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This book is dedicated to Bernd Hofmann on the
occasion of his retirement.



Preface

This book grew out of the author’s habilitation thesis, which has been completed in January
2018. Parts II and III cover and slightly extend the material of the thesis. Part I, on the one
hand, provides an introduction to the other parts and, on the other hand, contains new
results on variational source conditions in the context of convergence rates theory for ill-
posed inverse problems.

The intention of writing this book was to demonstrate new and to some extent nonortho-
dox ideas for handling ill-posed inverse problems. This book is not a comprehensive
introduction to inverse problems. Instead, it focuses on few research topics and handles
them in depth.

The three topics of the book, variational source conditions, quadratic inverse problems,
and �1-regularization, seem to be quite different. The first one is of great generality and
establishes the basis for several more concrete results in the book. The second one is
concerned with nonlinear mappings in a classical Hilbert space setting, whereas the third
deals with linear mappings in non-reflexive Banach spaces.

At the second sight, quadratic inverse problems and linear inverse problems with
sparsity context have similar structures and their handling shows several parallels.
Nevertheless, I decided to divide the book into three more or less independent parts and to
give hints on cross connections from time to time. The advantage of this decision is that
the reader may study the three parts in arbitrary order.

Finishing this book would not have been possible without constant support and advice
by Prof. Bernd Hofmann (TU Chemnitz). I thank him a lot for his efforts in several regards
during all the years I have been working in his research group. I also want to thank
my colleagues and coauthors, especially Steven Bürger and Daniel Gerth, for interesting
and fruitful discussions. Last but not least I have to express my thanks to the Faculty
of Mathematics at TU Chemnitz as a whole for the cordial and cooperative working
atmosphere.

Chemnitz, Germany Jens Flemming
May 2018
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1Inverse Problems, Ill-Posedness, Regularization

Abstract

We introduce the mathematical setting as well as basic notation used throughout the
book. Different notions of ill-posedness in the context of inverse problems are discussed
and the need for regularization leads us to Tikhonov-type methods and their behavior
in Banach spaces.

1.1 Setting

Let X and Y be Banach spaces over R or C and let F : X ⊇ D(F ) → Y be a mapping
between them with domainD(F ). We aim to solve equations

F(x) = y†, x ∈ D(F ), (1.1)

with exact and attainable data y† in Y . Solving such equations requires, in some sense,
inversion of F . Hence the term inverse problem.

The mathematical field of inverse problems is not concerned with Eq. (1.1) in general
but only with equations that are ill-posed. Loosely speaking, an equation is ill-posed if
the inversion process is very sensitive to perturbations in the right-hand side y†. Such
perturbations cannot be avoided in practice because y† represents some measured quantity
and measurements always are corrupted by noise. We provide and discuss different precise
definitions of ill-posedness in the next section.

© Springer Nature Switzerland AG 2018
J. Flemming, Variational Source Conditions, Quadratic Inverse Problems,
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4 1 Inverse Problems, Ill-Posedness, Regularization

To analyze and overcome ill-posedness noise has to be taken into account. In other
words, the exact right-hand side y† is not available for the inversion process. Instead, we
only have some noisy measurement yδ at hand, which is assumed to belong to Y , too, and
to satisfy

∥
∥yδ − y†

∥
∥ ≤ δ (1.2)

with nonnegative noise level δ.
For later reference we list the following restrictions on our setting.

Assumption 1.1 We assume that

(i) equation (1.1) has a solution,
(ii) the domain D(F ) is weakly sequentially closed,
(iii) the mapping F is weakly sequentially continuous.

Items (ii) and (iii) are satisfied if and only if for each sequence (xn)n∈N in D(F ) and
each x in X we have

xn ⇀ x ⇒ x ∈ D(F ), F (xn) ⇀ F(x).

1.2 Ill-Posedness

1.2.1 Global Definitions by Hadamard and Nashed

The classical definition of ill-posedness was introduced by Hadamard.

