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Chapter 1

Introduction

1.1 Stochastic Programming Models

In modern decision theory, it is often the case that at least some of the con-
sidered components of a given model are uncertain. Such problems arise in
a variety of applications, such as inventory control, financial planning and
portfolio optimization, airline revenue management, scheduling and opera-
tion of power systems, and supply chain management. Dealing with such
decision problems, it is reasonable (and sometimes inevitable) to consider
possible uncertainties within an optimization and decision-making process.

Stochastic programming provides a framework for modeling, analyzing,
and solving optimization problems with some parameters being not known
up to a probability distribution. Stochastic programming has its origin in
the early work of Dantzig (1955). It was initially motivated to allow uncer-
tain demand in an optimization model of airline scheduling to be taken into
account. Since its beginnings, the field has grown and extended in various
directions. Introductory textbooks that give an impression of the diversity of
stochastic programming are due to Kall and Wallace (1994), Prékopa (1995),
Birge and Louveaux (1997), and Ruszczyński and Shapiro (2003b). A variety
of applications are discussed by Wallace and Ziemba (2005).

In particular, Dantzig (1955) introduced the concept of two-stage linear
stochastic programs, which is today regarded as the classical stochastic pro-
gramming framework. Two-stage stochastic programs model the situation of
a decision maker who must first make (first-stage) decisions without knowing
some uncertain parameters, which, e.g., may affect the costs or constraints
on future decisions. In the second stage, the unknown parameters are re-
vealed and the decision maker then makes a recourse decision that is allowed
to depend (in a measurable way) on the realization of the stochastic param-
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eters. In some applications, the first and second stage decisions stand for
investment and operation decisions, respectively.

One of several possible mathematical formulations of a two-stage linear
stochastic program reads as follows.

inf 〈b1, x1〉+ E [〈b2(ξ), x2(ξ)〉] (1.1)

s.t.

x1 ∈ X1, x2(ξ) ∈ X2, (1.2)

A2,1(ξ)x1 + A2,0(ξ)x2(ξ) = h2(ξ) (1.3)

Here, ξ is a random vector on a probability space (Ω,F ,P) and models the
stochastic parameters of the optimization problem. The variables x1 and x2
denote the first- and second-stage decision, respectively. For i = 1, 2, the
decision xi has to lie in some Borel constraint set Xi ⊂ R

m. The first-stage
decision x1 is a constant, whereas the second-stage decision x2 = x2(·) is
assumed to be a measurable mapping from Ξ � suppP[ξ ∈ ·] to Rm. The
decision xi at stage i causes linear costs 〈bi, xi〉 with some coefficients bi ∈ Rm,
where b2 is allowed to depend affinely on the realization of ξ. The decisions
x1 and x2 are intertwined by the time coupling constraint (1.3). Finally,
we note that the technology matrix A2,1, the recourse matrix A2,0, and the
right-hand side h2 may again depend affinely on ξ and take values in Rn·m

and Rn, respectively. Note that the objective of the optimization problem
(1.1) is to minimize the expected value of the total costs, and the constraints
(1.2) and (1.3) are assumed to hold P-almost surely.

Dantzig’s framework has been extended during the last few decades in
various directions. If some of the components of the decision variables in
problem (1.1) are required to be integer, i.e.,

X1, X2 ⊂ Z
m1 × Rm2 (1.4)

with m1,m2 ∈ N,m1 + m2 = m, one arrives at mixed-integer two-stage
linear stochastic programs. Such integrality constraints may arise in a variety
of practical situations, e.g., by modeling technical or economical systems
that allow only for discrete decisions. Furthermore, integer variables can be
helpful to describe discontinuities or piecewise linear functions by means of
linear expressions.

Under integrality constraints, continuity and convexity properties of prob-
lem (1.1) are generally lost and thus the structure of mixed-integer stochastic
programs is more intricate. Despite their practical relevance, mixed-integer
stochastic programs have received only limited attention compared to the
non-integer case, see Stougie (1985) for an early reference, and Römisch and



1.1. Stochastic Programming Models 3

Schultz (2001), Louveaux and Schultz (2003), Schultz (2003), Sen and Sherali
(2006) for more recent results.

The constraints in problem (1.1) are claimed to hold P-almost surely.
However, in several technical or economical decision problems almost-sure
constraints may be too restrictive and may lead to unacceptably expensive
solutions, or even to infeasibility of the decision problem. Such problems
may be modeled by a further class of stochastic programs considering con-
straints that are assumed to hold (at least) with a certain probability, i.e.,
so-called chance constraints. Chance constraints are also a modeling tool for
regulatory terms as the Value-at-Risk constraints in financial applications.
A simple example for an optimization problem including chance constraints
is the following.

inf 〈b1, x1〉 (1.5)

s.t.

x1 ∈ X1,

P [A2,1(ξ)x1 ≥ h2(ξ)] ≥ p, (1.6)

where p ∈ [0, 1] denotes some probability threshold, and b1, X1, A2,1(·),
and h2(·) are defined as above. Further formulations and various results on
chance-constrained stochastic programming as well as numerous references
are provided by Prékopa (1995, 2003).

