Website
Scraping
with Python

Using BeautifulSoup and Scrapy

Gabor LaszIo Hajba

ApPress’

Website Scraping
with Python

Using BeautifulSoup
and Scrapy

Gabor Laszl6 Hajba

Apress’

Website Scraping with Python

Gébor Laszl6 Hajba
Sopron, Hungary

ISBN-13 (pbk): 978-1-4842-3924-7 ISBN-13 (electronic): 978-1-4842-3925-4
https://doi.org/10.1007/978-1-4842-3925-4

Library of Congress Control Number: 2018957273
Copyright © 2018 by Gabor Laszlé Hajba

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484239247.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3925-4

To those who are restless, like me,
and always want to learn something new.

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
About the Technical ReVIEWErcusssssmssssnsssassssasssassssassssnsssassssannsns Xiii
Acknowledgments.......cccccurmsssssssmssnmmmsmssssssssssssnssessssssssssnnnnsssssssssssnnnnns XV
Introduction.........ccccinsmmmnnmmmmnsnns s ————————— Xvii
Chapter 1: Getting Started.........ccccuscmmnsmmmmssnsmsssnnmsssssmsssssmsssssssssssssssnns 1
WEDSItE SCrAPINGcvvverrerrererrerere s s e s e e s sa s e s aesa e e nae s 1
Projects for Website SCrapingcoovvvvrierevnsnienens s sese s sesessenes 2
Websites Are the BotEnecK............cccvrricnnennsssssssssese s 3
TOOIS iN ThiS BOOKc.cceiereiirinirircinee s 3
Preparation ... s 4
Terms and RODOTS.......ccccerrirce e 5
Technology of the WeDSIte..........ccccververiririnnrcrcer s 7
Using Chrome Developer TOOIScccvvverereenersersersesessersessessssessessessssessessensens 8

TOOI CONSIAEIALIONSvevveeccererrsreesese e 12
Starting t0 COUR ..o 13
Parsing robots.Xt ... ———— 13
Creating a Link EXEractor........ccccocvvnniniennsns s e 15
EXtracting IMages.......cccucereinininennsinsse s s 17
SUMIMANY.....eieeeeceree e e s se e s s e re e e e e 18

TABLE OF CONTENTS

Chapter 2: Enter the Requirementscccevssemmnmnsssssnnmsssssssssssssnnnns 19
The ReqUIrEMENTS.......cocceeecr e 20
Preparation ... e 21

Navigating Through “Meat & fishFish”c.cccrininininininnrne e, 23
Outlining the Application............cccvivninrnn s 31
Navigating the WebSIteccucvreirnnnnnrnsess e 32

Creating the Navigationc.cccvvrnneneninsesnsesse s 33

The requests LiDrary........cccoevernennesss s sessesens 36

SWiItching 10 reqUESTS......cccvecerccrrr s 37

Putting the Code TOgether ... 38
SUMMANY....ceitieiresere e n e p e e 39

Chapter 3: Using Beautiful Soup.......ccccussemmmnsssennmmssssnnnsnssssssnsnssssnnnnnnd 1

Installing BEAULITUl SOUPcvevreverieriere st rersere s se e se s sresessessesnens 4
Simple EXAMPIES ..ot st 42
Parsing HTML TeXI......cccoiirrsreners s ses e snes 42
Parsing Remote HTML ... ses e 44
Parsing @ File........ccccvvercereerercirsir e rer s s 45
Difference Between find and find_all...........cccooeornvnnnennesnnserrcnereenne 45
EXtracting All LINKScccoerervriirre s s e sse e se e s s 45
Extracting All IMAQES.......ceccerververrererrirres s s s s e e 46
Finding Tags Through Their Attributes ..., 46
Finding Multiple Tags Based on Propertycccccvvvvinvnnnneniensensenssesessenns 47
Changing Content........c.coivvririerenr s s sa e sne s 48
Finding COMMENTS......cccvierereriereresrssereresss s s e sessessessessssessessesassessessesaes 52
Converting a Soup t0 HTML TEXT.......cccvierererrerieresessessese s sessessessesessessessees 53
Extracting the Required Informationccccovvrvnininncncnn e 53
Identifying, Extracting, and Calling the Target URLS..........ccccocvvrvererenseniernenns 54
Navigating the Product Pagescccccvveverrirsensesercerses s s 56