Definition 1.2 The mapping F in Eq. (1.1) is well-posed in the sense of Hadamard if

(i) for each y† in Y there exists a solution,
(ii) for each fixed right-hand side y† there is at most one solution,
(iii) solutions depend continuously on the data.

Else F is ill-posed in the sense of Hadamard.

Items (i) and (ii) of the definition require that F is bijective and item (iii) says that the
inverse mapping has to be continuouswith respect to the norm or some other topology.Due
to its restrictive nature Hadamard’s definition only plays a minor role in modern theory of
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inverse problems. Existence of solutions usually is formulated as an assumption, cf. item
(i) in Assumption 1.1, and uniqueness is not required because the developed theory will
cover the case of multiple solutions.

In [1] Nashed proposed a definition of ill-posedness for bounded linear mappings F

between Banach spaces X and Y with domainD(F ) = X.

Definition 1.3 Let F in Eq. (1.1) be linear and bounded. Then F is well-posed in the sense
of Nashed if the range of F is closed in Y and ill-posed in the sense of Nashed if the range
of F is not closed in Y .

Nashed’s definition does not consider existence and uniqueness of solutions, but
focusses on continuous (generalized) invertibility. If a generalized inverse exists, then it is
continuous if and only if F is well-posed in the sense of Nashed, see [2, Theorem 5.6(b)].
But one should be aware of the fact, that in general Banach spaces generalized inverses
are not always available, because the null space of F or the closure of the range may be
uncomplemented, see Proposition 1.10 and Sect. 1.2.4 below. An important example for
this situation is the setting used for analyzing �1-regularization in Part III.

If F is injective, then the inverse F−1 : Y ⊇ R(F ) → X is continuous onR(F ) if and
only if R(F ) is closed. If X and Y are Hilbert spaces, then the Moore–Penrose inverse is
a generalized inverse which always exists. Thus, in Hilbert spaces well-posedness in the
sense of Nashed is equivalent to continuity of the Moore–Penrose inverse.

Nashed distinguished two types of ill-posedness in [1]. In Chap. 10 we have a closer
look at this distinction in the context of �1-regularization.

1.2.2 Local Definitions by Hofmann and Ivanov

Hadamard’s and Nashed’s definitions of ill-posedness are of global nature. For nonlinear
mappingsF propertiesmay vary from point to point and ill-posedness has to be understood
in a local manner. Following the ideas in [3] we have to distinguish between local ill-
posedness at a point x in X and local ill-posedness at a point y in Y .

The aim of defining precisely what is meant by ill-posedness is to describe the following
situation mathematically: Given a sequence (yn)n∈N inR(F ) approximating the unknown
exact data y† in (1.1), a sequence (xn)n∈N of corresponding solutions to F(x) = yn,
x ∈ D(F ), does not converge to a solution of (1.1). The difficulties are to choose concrete
types of approximation and convergence and to handle the case of multiple solutions.

One possibility for defining ill-posedness locally at a point of the domain D(F ) has
been suggested in [4] by Hofmann, see also [5].
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Definition 1.4 The mapping F is locally well-posed in the sense of Hofmann at a point x0
in D(F ) if there is some positive ε such that for each sequence (xn)n∈N in Bε(x0) ∩D(F )

the implication

F(xn) → F(x0) ⇒ xn → x0

is true. Otherwise, F is locally ill-posed in the sense of Hofmann at the point x0.

Local well-posedness in the sense of Hofmann implies that x0 has to be an isolated
solution to F(x) = F(x0), x ∈ D(F ). In this sense, local uniqueness is part of this type
of local well-posedness.

Ivanov introduced a similar concept in [6], but locally in Y . Thus, he gets around the
question of uniqueness. See also [3, Definition 1].

Definition 1.5 The mapping F is locally well-posed in the sense of Ivanov at a point y0

inR(F ) if for each sequence (yn)n∈N in R(F ) the implication

yn → y0 ⇒ sup
x̃∈F−1(yn)

inf
x∈F−1(y0)

‖x̃ − x‖ → 0

is true. Otherwise, F is locally ill-posed in the sense of Ivanov at the point y0.

