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Uncertainty is a prevailing issue in a growing number of optimization prob -
lems in science, engineering, and economics. Stochastic programming
 offers a  flexible methodology for mathematical optimization problems
 involving  uncertain parameters for which probabilistic information is avail -
able. This  covers model formulation, model analysis, numerical solution
 methods, and practical implementations. The series ”Stochastic Program-
ming“ presents  original research from this range of topics.
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Foreword

Optimization problems whose constraints involve partial differential equations
(PDEs) are relevant in many areas of technical, industrial, and economic appli-
cations. At the same time, they pose challenging mathematical research problems
in numerical analysis and optimization.
The present text is among the first in the research literature addressing stochastic

uncertainty in the context of PDE constrained optimization. The focus is on shape
optimization for elastic bodies under stochastic loading. Analogies to finite dimen-
sional two-stage stochastic programming drive the treatment, with shapes taking
the role of nonanticipative decisions. The main results concern level set-based sto-
chastic shape optimization with gradient methods involving shape and topological
derivatives. The special structure of the elasticity PDE enables the numerical so-
lution of stochastic shape optimization problems with an arbitrary number of sce-
narios without increasing the computational effort significantly. Both risk neutral
and risk averse models are investigated.
This monograph is based on a doctoral dissertation prepared during 2004-2008

at the Chair of Discrete Mathematics and Optimization in the Department of Math-
ematics of the University of Duisburg-Essen. The work was supported by the
Deutsche Forschungsgemeinschaft (DFG) within the Priority Program “Optimiza-
tion with Partial Differential Equations”.

Rüdiger Schultz



Acknowledgments

I owe a great deal to my supervisors, colleagues, and friends who have always
supported, encouraged, and enlightened me through their own research, comments,
and questions.
When I started as a freshman at the University of Duisburg nearly a decade ago,

the very first lecture I attended was given by Prof. Dr. Rüdiger Schultz. Undoubt-
edly, it was his enthusiasm and passion for mathematics that kindled my interests
and ambitions at that time, which finally led to this thesis. For that, his constant
motivation and invaluable advice, his encouragement to pursue my own ideas, and
the faith he put in me, I thank him deeply.
I further thank Prof. Dr. Martin Rumpf for his support, invaluable advice, and

helpful ideas that proved useful in many difficult situations. I am also thankful to
him and his group for allowing me access to their excellent software library, which
was a great asset to my research.
I am grateful to all of my colleagues for their willingness to genuinely help

and discuss virtually everything at any time, providing the most pleasant work
environment. In particular, I would like to express my gratitude to Ralf Gollmer,
Uwe Gotzes, and Martin Pach for fruitful discussions and suggestions.
Not least I thank my wife, Karina, for her patience, love, and proofreading. I

spent many evenings and weekends writing and “bug squishing”. For that I am in
her debt.

Harald Held



Abstract

We consider an elastic body subjected to internal and external forces which are
uncertain. Simply averaging the possible loadings will result in a structure that
might not be robust for the individual loadings at all. Instead, we apply techniques
from level set-based shape optimization and two-stage stochastic programming:
In the first stage, the non-anticipative decision on the shape has to be taken. Af-
terwards, the realizations of the random forces are observed, and the variational
formulation of the elasticity system takes the role of the second-stage problem.
Taking advantage of the PDE’s linearity, we are able to compute solutions for an
arbitrary number of scenarios without increasing the computational effort signif-
icantly. The deformations are described by PDEs that are solved efficiently by
Composite Finite Elements. The objective is, e.g., to minimize the compliance.
A gradient method using the shape derivative is used to solve the problem. Re-
sults for 2D instances are shown. The obtained solutions strongly depend on the
initial guess, in particular its topology. To overcome this issue, we included the
topological derivative into our algorithm as well.
The stochastic programming perspective also allows us to incorporate risk mea-

sures into our model which might be a more appropriate objective in many practi-
cal applications.
Parts of this work have been published in [CHP+09].
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Symbol Index

O The elastic body

Γ0 Part of the boundary that is to be optimized

ΓD The fixed Dirichlet boundary

ΓN Neumann boundary where the surface loads act on

λ ,μ Lamé coefficients

φ Level set function

π Vector of probabilities

R
n n-dimensional Euclidean space

ω A scenario

J(O) = J(O,u(O)) Shape objective functional

A Elasticity tensor

e(u) Linearized strain tensor

f,i ith partial derivative of a scalar function f , see A.4 on page 122

V Function space H1
ΓD(O;R2)

D Working domain that contains all admissible shapes

A more detailed overview of the notations we used can be found in the Appen-
dix A on page 121.