A natural extension of the two-stage framework (1.1) is the consideration
of a multi-stage setting. The latter corresponds to a situation where infor-
mation about the unknown parameters is revealed sequentially and decisions
have to be made at certain time points. A multi-stage extension of (1.1) can
be formulated as follows:

inf 〈b1, x1〉+
T∑

t=2

E
[
〈bt(ξ[t]), xt(ξ[t])〉

]
(1.7)

s.t.

x1 ∈ X1,
xt(ξ[t]) ∈ Xt, t = 2, . . . , T,∑t−1

τ=0At,τ (ξ[t])xt−τ (ξ[t−τ ]) = ht(ξ[t]), t = 2, . . . , T,
(1.8)

where ξ = (ξt)t=1,...,T is a stochastic process on (Ω,F ,P) with time horizon
T ∈ N and ξ[t] denotes the vector (ξ2, . . . , ξt). Note that, in particular, the
decision xt at time t is allowed to depend (in a measurable way) on ξ[t], i.e.,
on the information obtained by observing ξ until time t.
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A further extension of the classical framework is to replace (or, to adjust)
the expectation operator E[·] by some risk functional F[·], i.e., the objective
of (1.1) becomes

inf F [〈b1, x1〉+ 〈b2(ξ), x2(ξ)〉] . (1.9)

A variety of risk functionals have been proposed and studied in the lit-
erature. We refer to, e.g., the classical mean-variance approach due to
Markowitz (1952), the widely applied (Average-)Value-at-Risk functionals,
several (semi-)deviation measures, as well as functionals based on utility
functions. Risk functionals for the multistage case have arisen and stud-
ied intensively during the last years; we refer to the recent book of Pflug and
Römisch (2007) as well as the work of Eichhorn (2007) and the numerous
references therein.

1.2 Approximations, Stability, and

Decomposition

A common feature of the stochastic programming models considered in the
previous section is that in most practical applications analytic solutions are
rarely available. In such cases, one has to resort to numerical optimization
methods to find optimal (or, at least, acceptable) solutions. While there are
approaches that embed the construction of solutions into a sampling scheme,
most of the numerical methods require the underlying stochastic entities
to take only a finite number of values. Furthermore, in order to enable
acceptable solution times, the number of possible values of the stochastic
variables has to be very limited in many cases. In particular, this is the case
for multistage and mixed-integer stochastic programs.

Approximations

Whenever the underlying probability measure does not fulfill the aforemen-
tioned finiteness requirements, a common approach is to approximate it by a
measure that is supported by a suitable number of atoms (or, scenarios). For
this purpose, several techniques have been developed. These techniques are
based on different principles like random sampling (Shapiro, 2003b), Quasi
Monte-Carlo sampling (Pennanen, 2005), and moment matching (Høyland
et al., 2003; Høyland and Wallace, 2001). Accordingly, convergence prop-
erties of optimal values and/or solution sets for specific techniques as well
as bounds for statistical estimates have been established, cf. Pflug (2003),
Shapiro (2003b), and the references therein.



1.2. Approximations, Stability, and Decomposition 5

Another established approximation approach relies on the usage of spe-
cific probability metrics1, see, e.g., Pflug (2001), Dupačová et al. (2003),
Henrion et al. (2009), Heitsch and Römisch (2008). For such methods, the
approximation of the initial measure in terms of a specific metric is consid-
ered reasonable whenever the optimal value and solution set of the considered
stochastic program are known to possess some regularity with respect to the
given metric (e.g., in form of Lipschitz or Hölder continuity). In order to
identify distances that are suitable for specific problem classes, perturbation
and stability issues become relevant.

Stability

In Stochastic Programming, the term stability usually refers to calmmess
and continuity properties of optimal values and solution sets of a stochastic
program under perturbations (or, approximations) of the underlying proba-
bility measure (cf. the recent survey by Römisch (2003)). For such regularity
properties, the particular probability metric must be adapted to the struc-
ture of the stochastic program under consideration. In particular, Fortet-
Mourier and Wasserstein metrics are relevant for two-stage stochastic pro-
grams (cf. Römisch and Schultz (1991); Rachev and Römisch (2002)). These
distances have been used for the approximation of discrete probability dis-
tributions in two-stage stochastic programs without integrality requirements
(Dupačová et al., 2003; Heitsch and Römisch, 2003, 2007). For two-stage
mixed-integer models discrepancy distances are useful, see Schultz (1996),
Römisch (2003), Römisch and Vigerske (2008). Discrepancy distances are
also relevant for chance-constrained problems, see Römisch and Wakolbinger
(1987), Henrion and Römisch (1999, 2004).

Heitsch et al. (2006) established a general stability result for linear multi-
stage stochastic programs involving a specific filtration distance. The latter
measures the distance between the information flows of the initial and the
perturbed stochastic process. This distance is taken into account by the
techniques for scenario tree generation developed by Heitsch and Römisch
(2008).

While consistency and stability results have turned out to be useful for
approximation purposes, they usually require the optimization problems and
underlying random variables to fulfill specific boundedness and regularity
properties, which, however, may be hard to verify in cases of practical in-
terest. Furthermore, due to the numerical complexity of solving stochastic
optimization problems, it may be necessary to use approximations that are

1The term probability metric refers to a distance on some space of probability measures.