The set-to-set distance

sup
x̃∈M̃

inf
x∈M

‖x̃ − x‖

between two subsets M̃ and M of X used in the Definition 1.5 is not symmetric. It
expresses the maximum distance of elements in M̃ to the set M . Since we cannot control
which of possibly many approximate solutions is chosen by an inversion method, this type
of distance is the right choice.

The only drawback of Definition 1.5 is that norm convergence cannot be replaced easily
by other types of convergence to define ill-posedness with respect to the weak topology,
for example. The following proposition provides an equivalent reformulationwhich avoids
explicit use of norms. The proposition was already mentioned briefly in [3, Remark 1].

Proposition 1.6 The mappingF is well-posed in the sense of Ivanov at a point y0 inR(F )

if and only if for each sequence (yn)n∈N in R(F ) converging to y0 and for each sequence
(x̃n)n∈N of preimages x̃n from F−1(yn) there exists a sequence (xn)n∈N in F−1(y0) with
x̃n − xn → 0.



1.2 Ill-Posedness 7

Proof Let F be well-posed in the sense of Ivanov at the point y0 and let (yn)n∈N be a
sequence in R(F ) converging to y0. Given a sequence (x̃n)n∈N with x̃n ∈ F−1(yn) we
immediately see

inf
x∈F−1(y0)

‖x̃n − x‖ → 0.

Fixing ε, for each n we find xn in F−1(y0) with

‖x̃n − xn‖ ≤ inf
x∈F−1(y0)

‖x̃n − x‖ + ε.

Thus, we obtain ‖x̃n − xn‖ ≤ 2 ε for all sufficiently large n, which implies convergence
x̃n − xn → 0.

Now let y0 be in R(F ) and let (yn)n∈N be a sequence in R(F ) converging to y0.
Further, assume that for each sequence (x̃n)n∈N of preimages x̃n from F−1(yn) there exists
a sequence (xn)n∈N in F−1(y0) with x̃n − xn → 0. If there would be some positive fixed
ε with

sup
x̃∈F−1(yn)

inf
x∈F−1(y0)

‖x̃ − x‖ > ε,

we would find a sequence (x̃n)n∈N with

inf
x∈F−1(y0)

‖x̃n − x‖ > ε

for all n. Thus, there would be a sequence (xn)n∈N with

ε < inf
x∈F−1(y0)

‖x̃n − x‖ ≤ ‖x̃n − xn‖ → 0,

which contradicts ε > 0. This shows

sup
x̃∈F−1(yn)

inf
x∈F−1(y0)

‖x̃ − x‖ → 0.

	


Remark 1.7 From Proposition 1.6 we easily see that the following condition is sufficient
for local well-posedness in the sense of Ivanov at y0: Each sequence (xn)n∈N in D(F )

with F(xn) → y0 contains a convergent subsequence and the limits of all convergent
subsequences are solutions corresponding to the right-hand side y0.
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Throughout this book ill-posedness is to be understood in the sense of Ivanov if not
otherwise stated.

1.2.3 Interrelations

The definitions of Hofmann and Ivanov are closely connected, but differ in two aspects.
On the one hand, Hofmann’s definition works in X and Ivanov’s definition works in Y . On
the other hand, and also as a consequence of the first difference, in Hofmann’s definition
well-posedness is restricted to isolated solutions whereas Ivanov’s definition works for
arbitrary solution sets.

Both views have their advantages. Hofmann’s definition allows for a deeper analysis
of ill-posedness phenomena. Due to its locality in X at each element of a set of isolated
solutions we can distinguish between well-posedness and ill-posedness. That is, for one
fixed data element at the same time there might exist solutions at which the mapping
is well-posed and solutions at which the mapping is ill-posed in the sense of Hofmann.
Analyzing an inverse problem with Hofmann’s definition allows to identify regions of
well-posedness and regions of ill-posedness. Thus, restricting the domain of the mapping
F with the help of Hofmann’s definition could make the inverse problem well-posed.