1 Introduction

Shape optimization problems arise in various practical applications. As stated in
[DJPZ01], the object that is to be optimized is the geometry as a variable. Shape
optimization is closely related to topology optimization, where not only the shape
and sizing of a structure has to be found, but also the topology, i.e. the location
and shape of holes (see e.g. [BS03]).
In this work, we consider an elastic body represented by an open bounded do-

main1 O ⊂ R
2. This elastic body is subjected to volume forces and surface loads

which are unknown in advance and vary stochastically over time. The objective is
to find a shape that minimizes a certain functional under the given loading condi-
tions. Of course, since the acting forces are uncertain and therefore not known in
advance, one has to decide on the shape before one can observe the actual forces.
This resembles the ideas and structure of linear two-stage stochastic programming
problems. This work works out this analogy in the case of shape optimization for
linear elastic material laws and stochastic volume and surface loadings.
The motivation behind the stochastic approach becomes evident when looking

at the following particular situation, which is also described in [CC03]: Suppose,
our task is to find a design for some elastic mechanical device that is as stiff as
possible. The stiffness that is to be maximized in this context is an elastic energy
as the result of applying forces acting on the design. Under the assumption that
the loading is fixed and known, the optimization process yields a structure which
resists that one particular given force as good as possible. It is not difficult to
imagine situations where the optimal design is unstable with respect to variations
of the forces. See for example instance Fig. 5.2 on page 103 in Chapter 5. There
we have a square supported on its bottom edge and a homogeneous vertical surface
load is acting on its upper edge. The resulting optimal structure consists of vertical
pillars (see Fig. 5.2 (left)), which is clearly not optimal any more for any other but
the given vertical loading. Note that the instability is not a malfunction in the
optimization procedure but the model itself. One can only hope to find more stable
and robust solutions if the model somehow incorporates uncertain loadings.

1Note that all results described here also hold for O ⊂R
3. However, the computational results are all

obtained for the 2-dimensional case, so for the ease of presentation we restrict ourselves to R2.



2 1 Introduction

One way to achieve this is the stochastic programming approach to this kind of
problem, which is the main contribution of this work.
Another possibility to avoid the vulnerability of the optimal designs with respect

to variations of loadings, is the robust optimization approach. For details about ro-
bust optimization we refer to Ben-Tal et al. [BTN02] and references therein, here
we only state the basic idea. Robust optimization aims to solve optimization prob-
lems in which some data are uncertain and is only known to belong to some un-
certainty set U . The following general (finite dimensional) optimization problem
is considered in [BTN02]:

min
x0∈R,x∈Rn

{x0 : f0(x,ζ )− x0 ≤ 0, fi(x,ζ ) ≤ 0, i= 1, . . . ,m} (1.1)

with the design vector x, the objective function f0, constraints f1, . . . , fm, and un-
certain data ζ ∈ U . Then, one associates with the uncertain problem (1.1) its
so-called robust counterpart which is the (semi-infinite) optimization problem

min
x0,x

{x0 : f0(x,ζ ) ≤ x0, fi(x,ζ ) ≤ 0, i= 1, . . . ,m ∀ζ ∈U } . (1.2)

Note that in particular any feasible x and x0 in (1.2) have to satisfy the constraint
f0(x,ζ ) ≤ x0,∀ζ ∈U , which can be stated equivalently as maxζ∈U f0(x,ζ ) ≤ x0.
The right-hand side x0 is the objective function in (1.2) which is to be minimized.
Consequently, for an optimal design vector x̄ we have x0 = maxζ∈U f0(x̄,ζ ). In
this sense, the robust counterpart (1.2) overcomes the issue of instability due to
uncertain data by minimizing the worst possible case in the given range of data.
The idea of robust optimization has been applied to practical shape and topology

optimization applications, such as airfoil shape optimization for example, where
the forces are not always known in advance and may vary intensely. This is carried
out for example in [Huy01]. Other applications and model formulations for robust
shape optimization problems can be found e.g. in [CC99, CC03, dGAJ06]. To
our knowledge, the ideas of stochastic (two-stage) programming, which also take
the distribution of the random data into account, have not been applied to shape
optimization problems under uncertainty yet.
In Section 1.2 we give an introduction to deterministic shape optimization prob-

lems. Section 1.1 deals with the formulation and properties of the underlying
elasticity PDE2. The introduction closes with the ideas and important concepts of
two-stage stochastic programming in Section 1.3.
Chapter 2 describes in detail the finite element method we used — the so-called