TABLE OF CONTENTS

Extracting the Information.........ccccvvrvninnninins 58
UNFOreseen ChANGEScocvververerreversersesessssessessessessssessessessssessessessesssssssesseses 63
Exporting the Data ..o 65
TO BV b p s 66
TO JSON ... nn e e e nn s 73
To a Relational Databaseccovererenernsereneneree e 76
To an NOSQL Databasecccvvrremnmrerermssssesesesssssssese e sesssssssssesens 83
Performance IMprovements ... ssesnens 85
Changing the Parser ... s 86
Parse Only What's Needed...........ccoovcnirinnnnsnicns s sessesnns 87
Saving While WOrking........cccoveevrenrnscrncsere e ses s e ssssesessesessesesessesens 88
Developing on @ Long RUN ... 90
Caching Intermediate Step ReSUIScccovvvrvriinncncn e 90
Caching Whole WEDSILES.........ccccerernrrininnninsinse s 91
Source Code for this Chapter ... 95
SUMMANY....ceitieernesrrre s r e e s n e nr e e 95

Chapter 4: USing SCrapycuucermrsssssnnsssssssssssssssssssssssssssssssssssnsssssnnnnsss3 7

INSTAIING SCrAPY ..vvverrerreririere s s s ae s se s s s e e s e saesaess e e nsesaees 98
Creating the Projectcccoceerecvnerns e 98
Configuring the ProjeCt ... 100
L= 10T 10 (0T SRR 102
MiIAAIEBWAIE.........coereeerreerereere s 102
PIPEIINE ...t 103
=] 1] TSRS 104
L LTI (0] S 104
Implementing the Sainsbury SCrapercoccvvvvniesnncnnes e 106
What'’s This allowed_domains ADOUL?..........ccceveriniiniinsinssnssses e 107
Preparation........ccoccvinnesinsen s e 108

TABLE OF CONTENTS

def parse(Self, FESPONSE)ccvvvcerreeririrrr e 110
Navigating Through Categoriesccccvrerererrersersessnsessersessesessessessessesessessens 112
Navigating Through the Product Listings........c.cccevvrrinvnnnnininsenseenenienens 116
Extracting the Data...........cccccvvrinninininin e e 118
Where t0 Put the Data?..........ccoovvnnnnscssnssses e 123
RUNNINg the SPIET.....cccvevererrere s rere e sre s e e ssesnens 127
EXporting the RESUILS.......ccceveeercerere e 133
TO BVt s bbb 134

TO JSON ... bbb e e 135

TO DALADASES ..o 137
Bring YOUr OWN EXPOILETccvvveruerrererseressessssessessessssessessessessssessessessesensensens 143
Caching With SCrapycccccvrivrierrcr e e 153
Storage SOIULIONSccoveeerercrrerrc e 154

(07 T 1 Lo o] 1T T 156
Downloading IMAQESccoeriinirircrirrre e 158
Using Beautiful Soup With SCrapy........ccccvevrrrrrnnenesenesnseseseses s 161
[0 o T OSSR 162
(A Bit) Advanced Configurationccccveeriennnnsninesnsensese s sessessens 162
LOG_LEVEL ...t ssss s s s e ss s ssssssssanas 163
CONCURRENT_REQUESTScocerertrrirerenis s sse e s e s e ssssessessesnes 164
DOWNLOAD_DELAY.....cccerertertrrereresessere et sesse e ssssesessessssessessesssssssessessens 164
AULOENrOtHING......cceeerecerese e ———— 165
COOKIES_ENABLEDcoeitriererierinserese s sese e ses e ssesassessessessssessensesnes 166
SUMMAIY.c.ueiteirerere e s s e s s e e s e s s sae e e e e e s aese e e e e s aesae e e e naenaees 167
Chapter 5: Handling JavaScript........cccccmmusmmmssmmmsssssmssssssssssssssssnsnas 169
Reverse ENGINEEIiNg.......c.ooorererernererereseseressese s ses e se e seenes 169
Thoughts on Reverse ENgiNEering..........ccovoererrencrersererenersesesenesessesesessesenns 172
1T 172

viii

TABLE OF CONTENTS

3] 0] 2T £ RS 172
RS o o 173

A DynamiC EXAMPIE.......ccceririeriierererser e sses e sesses s s ssesssesnessesnens 176
Integration With SCIapycccvrerererrrieniesrsersere s ses e saesessesaesnes 177
Adapting the basic SPIErccvcvvriererrrrrere e 179
What Happens When Splash Isn’t RUNNING?.........ccccvvvevnnnsenienenessensenens 183

