Christian Küchler

Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming

VIEWEG+
teUbNer

Christian Küchler
Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming

VIEWEG+TEUBNER RESEARCH

Stochastic Programming

Editor:
Prof. Dr. Rüdiger Schultz

Uncertainty is a prevailing issue in a growing number of optimization problems in science, engineering, and economics. Stochastic programming offers a flexible methodology for mathematical optimization problems involving uncertain parameters for which probabilistic information is available. This covers model formulation, model analysis, numerical solution methods, and practical implementations. The series "Stochastic Programming" presents original research from this range of topics.

Christian Küchler

Stability, Approximation, and Decomposition in Two- and Multistage Stochastic Programming

Bibliografische Information der Deutschen Nationalbibliothek Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Dissertation Humboldt-Universität zu Berlin, 2009

1. Auflage 2009

Alle Rechte vorbehalten
© Vieweg+Teubner | GWV Fachverlage GmbH, Wiesbaden 2009
Lektorat: Dorothee Koch \| Anita Wilke
Vieweg+Teubner ist Teil der Fachverlagsgruppe Springer Science+Business Media. www.viewegteubner.de

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung außerhalb der engen Grenzen des Urheberrechtsgesetzes ist ohne Zustimmung des Verlags unzulässig und strafbar. Das gilt insbesondere für Vervielfältigungen, Ubersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Umschlaggestaltung: KünkelLopka Medienentwicklung, Heidelberg Druck und buchbinderische Verarbeitung: STRAUSS GMBH, Mörlenbach Gedruckt auf säurefreiem und chlorfrei gebleichtem Papier.
Printed in Germany

To my parents

Preface

The present doctoral thesis has been developed during my employment at the Department of Mathematics at Humboldt-Universität zu Berlin. This employment was enabled and supported by the Bundesministerium für Bildung und Forschung and the Wiener Wissenschafts-, Forschungs- und Technologiefonds.

First of all, it is a great pleasure to express my gratitude to my advisor Prof. Werner Römisch who enabled for me a most pleasant and inspiring time at Humboldt-Universität. Prof. Römisch supported me with numerous discussions and suggestions, incessantly encouraged me to follow my own ideas, and made me attend various workshops and conferences that gave me many opportunities to present and discuss my work.

Very special thanks also go to my colleague Stefan Vigerske from Hum-boldt-Universität for the intensive collaboration whose results are also part of this thesis. In particular, it was his profound knowledge in optimization and programming which had allowed to implement the recombining tree decomposition approach in the present form. I would also like to thank him for never tiring to discuss the many facets of computer manipulation as well as mathematics.

Special thanks also go to Prof. René Henrion from Weierstraß-Institut in Berlin for the very pleasant and fruitful collaboration on scenario reduction, resulting in parts of this thesis. I also want to thank him for numerous motivating and inspiring discussions.

I would also like to thank my colleagues from the BMBF network for the successful cooperation, especially Alexa Epe from Ruhr-Universität Bochum and Oliver Woll from Universität Duisburg-Essen. Furthermore, I want to thank all of my friends and colleagues from Humboldt-Universität for their support, many helpful discussions, and the enjoyable common coffee breaks. In particular, I thank Dr. Andreas Eichhorn, Thomas Surowiec, and, once again, Stefan Vigerske for proofreading parts of this thesis. I also want to thank Dr. Holger Heitsch for providing me his scenred software.

Finally, I want to express my deepest gratitude to my family for all their love and support, and, in particular, to Konny for having been so strong and patient during the last years.

