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Introduction

Welcome to our journey together exploring website scraping solutions

using the Python programming language!
As the title already tells you, this book is about website scraping with
Python. I distilled my knowledge into this book to give you a useful manual

if you want to start data gathering from websites.

Website scraping is (in my opinion) an emerging topic.

I expect you have Python programming knowledge. This means I won’t

clarify every code block I write or constructs I use. But because of this,

you're allowed to differ: every programmer has his/her own unique coding

style, and your coding results can be different than mine.

This book is split into six chapters:

1.

Getting Started is to get you started with this book:
you can learn what website scraping is and why it
worth writing a book about this topic.

Enter the Requirements introduces the
requirements we will use to implement website
scrapers in the follow-up chapters.

Using Beautiful Soup introduces you to Beautiful
Soup, an HTML content parser that you can use to
write website scraper scripts. We will implement

a scraper to gather the requirements of Chapter 2
using Beautiful Soup.

xvii
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4. Using Scrapy introduces you to Scrapy, the (in my

opinion) best website scraping toolbox available

for the Python programming language. We will use
Scrapy to implement a website scraper to gather the
requirements of Chapter 2.

Handling JavaScript shows you options for how
you can deal with websites that utilize JavaScript to
load data dynamically and through this, give users
a better experience. Unfortunately, this makes basic
website scraping a torture but there are options that
you can rely on.

Website Scraping in the Cloud moves your scrapers
from running on your computer locally to remote
computers in the Cloud. I'll show you free and paid
providers where you can deploy your spiders and
automate the scraping schedules.

You can read this book from cover to cover if you want to learn the

different approaches of website scraping with Python. If you're interested

only in a specific topic, like Scrapy for example, you can jump straight to

Chapter 4, although I recommend reading Chapter 2 because it contains

the description of the data gathering task we will implement in the vast
part of the book.
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CHAPTER 1

Getting Started

Instead of installation instructions, which follow later for each library, we
will dive right into deep water: this chapter introduces website scraping in
general and the requirements we will implement throughout this book.

You may expect a thorough introduction into website scraping, but
because you are reading this book I expect you already know what website
scraping is and you want to learn how to do it with Python.

Therefore, I'll just give you a glance at the topic and jump right into the
depths of creating a script that scrapes websites!

Website Scraping

The need to scrape websites came with the popularity of the Internet,
where you share your content and a lot of data. The first widely known
scrapers were invented by search engine developers (like Google or
AltaVista). These scrapers go through (almost) the whole Internet, scan
every web page, extract information from it, and build an index that you
can search.

Everyone can create a scraper. Few of us will try to implement such a
big application, which could be new competition to Google or Bing. But
we can narrow the scope to one or two web pages and extract information
in a structured manner—and get the results exported to a database or
structured file (JSON, CSV, XML, Excel sheets).

© Gabor Lészl6 Hajba 2018
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_1



CHAPTER 1  GETTING STARTED

Nowadays, digital transformation is the new buzzword companies use
and want to engage. One component of this transformation is providing
data access points to everyone (or at least to other companies interested
in that data) through APIs. With those APIs available, you do not need to
invest time and other resources to create a website scraper.

Even though providing APIs is something scraper developers won't
benefit from, the process is slow, and many companies don’t bother creating
those access points because they have a website and it is enough to maintain.

Projects for Website Scraping

There are a lot of use cases where you can leverage your knowledge of
website scraping. Some might be common sense, while others are extreme
cases. In this section you will find some use cases where you can leverage
your knowledge.

The main reason to create a scraper is to extract information from a
website. This information can be a list of products sold by a company,
nutrition details of groceries, or NFL results from the last 15 years. Most of
these projects are the groundwork for further data analysis: gathering all
this data manually is a long and error-prone process.

Sometimes you encounter projects where you need to extract data
from one website to load it into another—a migration. I recently had a
project where my customer moved his website to WordPress and the
old blog engine’s export functionality wasn’t meant to import it into
WordPress. I created a scraper that extracted all the posts (around
35,000) with their images, did some formatting on the contents to use
WordPress short codes, and then imported all those posts into the new
website.