RS 111111 R 183

B3 T=] T 1] RS 183
PrereqUISITES ...cvevveverieriee e rerrer e s e s s 184
BaSIC USAQE......cevverriririirrierirersie s s e s s s s s ss e s s sn e s s 185
Integration With SCrapycccvrerernrrienieneserserese s s s s seesessesaesnes 186

RS 11111 189
Solutions for Beautiful SOUPcccvvcerninncnnsrn e 189
SPIASH....ce e ———————— 190

R T=] 1] 11T 191

RS 111111 192
SUMMAIY..c..citiiiire e e e e s e e R p e e e nne s 192
Chapter 6: Website Scraping in the Cloudccccccmmrrrrnnsssssnnnnnnnnnns 193
SCrapy ClOUd.........cccorieireerre e e e e 193
Creating @ ProjECt........coucvvcernesinssersse s 194
Deploying YOUr SPIerccvvveriserrnesereser s se s s snssenens 195
Start and Wait.........coccoveeernnesnesnnesersse s s s snens 196
Accessing the Data...........ccovevnenenesennssnese s 198
AP ————————————————— 200
LimMItationS......ccoveeereceresers s 202
SUMMANY ..ot se s nn e nra s 203

ix

TABLE OF CONTENTS

PYINONANYWREIE ...t s s 203
The EXample SCriPL.......cccvirirerrrerrere s s ssssessesessessssessessesssssssessessens 203
PythonAnywhere Configurationcceveevvrerveriesssensensesesessessesessssessensens 204
Uploading the SCHPL.......ccccvvvririerr s snes 204
RunNing the SCHIPL.....ccccviivrirrerr s s sse e sseenens 206
This Works Just Manually..........c.ccerrererennnieniesssensessesesessessessesessssessessens 207
Storing Data in @ DAtabase?.........cccvvvverierrnnsenese s sees 210
RS 111111 R 214

What About Beautiful SOUP?ceeveveererrerereresrereressssesesse e sessessessesssssssessesees 214

SUMMANY..c..citiiiire e e s e e b s r e e e s ae e e e e nne s 216

INA@X..ueeeiiienssssnnssssnnsssssnsssssnsssssnsssssnnssssnnssssnnsnssnnnnssnnnnssnnsnssnnnnssnnnnnnns 219

About the Author

Gabor Laszl6 Hajba is a Senior Consultant

at EBCONT enterprise technologies, who
specializes in Java, Python, and Crystal. He

is responsible for designing and developing
customer needs in the enterprise software
world. He has also held roles as an Advanced
Software Engineer with Ziihlke Engineering,
and as a freelance developer with Porsche
Informatik. He considers himself a workaholic,

(hard)core and well-grounded developer,
pragmatic minded, and freak of portable apps
and functional code.

He currently resides in Sopron, Hungary
with his loving wife, Agnes.

About the Technical Reviewer

Chaim Krause is an expert computer
programmer with over thirty years of
experience to prove it. He has worked as a lead
tech support engineer for ISPs as early as 1995,
as a senior developer support engineer with
Borland for Delphi, and has worked in Silicon
Valley for over a decade in various roles,
including technical support engineer and

developer support engineer. He is currently
a military simulation specialist for the US Army’s Command and General
Staff College, working on projects such as developing serious games for
use in training exercises.

He has also authored several video training courses on Linux topics
and has been a technical reviewer for over twenty books, including iOS
Code Testing, Android Apps for Absolute Beginners (4ed), and XML
Essentials for C# and .NET Development (all Apress). It seems only natural
then that he would be an avid gamer and have his own electronics lab
and server room in his basement. He currently resides in Leavenworth,
Kansas with his loving partner, Ivana, and a menagerie of four-legged
companions: their two dogs, Dasher and Minnie, and their three cats,
Pudems, Talyn, and Alaska.

xiii

Acknowledgments

Many people have contributed to what is good in this book. Remaining
errors and problems are the author’s alone.

Thanks to Apress for making this book happen. Without them, I'd have
never considered approaching a publisher with my book idea.

Thanks to the editors, especially Jill Balzano and James Markham.
Their advices made this book much better.

Thanks to Chaim Krause, who pointed out missing technical
information that may be obvious to me but not for the readers.

Last but not least, a big thank you to my wife, Agnes, for enduring the
time invested in this book.