Contents

1 Introduction 1
1.1 Stochastic Programming Models 1
1.2 Approximations, Stability, and Decomposition 4
1.3 Contributions 7
2 Stability of Multistage Stochastic Programs 9
2.1 Problem Formulation 10
2.2 Continuity of the Recourse Function 13
2.3 Approximations 21
2.4 Calm Decisions 25
2.5 Stability 28
3 Recombining Trees for Multistage Stochastic Programs 33
3.1 Problem Formulation and Decomposition 35
3.1.1 Nested Benders Decomposition 37
3.1.2 Cut Sharing 38
3.1.3 Recombining Scenario Trees 39
3.2 An Enhanced Nested Benders Decomposition 40
3.2.1 Cutting Plane Approximations 41
3.2.2 Dynamic Recombining of Scenarios 45
3.2.3 Upper Bounds 51
3.2.4 Extended Solution Algorithm 53
3.3 Construction of Recombining Trees 55
3.3.1 A Tree Generation Algorithm 57
3.3.2 Consistency of the Tree Generation Algorithm 60
3.4 Case Study 77
3.4.1 A Power Scheduling Problem 77
3.4.2 Numerical Results 79
3.5 Out-of-Sample Evaluation 83
3.5.1 Problem Formulation 84
3.5.2 Towards Feasible Solutions 85
3.5.3 Numerical Examples 89
4 Scenario Reduction with Respect to Discrepancy Distances 97
4.1 Discrepancy Distances 98
4.2 On Stability of Two-Stage and Chance-Constrained Programs 100
4.3 Scenario Reduction 105
4.4 Bounds and Specific Solutions 106
4.4.1 Ordered Solution and Upper Bound 106
4.4.2 Lower Bound 110
4.5 The Inner Problem 113
4.5.1 Critical Index Sets 114
4.5.2 Reduced Critical Index Sets 115
4.5.3 Determining the Coefficients 116
4.5.4 Optimal Redistribution Algorithm 121
4.6 The Outer Problem 124
4.6.1 Revising Heuristics 124
4.6.2 A Glimpse on Low Discrepancy Sequences 127
4.6.3 A Branch and Bound Approach 127
4.7 Numerical Experience 131
4.8 Further Results 138
4.8.1 A Note on Extended Discrepancies 138
4.8.2 Mass Transportation and Clustering 140
4.8.3 An Estimation between Discrepancies 144
Appendix 153
Bibliography 159

List of Figures

3.1 Recombining and non-recombining scenario trees 40
3.2 Electricity demand and wind turbine power curve 78
3.3 Out-of-sample values for the power scheduling model 91
3.4 Out-of-sample values for the swing option model 95
4.1 Recourse function of Example 4.2.1 104
4.2 Supporting and non-supporting polyhedra 117
4.3 Rectangular discrepancy for different reduction techniques 125
4.4 Cumulative distribution functions of Example 4.6.1 126
4.5 Cell discrepancy and running time for the Forward Selection. 134
4.6 Low discrepancy points with adjusted probabilities 135
4.7 Perturbation of the optimal value of Example 4.7.1 136
4.8 Recourse function of Example 4.7.2 137
4.9 Perturbation of the optimal value of Example 4.7.2 138
4.10 Probabilities adjusted with respect to $\alpha_{\mathcal{B}_{\text {rect }}}$ and ζ_{2} 142
$4.11 \alpha_{\mathcal{B}_{\text {rect }}}$ and ζ_{2} for different weighting factors 143
4.12 Optimal mass transportation with respect to $\alpha_{\mathcal{B}_{\text {rect }}}$ and ζ_{2} 144
4.13 A polyhedron and the corresponding set M_{\nVdash} 147
4.14 Enlargements of a polyhedron 149
4.15 Polyhedral singularity of multivariate normal distributions 151

List of Tables

3.1 Parameters of the power scheduling model 79
3.2 Running times of Benders Decomposition 80
3.3 Running times with and without using upper bounds 81
3.4 Running times for different aggregation parameters 83
3.5 Out-of-sample values for different aggregation parameters 92
3.6 Out-of-sample values for different aggregation parameters 96
4.1 Number of supporting polyhedra and critical index sets 132
4.2 Running times of Algorithm 4.1 133
4.3 Running times of various support selection algorithms 134