A weird project could be to download the whole Internet! Theoretically
itis not impossible: you start at a website, download it, extract and follow
all the links on this page, and download the new sites too. If the websites
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you scrape all have links to each other, you can browse (and download)
the whole Internet. I don’t suggest you start this project because you won't
have enough disk space to contain the entire Internet, but the idea is
interesting. Let me know how far you reached if you implement a scraper
like this.

Websites Are the Bottleneck

One of the most difficult parts of gathering data through websites is that
websites differ. I mean not only the data but the layout too. It is hard to
create a good-fit-for-all scraper because every website has a different
layout, uses different (or no) HTML IDs to identify fields, and so on.

And if this is not enough, many websites change their layout
frequently. If this happens, your scraper is not working as it did previously.
In these cases, the only option is to revisit your code and adapt it to the
changes of the target website.

Unfortunately, you won't learn secret tricks that will help you create a
scraper that always works—if you want to write specialized data extractors.
I will show some examples in this book that will always work if the HTML

standard is in use.

Tools in This Book

In this book you will learn the basic tools you can use in Python to do your
website scraping. You will soon realize how hard it is to create every single
piece of a scraper from scratch.

But Python has a great community, and a lot of projects are available
to help you focus on the important part of your scraper: data extraction.
I will introduce you to tools like the requests library, Beautiful Soup, and
Scrapy.
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The requests library is a lightweight wrapper over the tedious task of
handling HTTP, and it emerged as the recommended way:

The Requests package is recommended for a higher level HT'TP
client interface.

— Python 3 documentation

Beautiful Soup isa content parser. It is not a tool for website scraping
because it doesn’t navigate pages automatically and it is hard to scale. But
it aids in parsing content, and gives you options to extract the required
information from XML and HTML structures in a friendly manner.

Scrapy is a website scraping framework/library. It is much more
powerful than Beautiful Soup, and it can be scaled. Therefore, you can
create more complex scrapers easier with Scrapy. But on the other side,
you have more options to configure. Fine-tuning Scrapy can be a problem,
and you can mess up a lot if you do something wrong. But with great power
comes great responsibility: you must use Scrapy with care.

Even though Scrapy is the Python library created for website
scraping, sometimes I just prefer a combination of requests and
Beautiful Soup because it is lightweight, and I can write my scraper in a
short period—and I do not need scaling or parallel execution.

Preparation

When starting a website scraper, even if it is a small script, you must
prepare yourself for the task. There are some legal and technical
considerations for you right at the beginning.

In this section I will give you a short list of what you should do to be
prepared for a website scraping job or task:

1. Do the website’s owners allow scraping? To find out,
read the Terms & Conditions and the Privacy Policy
of the website.
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2. Canyou scrape the parts you are interested in? See
the robots. txt file for more information and use a
tool that can handle this information.

3. What technology does the website use? There are free
tools available that can help you with this task, but
you can look at the website’s HTML code to find out.

4. What tools should I use? Depending on your task
and the website’s structure, there are different paths
you can choose from.

Now let’s see a detailed description for each item mentioned.

Terms and Robots

Scraping currently has barely any limitations; there are no laws defining
what can be scraped and what cannot.

However, there are guidelines that define what you should respect.
There is no enforcing; you can completely ignore these recommendations,
but you shouldn't.

Before you start any scraping task, look at the Terms & Conditions and
Privacy Policy of the website you want to gather data from. If there is no
limitation on scraping, then you should look at the robots. txt file for the
given website(s).

When reading the terms and conditions of a website, you can search
for following keywords to find restrictions:

e scraper/scraping
o crawler/crawling
e bot

o spider

. program
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Most of the time these keywords can be found, and this makes your
search easier. If you have no luck, you need to read through the whole legal
content and it is not as easy—at least I think legal stuff is always dry to read.

In the European Union there’s a data protection right that has been
live for some years but strictly enforced from 2018: GDPR. Keep the
private data of private persons out of your scraping—you can be held
liable if some of it slips out into public because of your scraper.

robots.txt

Most websites provide a file called robots.txt, which is used to tell web
crawlers what they can scrape and what they should not touch. Naturally, it
is up to the developer to respect these recommendations, but I advise you
to always obey the contents of the robots. txt file.

