute acids to decalcify the shells of *Mercenaria mercenaria*. However, due to the limited conditions, their studies predominantly concentrated on the integral components, amino acid composition of the mixture, or its general functions during shell formation and reparation [42–45]. According to those successfully isolated and identified matrix proteins, we summarized three fundamental features of them (Fig. 1.7):

1.2 General Features of Biomineralization in Pinctada fucata

- 1. Certain amino acid residues tend to take up extremely high proportions, more commonly are asp, Gly, and Ser, sometimes including pro and Cys. The carboxyl group in side chain of asp may bind with Ca^{2+} , facilitating the formation of $CaCO_3$ crystal lattices. Gly and pro are more likely relevant to the flexibilities of protein structures, for example, proline could form a cycle to the polypeptide backbone. As for cysteine, it contributes to the formation of covalent disulfide bonds to other cysteine residues [46, 47].
- 2. The sequences of shell matrix proteins (SMPs) are usually composed of different domains. And these domains generally contain modular structures with distinct functions [48, 49]. The first identified matrix protein, nacrein, possesses a carbonic anhydrase domain [38]. Lustrin a contains ten highly conserved cysteinerich domains and a whey domain [50]. Analyses of these genes of various modular proteins implied that gene assembly may be promoted by intronic recombination, i.E., the proteins were formed by exon shuffling [51, 52].
- 3. A large amount of matrix proteins have been posttranslationally modified, such as phosphorylated and/or glycosylated [50, 53]. And these posttranslational modifications often associate with the binding properties with Ca^{2+} [54, 55].

With the wide use of new technologies, over 40 different kinds of matrix proteins have been identified from different mollusks. But we still cannot illustrate the molecular mechanisms of shell formation; plenty of questions remain unsolved. The isolation of SMPs lays the foundation for its further function characterization. We went through three stages on this process:

- 1. As mentioned above, EDTA, ethylic acid, and water were frequently used to dissolve the shell, among which EDTA is the most widely used agent. This decalcification procedure yields two organic fractions, EDTA-soluble matrix (ESM) and EDTA-insoluble matrix (EISM). ESM and EISM have been proved to play different roles during shell formation. EISM often functions as the organic scaffold, providing crystal nucleation sites for CaCO₃ deposition, while ESM usually takes control of the crystal form and their morphologies [56–58]. Matrix protein Narein [59] MIS60 [60] lustrin A [50] MSI7 [50] N16 [61] N14 [47] p10 [62] etc. were isolated in this way. The main disadvantage of this method is that only the proteins with high abundancy could be identified, while those exhibiting a relative lower expression level but still crucial in biomineralization are excluded.
- 2. Then the search for new members benefited a lot from the major technical advances in molecular biology based on the cDNA sequences and primary structures of identified ones. PCR and rapid amplification of complementary DNA ends (RACE) were broadly applied, obtaining matrix protein KRMP [63] and Prisilkin-39 [64]et al. The principal factor limiting this method was that we could only get matrix proteins similar to previously identified ones in both sequences and functions.
- 3. Another strategy successfully developed was cDNA expression library. In most cases, genes encoding matrix proteins exhibit high expression levels in mantle tissue. With the help of the mantle cDNA library, the construction of the

suppression subtractive hybridization (SSH) library paves the way for the bulk cloning and characterization of new genes involved in biomineralization [35, 65]. Our group constructed three SSH libraries that represented genes expressing at three key points during shell formation in *P. fucata* in 2011 (Fig. 1.8) [35]. Finally, we obtained 227 unigenes in U–D library, 89 unigenes in J–U libraries, and novel matrix protein PfN23 [15], PfN44 [66], and DT252 (unpublished data). Since the fragments identified from SSH library were not long (shorter than 330 bp on average), we couldn't get much information for the establishment of the biomineralization model in mollusks. Much more efforts should be put to screen new matrix protein candidates.

In addition to the above methods, our group have identified 72 unique SMPs using liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis of proteins directly extracted from the shells of *P. fucata* combined with a draft genome (Fig. 1.9). These proteomic data not only increase the repertoires of the SMPs but also give us new inspiration on shell formation which may involve tight regulation of cellular activities and the extracellular microenvironment [21]. Moreover, based on mantle transcriptome and microarray, the gene expression profiles during larval development, 5 novel potential matrix protein candidates were identified for further function analysis, brought global perspectives to the relationship between gene expression profiles and larval shell development (Fig. 1.10) [36].