Index of Notation

$\mathbf{1}_{B}(\cdot)$	the indicator function of the set B $\langle\cdot, \cdot\rangle$
the standard scalar product in \mathbb{R}^{m}	
$\|I\|$	the cardinality of the finite set I

int $S \quad$ the topological interior of the set S
$\Lambda_{R_{j}} \quad$ the set of representative nodes at time R_{j}, see p. 40
$\mathcal{M}_{[1, T]}^{m} \quad$ a set of Borel measurable mappings, see p. 11
$\operatorname{pos} W \quad$ the positive cone of a $(d \times m)$-matrix W, i.e., $\operatorname{pos} W=\{W y$: $\left.y \in \mathbb{R}_{+}^{m}\right\}$
$\mathcal{Q}_{t}(\cdot, \cdot) \quad$ the recourse function at time t, see p. 13
$\mathbb{P}, \mathbb{Q} \quad$ Borel probability measures
$\mathbb{P}_{t} \quad$ the probability distribution of the random variable $\boldsymbol{\xi}_{t}$ under the measure \mathbb{P}, see p. 11
$\mathbb{P}_{[t]} \quad$ the probability distribution of the random variable $\boldsymbol{\xi}_{[t]}$ under the measure \mathbb{P}, see p. 11
\mathfrak{P} the set of supporting polyhedra, see p. 117
$\mathcal{P}_{p}(\Xi) \quad$ the set of all Borel probability measures on $\Xi \subset \mathbb{R}^{s}$ with finite absolute moments of order $p \geq 1$, see p. 101
$\mathbb{R} \quad$ the set of real numbers
$\mathbb{R}_{+} \quad$ the set of non-negative real numbers, i.e., $\mathbb{R}_{+}=[0, \infty)$
$\overline{\mathbb{R}} \quad$ the set of extended real numbers, $\overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty,+\infty\}$
$\boldsymbol{\xi} \quad$ an \mathbb{R}^{s}-valued random variable or stochastic process
$\boldsymbol{\xi}_{[t]} \quad$ the random vector $\left(\boldsymbol{\xi}_{1}, \ldots, \boldsymbol{\xi}_{t}\right)$
$\boldsymbol{\xi}_{[s, t]} \quad$ the random vector $\left(\boldsymbol{\xi}_{s}, \ldots, \boldsymbol{\xi}_{t}\right)$ for $s, t \in \mathbb{N}$ with $s \leq t$
$\mathcal{S}(\boldsymbol{\xi}) \quad$ the set of decisions that are feasible w.r.t. the process $\boldsymbol{\xi}$, see p. 12
$S_{n} \quad$ the standard simplex in \mathbb{R}^{n}, see p. 105
$v(\boldsymbol{\xi}), v(\mathbb{P})$ the optimal value of a stochastic program, see p. 12
$\Xi_{t} \quad$ the support of the measure \mathbb{P}_{t}
$\Xi_{[t]} \quad$ the support of the measure $\mathbb{P}_{[t]}$
ζ_{p}
the p-th order Fortet-Mourier metric, see p. 101
$\zeta_{p, \mathcal{B}_{p h, k}} \quad$ an extended polyhedral discrepancy, see p. 101
$\zeta_{p, \mathcal{B}_{p h, W}} \quad$ an extended polyhedral discrepancy, see p. 101

Chapter 1

Introduction

1.1 Stochastic Programming Models

In modern decision theory, it is often the case that at least some of the considered components of a given model are uncertain. Such problems arise in a variety of applications, such as inventory control, financial planning and portfolio optimization, airline revenue management, scheduling and operation of power systems, and supply chain management. Dealing with such decision problems, it is reasonable (and sometimes inevitable) to consider possible uncertainties within an optimization and decision-making process.