Composite Finite Elements — to solve the elasticity PDE, including some imple-
mentational details.
2Partial Differential Equation



In Chapter 3 we show how some ideas from finite dimensional two-stage sto-
chastic programming can be applied to the infinite dimensional setting of our sto-
chastic shape optimization problems. It turns out that for this purpose duality
plays an important role for an efficient way to compute solutions. This is worked
out in Section 3.1. A reformulation of the stochastic shape optimization problem
which suggests an immediate way to evaluate the objective function is obtained in
Section 3.2. Based on this formulation of the problem, risk averse objective func-
tionals are quite easy to be included, which can be found in Sections 3.3 and 3.4.
Of course, after having formulated appropriate stochastic shape optimization

problems, one is also interested in solving them numerically. Along with this
work, we developed a program which does that for the 2-dimensional case. The
algorithm we implemented is essentially a steepest descent algorithm combined
with a level set method. We mainly follow [AJT04] in that respect. In Section 4.1
we describe how we represent domains via level set functions, and what properties
and advantages level set methods have. As mentioned before, we want to apply
a steepest descent algorithm, so we need to know how to evaluate the objective
function, and how to compute a descent direction. The former becomes clear in
Chapter 3, and the latter is dealt with in Chapter 4. In particular, in Section 4.2 the
notion of shape derivative is introduced which is essential for computing a descent
direction.
One drawback of a steepest descent algorithm for our problem is that it requires

an initial guess. In other words, one has to decide on a certain topology3. It turns
out that this has a great influence on the outcome of the optimization algorithm (see
e.g. [AJT04, AdGJT05, BS03]). The notion of convexity does not apply for func-
tionals depending on domains. Hence there is no guarantee that a steepest descent
algorithm finds an optimal solution. In general, one can only say that it termi-
nates in a critical point (cf. for example [BGLS03, NW99, Rus06]). Moreover, the
used level set method is in general not able to create new holes (see [AJT04]) but
might be able to join several holes together. One attempt to overcome those prob-
lems is to embed the topological derivative as e.g. in [AdGJT05, BHR04]. More
on the topological derivative and topology optimization in general can be found
for instance in [AdGJT05, BS03, BHR04, BO05, GGM01, HL07, SZ99, SZ01]
and references therein. We also included the topological derivative in our imple-
mentation which is described in Section 4.3. Finally, the complete algorithm is
summarized and presented in Section 4.4.
Numerical results for the 2-dimensional case are presented in Chapter 5. For

convenience, we summarized all the notations we used in the Appendix A.1.

3Here we mean the number of holes and their size and location.
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4 1 Introduction

1.1 The Elasticity PDE

As mentioned before, we seek to optimize the shape of an elastic body O ⊆ R
2

subjected to internal and external forces. Here we only want to give a brief intro-
duction to elasticity and the PDE which serves as the state equation for the shape
optimization problems that are considered in this work. More on elasticity the-
ory can be found in [Cia88] and [Bra03]. The latter also addresses computational
aspects using finite element methods.
Due to the forces acting on the body O , the body is deformed and a point x ∈O

becomes the point x′ of the deformed body as illustrated in Figure 1.1. Then we can
express x′ as x′ = x+u(x), where u : R2 → R

2 denotes the vector of displacement
and is assumed to be sufficiently smooth. Those displacements are often assumed
to be small and thus higher order terms in u are neglected. This leads to the theory
of linearized elasticity which we consider in this work for isotropic elastic mate-
rials. One of the most important notions in elasticity theory is the strain tensor

O

x

x + u(x)

+ u

g

Fig. 1.1: Sketch of an elastic body O which is fixed on its left edge. Due to the surface load
g the body deforms, and a point x ∈O becomes x+u(x).

which reads in the linearized theory as4

ei j(u) :=
1
2

(ui, j +u j,i) . (1.3)

The 2× 2 matrix e(u) = (ei j(u)) is obviously symmetric, and the mapping u 	→
e(u) linear.
We distinguish between volume forces f and surface loads g. A typical example

for a volume force is gravity, whereas an imposed load on a bridge would be a
surface load. The resulting deformation due to those forces obviously depends on
4For the notation we used here for derivatives, see A.1, in particular A.4 (ii)