I hope this book will be a good resource to get your own website
scraping projects started!

Introduction

Welcome to our journey together exploring website scraping solutions

using the Python programming language!
As the title already tells you, this book is about website scraping with
Python. I distilled my knowledge into this book to give you a useful manual

if you want to start data gathering from websites.

Website scraping is (in my opinion) an emerging topic.

I expect you have Python programming knowledge. This means I won’t

clarify every code block I write or constructs I use. But because of this,

you're allowed to differ: every programmer has his/her own unique coding

style, and your coding results can be different than mine.

This book is split into six chapters:

1.

Getting Started is to get you started with this book:
you can learn what website scraping is and why it
worth writing a book about this topic.

Enter the Requirements introduces the
requirements we will use to implement website
scrapers in the follow-up chapters.

Using Beautiful Soup introduces you to Beautiful
Soup, an HTML content parser that you can use to
write website scraper scripts. We will implement

a scraper to gather the requirements of Chapter 2
using Beautiful Soup.

xvii

INTRODUCTION

4. Using Scrapy introduces you to Scrapy, the (in my

opinion) best website scraping toolbox available

for the Python programming language. We will use
Scrapy to implement a website scraper to gather the
requirements of Chapter 2.

Handling JavaScript shows you options for how
you can deal with websites that utilize JavaScript to
load data dynamically and through this, give users
a better experience. Unfortunately, this makes basic
website scraping a torture but there are options that
you can rely on.

Website Scraping in the Cloud moves your scrapers
from running on your computer locally to remote
computers in the Cloud. I'll show you free and paid
providers where you can deploy your spiders and
automate the scraping schedules.

You can read this book from cover to cover if you want to learn the

different approaches of website scraping with Python. If you're interested

only in a specific topic, like Scrapy for example, you can jump straight to

Chapter 4, although I recommend reading Chapter 2 because it contains

the description of the data gathering task we will implement in the vast
part of the book.

xviii

CHAPTER 1

Getting Started

Instead of installation instructions, which follow later for each library, we
will dive right into deep water: this chapter introduces website scraping in
general and the requirements we will implement throughout this book.

You may expect a thorough introduction into website scraping, but
because you are reading this book I expect you already know what website
scraping is and you want to learn how to do it with Python.

Therefore, I'll just give you a glance at the topic and jump right into the
depths of creating a script that scrapes websites!

Website Scraping

The need to scrape websites came with the popularity of the Internet,
where you share your content and a lot of data. The first widely known
scrapers were invented by search engine developers (like Google or
AltaVista). These scrapers go through (almost) the whole Internet, scan
every web page, extract information from it, and build an index that you
can search.

Everyone can create a scraper. Few of us will try to implement such a
big application, which could be new competition to Google or Bing. But
we can narrow the scope to one or two web pages and extract information
in a structured manner—and get the results exported to a database or
structured file (JSON, CSV, XML, Excel sheets).

© Gabor Lészl6 Hajba 2018
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_1

CHAPTER 1 GETTING STARTED

Nowadays, digital transformation is the new buzzword companies use
and want to engage. One component of this transformation is providing
data access points to everyone (or at least to other companies interested
in that data) through APIs. With those APIs available, you do not need to
invest time and other resources to create a website scraper.

Even though providing APIs is something scraper developers won't
benefit from, the process is slow, and many companies don’t bother creating
those access points because they have a website and it is enough to maintain.

Projects for Website Scraping

There are a lot of use cases where you can leverage your knowledge of
website scraping. Some might be common sense, while others are extreme
cases. In this section you will find some use cases where you can leverage
your knowledge.

The main reason to create a scraper is to extract information from a
website. This information can be a list of products sold by a company,
nutrition details of groceries, or NFL results from the last 15 years. Most of
these projects are the groundwork for further data analysis: gathering all
this data manually is a long and error-prone process.

Sometimes you encounter projects where you need to extract data
from one website to load it into another—a migration. I recently had a
project where my customer moved his website to WordPress and the
old blog engine’s export functionality wasn’t meant to import it into
WordPress. I created a scraper that extracted all the posts (around
35,000) with their images, did some formatting on the contents to use
WordPress short codes, and then imported all those posts into the new
website.