Stochastic programming provides a framework for modeling, analyzing, and solving optimization problems with some parameters being not known up to a probability distribution. Stochastic programming has its origin in the early work of Dantzig (1955). It was initially motivated to allow uncertain demand in an optimization model of airline scheduling to be taken into account. Since its beginnings, the field has grown and extended in various directions. Introductory textbooks that give an impression of the diversity of stochastic programming are due to Kall and Wallace (1994), Prékopa (1995), Birge and Louveaux (1997), and Ruszczyński and Shapiro (2003b). A variety of applications are discussed by Wallace and Ziemba (2005).

In particular, Dantzig (1955) introduced the concept of two-stage linear stochastic programs, which is today regarded as the classical stochastic programming framework. Two-stage stochastic programs model the situation of a decision maker who must first make (first-stage) decisions without knowing some uncertain parameters, which, e.g., may affect the costs or constraints on future decisions. In the second stage, the unknown parameters are revealed and the decision maker then makes a recourse decision that is allowed to depend (in a measurable way) on the realization of the stochastic param-
eters. In some applications, the first and second stage decisions stand for investment and operation decisions, respectively.

One of several possible mathematical formulations of a two-stage linear stochastic program reads as follows.

$$
\begin{align*}
& \inf \left\langle b_{1}, x_{1}\right\rangle+\mathbb{E}\left[\left\langle b_{2}(\boldsymbol{\xi}), x_{2}(\boldsymbol{\xi})\right\rangle\right] \tag{1.1}\\
& \text { s.t. } \\
& x_{1} \in X_{1}, x_{2}(\boldsymbol{\xi}) \in X_{2} \tag{1.2}\\
& A_{2,1}(\boldsymbol{\xi}) x_{1}+A_{2,0}(\boldsymbol{\xi}) x_{2}(\boldsymbol{\xi})=h_{2}(\boldsymbol{\xi}) \tag{1.3}
\end{align*}
$$

Here, $\boldsymbol{\xi}$ is a random vector on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and models the stochastic parameters of the optimization problem. The variables x_{1} and x_{2} denote the first- and second-stage decision, respectively. For $i=1,2$, the decision x_{i} has to lie in some Borel constraint set $X_{i} \subset \mathbb{R}^{m}$. The first-stage decision x_{1} is a constant, whereas the second-stage decision $x_{2}=x_{2}(\cdot)$ is assumed to be a measurable mapping from $\Xi \triangleq \operatorname{supp} \mathbb{P}[\boldsymbol{\xi} \in \cdot]$ to \mathbb{R}^{m}. The decision x_{i} at stage i causes linear costs $\left\langle b_{i}, x_{i}\right\rangle$ with some coefficients $b_{i} \in \mathbb{R}^{m}$, where b_{2} is allowed to depend affinely on the realization of $\boldsymbol{\xi}$. The decisions x_{1} and x_{2} are intertwined by the time coupling constraint (1.3). Finally, we note that the technology matrix $A_{2,1}$, the recourse matrix $A_{2,0}$, and the right-hand side h_{2} may again depend affinely on $\boldsymbol{\xi}$ and take values in $\mathbb{R}^{n \cdot m}$ and \mathbb{R}^{n}, respectively. Note that the objective of the optimization problem (1.1) is to minimize the expected value of the total costs, and the constraints (1.2) and (1.3) are assumed to hold \mathbb{P}-almost surely.

Dantzig's framework has been extended during the last few decades in various directions. If some of the components of the decision variables in problem (1.1) are required to be integer, i.e.,

$$
\begin{equation*}
X_{1}, X_{2} \subset \mathbb{Z}^{m_{1}} \times \mathbb{R}^{m_{2}} \tag{1.4}
\end{equation*}
$$

with $m_{1}, m_{2} \in \mathbb{N}, m_{1}+m_{2}=m$, one arrives at mixed-integer two-stage linear stochastic programs. Such integrality constraints may arise in a variety of practical situations, e.g., by modeling technical or economical systems that allow only for discrete decisions. Furthermore, integer variables can be helpful to describe discontinuities or piecewise linear functions by means of linear expressions.