1.3 Calcium Metabolism During Shell Formation

The studies of shell and pearl formation can be divided into two aspects: the isolation, identification, and functional analysis of SMPs and calcium metabolism process, including Ca^{2+} absorption, transportation, storage, deposition, etc [67] However, more focus has been dragged to the purification and characterization of SMPs previously, while the mechanism of oyster calcium metabolism has been comparatively "neglected." Acting as a universal second messenger in various cells, calcium is an indispensable regulator during the act of fertilization and development of the whole life in all kinds of creatures [68]. Numerous functions of all types of cells are regulated by Ca^{2+} to a greater or lesser degree [69]. In a word, biomineralization implies the transport and control of calcium ions [67].

1.3.1 Calcium Absorption

The mechanism of Ca^{2+} metabolism could be depicted in Fig. 1.11. Precursor ions, Ca^{2+} and HCO_3^{-} , are taken up from the ambient medium with the help of the body epithelium, or gill, which can also originate from the food in *P. fucata*. Then these ions are transited by hemolymph, soon afterward directed toward the outer mantle

Fig. 1.8 Overview of the three SSH libraries [35]

(a) Schematic of SSH library construction. The D–T library was constructed using D-shaped stage larval cDNA as the tester and trochophore stage larval cDNA as the driver. The U–D library was constructed using umbonal stage larval cDNA as the tester and D-shaped stage larval cDNA as the driver. The J–U library was constructed using juvenile stage larval cDNA as the tester and umbonal stage larval cDNA as the driver. Bar = 15 mm in oosperm, 15 mm in trochophore and D-shaped stages, 40 mm in umbonal and juvenile stages, and 4 cm in the adult stage. (b) Length distribution of unigenes in the three SSH libraries. The white columns represent unigenes in the D–T library, gray columns represent unigenes in the U–D library, and the dark gray columns represent unigenes in the J–U library. Unigene-length frequencies for each library are plotted in 100-bp bins.

epithelium. In other words, in addition to secreting SMPs for regulating shell formation, mantle is also indispensable to calcium absorption. Finally, large amounts of calcium ions are continuously deposited onto the framework under the precise regulation of matrix proteins.

After the injection of calcium isotope Ca⁴⁵ into Anodonta woodiana pacifica (Heude), Ca⁴⁵ was rapidly accumulated in gill, the radioactivity of which was the highest compared with other tissues or organs and lasted the longest. These results indicated that the gill exhibits the strong affinity and high metabolic rate to Ca^{2+} , which is quite crucial for the uptake, accumulation even storage of calcium. More to the point, the absorption of Ca^{2+} in mantle tissue is only second to gill. Furthermore, electrophysiologic [71] and isotopic studies [72] also showed similar effects that mantle epithelium did have high permeability to calcium. Calcium-positive reaction indicated numerous acidic mucous glands assembled in the inner mantle epithelium, suggesting the significant roles acid mucus is playing in Ca²⁺ interception, capture, and assurance. Due to the low concentration of Ca^{2+} in the surroundings, directly intake from environments is very critical for freshwater mollusks to accumulate calcium. It's difficult for Ca²⁺ to cross the mantle epithelium cell membrane in its original form, and this process needs ATP to provide energy. Therefore, there is a strong possibility that the carrier protein and the binding of Ca^{2+} induce a conformational (shape) change driving the ions to transport against the chemical gradient. But the calcium intake method may be different in mollusks living in seawater and hypersaline conditions, considering the similar ion concentration gradient between hemocytes and their living environments. Actually, the CaCO₃ solution is hypersaturated in both hemocytes and mantle cavity.

The digestive gland is the metabolic regulatory center in mollusks, besides participating in immune defense, detoxification, and elimination of xenobiotics;

Fig. 1.10 Gene microarray analysis during the different larval development stages in P. fucata [36]

Fig. 1.11 The schematic diagram of calcium metabolism in mollusks [70]

it's also significant to homeostatic regulation of the internal medium (calcium balance, hemolymphatic pH, cell volume, etc.) [73]

Moreover, foot is involved in the calcium uptake process, too. Using the tracers like enzyme peroxidase and ionic lanthanum, paracellular uptake of Ca^{2+} was detected in the foot of the *Agriolimax reticulatus* [74]. On the other hand, electron probe microanalysis (EPMA) also detected the absorption of calcium and trace elements in byssus from mussels.

Thought with some progress, there are still lots of doubts and suspicion on the specific mechanism of calcium absorption waiting for exploration.

1.3.2 Calcium Transportation

There are two pathways in the transportation of Ca^{2+} between different epithelium cells: paracellular pathway [75–78] and transcellular pathway. The depolarization of epithelium cells indicated the apical barrier was permeable to Ca^{2+} when the concentration of calcium was raised from 1 mM to 6 mM the other side of the blood lymphocytes outside the mantle epithelium [79]. While with an exceeding of the equilibrium stage of 1–6 mM Ca^{2+} , calcium was then induced to transport to the other side shell surface [80]. These results together indicated at least part of the transepithelial calcium movements are transcellular. Bleher used lanthanum as an