A weird project could be to download the whole Internet! Theoretically
itis not impossible: you start at a website, download it, extract and follow
all the links on this page, and download the new sites too. If the websites

CHAPTER 1 GETTING STARTED

you scrape all have links to each other, you can browse (and download)
the whole Internet. I don’t suggest you start this project because you won't
have enough disk space to contain the entire Internet, but the idea is
interesting. Let me know how far you reached if you implement a scraper
like this.

Websites Are the Bottleneck

One of the most difficult parts of gathering data through websites is that
websites differ. I mean not only the data but the layout too. It is hard to
create a good-fit-for-all scraper because every website has a different
layout, uses different (or no) HTML IDs to identify fields, and so on.

And if this is not enough, many websites change their layout
frequently. If this happens, your scraper is not working as it did previously.
In these cases, the only option is to revisit your code and adapt it to the
changes of the target website.

Unfortunately, you won't learn secret tricks that will help you create a
scraper that always works—if you want to write specialized data extractors.
I will show some examples in this book that will always work if the HTML

standard is in use.

Tools in This Book

In this book you will learn the basic tools you can use in Python to do your
website scraping. You will soon realize how hard it is to create every single
piece of a scraper from scratch.

But Python has a great community, and a lot of projects are available
to help you focus on the important part of your scraper: data extraction.
I will introduce you to tools like the requests library, Beautiful Soup, and
Scrapy.

CHAPTER 1 GETTING STARTED

The requests library is a lightweight wrapper over the tedious task of
handling HTTP, and it emerged as the recommended way:

The Requests package is recommended for a higher level HT'TP
client interface.

— Python 3 documentation

Beautiful Soup isa content parser. It is not a tool for website scraping
because it doesn’t navigate pages automatically and it is hard to scale. But
it aids in parsing content, and gives you options to extract the required
information from XML and HTML structures in a friendly manner.

Scrapy is a website scraping framework/library. It is much more
powerful than Beautiful Soup, and it can be scaled. Therefore, you can
create more complex scrapers easier with Scrapy. But on the other side,
you have more options to configure. Fine-tuning Scrapy can be a problem,
and you can mess up a lot if you do something wrong. But with great power
comes great responsibility: you must use Scrapy with care.

Even though Scrapy is the Python library created for website
scraping, sometimes I just prefer a combination of requests and
Beautiful Soup because it is lightweight, and I can write my scraper in a
short period—and I do not need scaling or parallel execution.

Preparation

When starting a website scraper, even if it is a small script, you must
prepare yourself for the task. There are some legal and technical
considerations for you right at the beginning.

In this section I will give you a short list of what you should do to be
prepared for a website scraping job or task:

1. Do the website’s owners allow scraping? To find out,
read the Terms & Conditions and the Privacy Policy
of the website.

CHAPTER 1 GETTING STARTED

2. Canyou scrape the parts you are interested in? See
the robots. txt file for more information and use a
tool that can handle this information.

3. What technology does the website use? There are free
tools available that can help you with this task, but
you can look at the website’s HTML code to find out.

4. What tools should I use? Depending on your task
and the website’s structure, there are different paths
you can choose from.

Now let’s see a detailed description for each item mentioned.

Terms and Robots

Scraping currently has barely any limitations; there are no laws defining
what can be scraped and what cannot.

However, there are guidelines that define what you should respect.
There is no enforcing; you can completely ignore these recommendations,
but you shouldn't.

Before you start any scraping task, look at the Terms & Conditions and
Privacy Policy of the website you want to gather data from. If there is no
limitation on scraping, then you should look at the robots. txt file for the
given website(s).

When reading the terms and conditions of a website, you can search
for following keywords to find restrictions:

e scraper/scraping
o crawler/crawling
e bot

o spider

. program

CHAPTER 1 GETTING STARTED

Most of the time these keywords can be found, and this makes your
search easier. If you have no luck, you need to read through the whole legal
content and it is not as easy—at least I think legal stuff is always dry to read.

In the European Union there’s a data protection right that has been
live for some years but strictly enforced from 2018: GDPR. Keep the
private data of private persons out of your scraping—you can be held
liable if some of it slips out into public because of your scraper.

robots.txt

Most websites provide a file called robots.txt, which is used to tell web
crawlers what they can scrape and what they should not touch. Naturally, it
is up to the developer to respect these recommendations, but I advise you
to always obey the contents of the robots. txt file.