Let’s see one example of such a file:

User-agent: *

Disallow: /covers/

Disallow: /api/

Disallow: /*checkval

Disallow: /*wicket:interface

Disallow: ?print view=true

Disallow: /*/search

Disallow: /*/product-search

Allow: /*/product-search/discipline

Disallow: /*/product-search/discipline?*facet-subj=
Disallow: /*/product-search/discipline?*facet-pdate=
Disallow: /*/product-search/discipline?*facet-type=category

The preceding code block is from www.apress.com/robots.txt. As
you can see, most content tells what is disallowed. For example, scrapers
shouldn’t scrape www.apress.com/covers/.

6
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Besides the Allow and Disallow entries, the User-agent can be
interesting. Every scraper should have an identification, which is provided
through the user agent parameter. Bigger bots, created by Google and Bing,
have their unique identifier. And because they are scrapers that add your
pages to the search results, you can define excludes for these bots to leave
you alone. Later in this chapter, you will create a script which will examine
and follow the guidelines of the robots.txt file with a custom user agent.

There can be other entries in a robots.txt file, but they are not
standard. To find out more about those entries, visit
https://en.wikipedia.org/wiki/Robots_exclusion_standard.

Technology of the Website

Another useful preparation step is to look at the technologies the targeted
website uses.

There is a Python library called builtwith, which aims to detect the
technologies a website utilizes. The problem with this library is that the last
version 1.3.2was released in 2015, and it is not compatible with Python 3.
Therefore, you cannot use it as you do with libraries available from the PyPI.!

However, in May 2017, Python 3 support has been added to the
sources, but the new version was not released (yet, I'm writing this in
November 2017). This doesn’t mean we cannot use the tool; we must
manually install it.

First, download the sources from https://bitbucket.org/
richardpenman/builtwith/downloads/. If you prefer, you can clone the
repository with Mercurial to stay up to date if new changes occur.

After downloading the sources, navigate to the folder where you
downloaded the sources and execute the following command:

pip install .

'PyPI - the Python Package Index


https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://bitbucket.org/richardpenman/builtwith/downloads/
https://bitbucket.org/richardpenman/builtwith/downloads/
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The command installs builtwith to your Python environment and you
can use it.

Now if you open a Python CLI, you can look at your target site to see
what technologies it uses.

>>> from builtwith import builtwith

>>> builtwith("http://www.apress.com")
{'javascript-frameworks': ['AngularJS', 'jQuery'],
"font-scripts': ['Font Awesome'], 'tag-managers':
['CGoogle Tag Manager'], 'analytics': ['Optimizely']}

The preceding code block shows which technologies Apress uses for
its website. You can learn from Angular]S that if you plan to write a scraper,
you should be prepared to handle dynamic content that is rendered with
JavaScript.

builtwith is not a magic tool, it is a website scraper that downloads
the given URL; parses its contents; and based on its knowledge base,
it tells you which technologies the website uses. This tool uses basic
Python features, which means sometimes you cannot get information
in the website you are interested in, but most of the time you get enough

information.

Using Chrome Developer Tools

To walk through the website and identify the fields of the requirements, we
will use Google Chrome’s built-in DevTools. If you do not know what this

tool can do for you, here is a quick introduction.

The Chrome Developer Tools (DevTools for short), are a set of
web authoring and debugging tools built into Google Chrome.

The DevTools provide web developers deep access into the
internals of the browser and their web application. Use the
DevTools to efficiently track down layout issues, set JavaScript
breakpoints, and get insights for code optimization.



CHAPTER 1  GETTING STARTED

As you can see, DevTools give you tools to see inside the workings of
the browser. We don’t need anything special; we will use DevTools to see
where the information resides.

In this section I will guide us with screenshots through the steps
I usually do when I start (or just evaluate) a scraping project.

Set-up

First, you must prepare to get the information. Even though we know
which website to scrape and what kind of data to extract, we need some
preparation.

Basic website scrapers are simple tools that download the contents of
the website into memory and then do extraction on this data. This means
they are not capable of running dynamic content just like JavaScript, and
therefore we have to make our browser similar to a simple scraper by
disabling JavaScript rendering.

First, right-click with your mouse on the web page and from the menu
select “Inspect,” as shown in Figure 1-1.

Back

Reload

Save as... Ctrl+S
Print... Ctrl+P
Cast...

Translate to English

View page source

Inspect [} Ctrl+Shift+l

Figure 1-1. Starting Chrome’s DevTools