Under integrality constraints, continuity and convexity properties of problem (1.1) are generally lost and thus the structure of mixed-integer stochastic programs is more intricate. Despite their practical relevance, mixed-integer stochastic programs have received only limited attention compared to the non-integer case, see Stougie (1985) for an early reference, and Römisch and

Schultz (2001), Louveaux and Schultz (2003), Schultz (2003), Sen and Sherali (2006) for more recent results.

The constraints in problem (1.1) are claimed to hold \mathbb{P}-almost surely. However, in several technical or economical decision problems almost-sure constraints may be too restrictive and may lead to unacceptably expensive solutions, or even to infeasibility of the decision problem. Such problems may be modeled by a further class of stochastic programs considering constraints that are assumed to hold (at least) with a certain probability, i.e., so-called chance constraints. Chance constraints are also a modeling tool for regulatory terms as the Value-at-Risk constraints in financial applications. A simple example for an optimization problem including chance constraints is the following.

$$
\begin{align*}
& \inf \left\langle b_{1}, x_{1}\right\rangle \tag{1.5}\\
& \text { s.t. } \\
& x_{1} \in X_{1}, \\
& \mathbb{P}\left[A_{2,1}(\boldsymbol{\xi}) x_{1} \geq h_{2}(\boldsymbol{\xi})\right] \geq p, \tag{1.6}
\end{align*}
$$

where $p \in[0,1]$ denotes some probability threshold, and $b_{1}, X_{1}, A_{2,1}(\cdot)$, and $h_{2}(\cdot)$ are defined as above. Further formulations and various results on chance-constrained stochastic programming as well as numerous references are provided by Prékopa $(1995,2003)$.

A natural extension of the two-stage framework (1.1) is the consideration of a multi-stage setting. The latter corresponds to a situation where information about the unknown parameters is revealed sequentially and decisions have to be made at certain time points. A multi-stage extension of (1.1) can be formulated as follows:

$$
\begin{array}{ll}
\inf \left\langle b_{1}, x_{1}\right\rangle+\sum_{t=2}^{T} \mathbb{E}\left[\left\langle b_{t}\left(\boldsymbol{\xi}_{[t]}\right), x_{t}\left(\boldsymbol{\xi}_{[t]}\right)\right\rangle\right] & \\
\text { s.t. } & \\
\begin{array}{ll}
x_{1} \in X_{1}, & \\
x_{t}\left(\boldsymbol{\xi}_{[t]}\right) \in X_{t}, & t=2, \ldots, T, \\
\sum_{\tau=0}^{t-1} A_{t, \tau}\left(\boldsymbol{\xi}_{[t]}\right) x_{t-\tau}\left(\boldsymbol{\xi}_{[t-\tau]}\right)=h_{t}\left(\boldsymbol{\xi}_{[t]}\right), & t=2, \ldots, T,
\end{array}
\end{array}
$$

where $\boldsymbol{\xi}=\left(\boldsymbol{\xi}_{t}\right)_{t=1, \ldots, T}$ is a stochastic process on $(\Omega, \mathcal{F}, \mathbb{P})$ with time horizon $T \in \mathbb{N}$ and $\boldsymbol{\xi}_{[t]}$ denotes the vector $\left(\boldsymbol{\xi}_{2}, \ldots, \boldsymbol{\xi}_{t}\right)$. Note that, in particular, the decision x_{t} at time t is allowed to depend (in a measurable way) on $\boldsymbol{\xi}_{[t]}$, i.e., on the information obtained by observing $\boldsymbol{\xi}$ until time t.