Let’s see one example of such a file:

User-agent: *

Disallow: /covers/

Disallow: /api/

Disallow: /*checkval

Disallow: /*wicket:interface

Disallow: ?print view=true

Disallow: /*/search

Disallow: /*/product-search

Allow: /*/product-search/discipline

Disallow: /*/product-search/discipline?*facet-subj=
Disallow: /*/product-search/discipline?*facet-pdate=
Disallow: /*/product-search/discipline?*facet-type=category

The preceding code block is from www.apress.com/robots.txt. As
you can see, most content tells what is disallowed. For example, scrapers
shouldn’t scrape www.apress.com/covers/.

6

http://www.apress.com/robots.txt
http://www.apress.com/covers/

CHAPTER 1 GETTING STARTED

Besides the Allow and Disallow entries, the User-agent can be
interesting. Every scraper should have an identification, which is provided
through the user agent parameter. Bigger bots, created by Google and Bing,
have their unique identifier. And because they are scrapers that add your
pages to the search results, you can define excludes for these bots to leave
you alone. Later in this chapter, you will create a script which will examine
and follow the guidelines of the robots.txt file with a custom user agent.

There can be other entries in a robots.txt file, but they are not
standard. To find out more about those entries, visit
https://en.wikipedia.org/wiki/Robots_exclusion_standard.

Technology of the Website

Another useful preparation step is to look at the technologies the targeted
website uses.

There is a Python library called builtwith, which aims to detect the
technologies a website utilizes. The problem with this library is that the last
version 1.3.2was released in 2015, and it is not compatible with Python 3.
Therefore, you cannot use it as you do with libraries available from the PyPI.!

However, in May 2017, Python 3 support has been added to the
sources, but the new version was not released (yet, I'm writing this in
November 2017). This doesn’t mean we cannot use the tool; we must
manually install it.

First, download the sources from https://bitbucket.org/
richardpenman/builtwith/downloads/. If you prefer, you can clone the
repository with Mercurial to stay up to date if new changes occur.

After downloading the sources, navigate to the folder where you
downloaded the sources and execute the following command:

pip install .

'PyPI - the Python Package Index

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://bitbucket.org/richardpenman/builtwith/downloads/
https://bitbucket.org/richardpenman/builtwith/downloads/

CHAPTER 1 GETTING STARTED

The command installs builtwith to your Python environment and you
can use it.

Now if you open a Python CLI, you can look at your target site to see
what technologies it uses.

>>> from builtwith import builtwith

>>> builtwith("http://www.apress.com")
{'javascript-frameworks': ['AngularJS', 'jQuery'],
"font-scripts': ['Font Awesome'], 'tag-managers':
['CGoogle Tag Manager'], 'analytics': ['Optimizely']}

The preceding code block shows which technologies Apress uses for
its website. You can learn from Angular]S that if you plan to write a scraper,
you should be prepared to handle dynamic content that is rendered with
JavaScript.

builtwith is not a magic tool, it is a website scraper that downloads
the given URL; parses its contents; and based on its knowledge base,
it tells you which technologies the website uses. This tool uses basic
Python features, which means sometimes you cannot get information
in the website you are interested in, but most of the time you get enough

information.

Using Chrome Developer Tools

To walk through the website and identify the fields of the requirements, we
will use Google Chrome’s built-in DevTools. If you do not know what this

tool can do for you, here is a quick introduction.

The Chrome Developer Tools (DevTools for short), are a set of
web authoring and debugging tools built into Google Chrome.

The DevTools provide web developers deep access into the
internals of the browser and their web application. Use the
DevTools to efficiently track down layout issues, set JavaScript
breakpoints, and get insights for code optimization.

CHAPTER 1 GETTING STARTED

As you can see, DevTools give you tools to see inside the workings of
the browser. We don’t need anything special; we will use DevTools to see
where the information resides.

In this section I will guide us with screenshots through the steps
I usually do when I start (or just evaluate) a scraping project.

Set-up

First, you must prepare to get the information. Even though we know
which website to scrape and what kind of data to extract, we need some
preparation.

Basic website scrapers are simple tools that download the contents of
the website into memory and then do extraction on this data. This means
they are not capable of running dynamic content just like JavaScript, and
therefore we have to make our browser similar to a simple scraper by
disabling JavaScript rendering.

First, right-click with your mouse on the web page and from the menu
select “Inspect,” as shown in Figure 1-1.

Back

Reload

Save as... Ctrl+S
Print... Ctrl+P
Cast...

Translate to English

View page source

Inspect [} Ctrl+Shift+l

Figure 1-1. Starting Chrome’s DevTools