Ivanov’s definition does not allow for such a detailed analysis. But its advantage is that
it is closer to the issue of numerical instability. Given a data element, we want to know
whether a sequence of approximate solutions based on noisy data becomes arbitrarily close
to the set of exact solutions if the noise is reduced until it vanishes. This is exactly what
Ivanov’s definition expresses.

The interrelations between Hofmann’s definition and Ivanov’s definition are made
precise by the following two propositions. The first proposition is a slightly extended
version of [3, Proposition 2] and the second stems from oral communication with Bernd
Hofmann (Chemnitz).

Proposition 1.8 If the mapping F is locally well-posed in the sense of Ivanov at some
point y0 in R(F ), then F is locally well-posed in the sense of Hofmann at each isolated
solution corresponding to the data y0.

Proof Let F be locally well-posed in the sense of Ivanov at y0 and let x0 be an isolated
solution to data y0. Take a positive radius ε such that x0 is the only solution to data y0

in B2 ε(x0). For each sequence (x̃n)n∈N in Bε(x0) ∩ D(F ) and for the corresponding
sequence (yn)n∈N with yn := F(x̃n) Proposition 1.6 yields a sequence (xn)n∈N in D(F )

with F(xn) = y0 and x̃n−xn → 0. Since (x̃n)n∈N lies in Bε(x0) and x0 is the only solution
in B2 ε(x0), we obtain xn = x0 for all n. Consequently, x̃n → x0, which proves local well-
posedness in the sense of Hofmann at x0. 	
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Proposition 1.9 There exist mappings F and points x0 in D(F ) such that F is locally
well-posed in the sense of Hofmann at x0 but locally ill-posed in the sense of Ivanov at
F(x0).

Proof Choose X := R, Y := R and F(x) := x2

1+x4
with D(F ) = X. Then x0 := 0 is the

only solution to F(x) = 0, x ∈ X, and continuous invertibility of F near zero immediately
implies local well-posedness in the sense of Hofmann.

On the other hand, we may consider a sequence (yn)n∈N with elements yn := F(xn)

such that xn → ∞. Then yn → 0, but

sup
x̃∈F−1(yn)

inf
x∈F−1(0)

‖x̃ − x‖ ≥ inf
x∈F−1(0)

‖xn − x‖ = ‖xn‖ → 0.

Thus, F is locally ill-posed in the sense of Ivanov at F(0). 	


Finally, we state the interrelation between Nashed’s definition and Ivanov’s definition.
The special case of Hilbert spaces, where each closed subspace is complemented, can be
found in [3, Proposition 1].

Proposition 1.10 Let F be a bounded linear operator with domain D(F ) = X between
the Banach spaces X and Y and let the null spaceN (F ) be complemented in X. Then F

is well-posed in the sense of Nashed if and only if F is locally well-posed in the sense of
Ivanov at every point ofR(F ) and F is ill-posed in the sense of Nashed if and only if F is
locally ill-posed in the sense of Ivanov at every point of R(F ).

Proof Let N (F ) be complemented by U , that is, U is a closed linear subspace of X and
X = N (F )⊕U . One easily shows, that the restriction F |U of F to U is bijective between
U and R(F ). Thus, the inverse (F |U)−1 is a well-defined linear operator, which due to
R(F ) = R(F |U) is bounded if and only if R(F ) is closed. We see that F is well-posed
in the sense of Nashed if and only if (F |U)−1 is bounded.

Let (F |U)−1 be bounded. To show local well-posedness in the sense of Ivanov at an
arbitrary point y0 in R(F ) we choose sequences (yn)n∈N with yn → y and (x̃n)n∈N in X

with F(x̃n) = yn. By Proposition 1.6 we have to show that there exists a sequence (xn)n∈N
with F(xn) = y0 and x̃n − xn → 0. Such a choice is given by

xn := x̃n − (F |U)−1(F(x̃n)
) + (F |U)−1(y0),

because

F(xn) = F(x̃n) − F(x̃n) + y0 = y0