A further extension of the classical framework is to replace (or, to adjust) the expectation operator $\mathbb{E}[\cdot]$ by some risk functional $\mathbb{F}[\cdot]$, i.e., the objective of (1.1) becomes

$$
\begin{equation*}
\inf \mathbb{F}\left[\left\langle b_{1}, x_{1}\right\rangle+\left\langle b_{2}(\boldsymbol{\xi}), x_{2}(\boldsymbol{\xi})\right\rangle\right] . \tag{1.9}
\end{equation*}
$$

A variety of risk functionals have been proposed and studied in the literature. We refer to, e.g., the classical mean-variance approach due to Markowitz (1952), the widely applied (Average-)Value-at-Risk functionals, several (semi-)deviation measures, as well as functionals based on utility functions. Risk functionals for the multistage case have arisen and studied intensively during the last years; we refer to the recent book of Pflug and Römisch (2007) as well as the work of Eichhorn (2007) and the numerous references therein.

1.2 Approximations, Stability, and Decomposition

A common feature of the stochastic programming models considered in the previous section is that in most practical applications analytic solutions are rarely available. In such cases, one has to resort to numerical optimization methods to find optimal (or, at least, acceptable) solutions. While there are approaches that embed the construction of solutions into a sampling scheme, most of the numerical methods require the underlying stochastic entities to take only a finite number of values. Furthermore, in order to enable acceptable solution times, the number of possible values of the stochastic variables has to be very limited in many cases. In particular, this is the case for multistage and mixed-integer stochastic programs.

Approximations

Whenever the underlying probability measure does not fulfill the aforementioned finiteness requirements, a common approach is to approximate it by a measure that is supported by a suitable number of atoms (or, scenarios). For this purpose, several techniques have been developed. These techniques are based on different principles like random sampling (Shapiro, 2003b), Quasi Monte-Carlo sampling (Pennanen, 2005), and moment matching (Høyland et al., 2003; Høyland and Wallace, 2001). Accordingly, convergence properties of optimal values and/or solution sets for specific techniques as well as bounds for statistical estimates have been established, cf. Pflug (2003), Shapiro (2003b), and the references therein.

Another established approximation approach relies on the usage of specific probability metrics ${ }^{1}$, see, e.g., Pflug (2001), Dupačová et al. (2003), Henrion et al. (2009), Heitsch and Römisch (2008). For such methods, the approximation of the initial measure in terms of a specific metric is considered reasonable whenever the optimal value and solution set of the considered stochastic program are known to possess some regularity with respect to the given metric (e.g., in form of Lipschitz or Hölder continuity). In order to identify distances that are suitable for specific problem classes, perturbation and stability issues become relevant.

Stability

In Stochastic Programming, the term stability usually refers to calmmess and continuity properties of optimal values and solution sets of a stochastic program under perturbations (or, approximations) of the underlying probability measure (cf. the recent survey by Römisch (2003)). For such regularity properties, the particular probability metric must be adapted to the structure of the stochastic program under consideration. In particular, FortetMourier and Wasserstein metrics are relevant for two-stage stochastic programs (cf. Römisch and Schultz (1991); Rachev and Römisch (2002)). These distances have been used for the approximation of discrete probability distributions in two-stage stochastic programs without integrality requirements (Dupačová et al., 2003; Heitsch and Römisch, 2003, 2007). For two-stage mixed-integer models discrepancy distances are useful, see Schultz (1996), Römisch (2003), Römisch and Vigerske (2008). Discrepancy distances are also relevant for chance-constrained problems, see Römisch and Wakolbinger (1987), Henrion and Römisch (1999, 2004).

Heitsch et al. (2006) established a general stability result for linear multistage stochastic programs involving a specific filtration distance. The latter measures the distance between the information flows of the initial and the perturbed stochastic process. This distance is taken into account by the techniques for scenario tree generation developed by Heitsch and Römisch (2008).

While consistency and stability results have turned out to be useful for approximation purposes, they usually require the optimization problems and underlying random variables to fulfill specific boundedness and regularity properties, which, however, may be hard to verify in cases of practical interest. Furthermore, due to the numerical complexity of solving stochastic optimization problems, it may be necessary to use approximations that are

[^0]
[^0]: ${ }^{1}$ The term probability metric refers to a distance on some space of probability measures.

