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Preface

The present volume arises from the international conference Clifford Analysis and
Related Topics held at the Florida State University, Tallahassee on December 2014.
The conference was organized by Craig Nolder (Florida State University) and John
Ryan (University of Arkansas) with the intent of celebrating the English theoretical
physicist Paul Adrien Maurice Dirac, who died in Tallahassee in 1984, after
spending his last decade of his life at Florida State University. P.A.M. Dirac made
fundamental discoveries in the early formation of quantum mechanics. He shared
the 1933 Nobel Prize in Physics with Erwin Schrödinger. He is the founder of the
field of quantum electrodynamics. Notably, he developed a factorization of the
Klein–Gordon equation which leads to the system of first-order Dirac equations
which provided a relativistic wave equation for the electron. These equations
provided a way to describe intrinsic spin and suggested the existence of antimatter,
at first the positron which was discovered soon after the equations appeared. The
equations turned out to describe all spin 1/2 particles, the fermions. The Dirac
equations are based on a matrix representation of a Clifford algebra, now called
Pauli matrices. Clifford algebras have found many applications in physics since this
time including a role in the algebraic theory of the standard model of particle
physics. Dirac was the Lucasian Professor of Mathematics at Cambridge from 1932
until 1969. He then came to Florida, working at Miami University, Coral Gables,
and Florida State University, Tallahassee. He was a Visiting Professor at FSU
during 1970–71 and accepted a Full Professorship in 1972. Dirac passed on August
8, 1984 and is buried in Roselawn Cemetery, Tallahassee, Fl.

Paul Dirac’s work is at the very heart of Clifford Analysis, an active branch of
mathematics that has grown significantly over the last 40 years and which covers
both theoretical and applied physics. The field of Clifford Analysis began as a
function theory for the solutions of the Dirac equation for spinor fields and, in such,
can be regarded as a natural generalization to higher dimensions of the function
theory of complex holomorphic functions.

The conference involved participants from Venezuela, Portugal, Brazil, Cape
Verde, and USA, and this volume reflects not only the main contributions but also
the stimulating and friendly atmosphere prevailing among the attendants.
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Furthermore, the editors would like to express their gratitude to the anonymous
referees without which this volume would have never seen the light.

We conclude with a statement of Dirac, published on Scientific American, May
1963:

It seems to be one of the fundamental features of nature that fundamental physical laws are
described in terms of a mathematical theory of great beauty and power, needing quite a high
standard of mathematics for one to understand it.

It is our hope that the contributions on this volume make due honors to this
statement.

Aveiro, Portugal Paula Cerejeiras
Tallahassee, FL, USA Craig A. Nolder
Fayetteville, AR, USA John Ryan
Portoviejo, Ecuador Carmen Judith Vanegas Espinoza
July 2018

The original version of the book frontmatter was revised: The fourth editor’s
affiliation has been corrected. The correction to the book frontmatter is available
at https://doi.org/10.1007/978-3-030-00049-3_9
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Lambda-Harmonic Functions:
An Expository Account

K. Ballenger-Fazzone and C. A. Nolder

Abstract In this paper, we compile a variety of results on the λ−Laplacian oper-
ator, denoted by Δλ, a generalization of the well-known Laplacian in R

n . We have
compiled a list of known properties for Δλ when λ = n−2

2 and present analogous
properties for Δλ. We close by discussing the λ−Poisson kernel, the function that
solves the Dirichlet problem on the closed ball in Rn .

Keywords Clifford analysis · Dirichlet problem · Lambda-Harmonic
Laplacian · Poisson kernel
1 Introduction

The purpose of this paper is to compile a variety of interesting results on the
λ−Laplacian operator, a generalization of the Laplacian Δ in R

n . In Sect. 2, we
define what it means for a function to be λ−harmonic and discuss how this operator
is related to the Laplacian. We look at the special case when λ = n−2

2 , known as the
Invariant Laplacian, in Sect. 3 and present some properties of this operator. Section 4
provides a great deal of set up to show how some properties of the Invariant Laplacian
do not generalize when λ �= n−2

2 . Finally, in Sect. 5, we discuss λ−Poisson kernel,
which turns out to be the solution to the Dirichlet problem for λ−harmonic functions
on the unit ball, and prove some new results for this kernel. Section 5 helps us to
set up our next paper where we will solve the Dirichlet problem for λ−harmonic
functions on an annular domain.

K. Ballenger-Fazzone (B) · C. A. Nolder
Department of Mathematics, The Florida State University,
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2 K. Ballenger-Fazzone and C. A. Nolder

2 λ-Harmonic Functions

We denote by B
n the unit ball of Rn centered at the origin, where n ≥ 2. A point

x ∈ B
n is denoted x = (x1, x2, . . . , xn). When the center or radius is important to

us, we will denote by B(a, r) an open ball centered at a ∈ R
n with radius r > 0. We

denote the boundaries by Sn−1 and S(a, r) respectively.

Definition 1 Let λ ∈ R. A function u ∈ C2(Bn) is λ-harmonic if

Δλu = 0

in Bn , where

Δλ
def== (

1 − |x |2)
[
1 − |x |2

4
Δ + λE + λ

(
n − 2

2
− λ

)]
, (1)

is the λ-Laplacian,

Δ =
n∑

i=1

∂2

∂x2i
,

is the Laplacian on Rn , and

E =
n∑

i=1

xi
∂

∂xi

is the Euler operator.

Therefore,

Δλu = (
1 − |x |2)

[
1 − |x |2

4
Δu + λEu + λ

(
n − 2

2
− λ

)
u

]
.

If Δλu = 0, then u is an eigenvector of the differential operator

1 − |x |2
4

Δ + λE .

That is,
1 − |x |2

4
Δu + λEu = λ

(
2 − n

2
+ λ

)
u.

The λ-Laplacian is a generalization of two well-known operators:

1. If λ = 0, then

Δ0 = (1 − |x |2)2
4

Δ.
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Thus solutions to Δ0u = 0 are called harmonic.

2. If λ = n − 2

2
, then

Δ n−2
2

= 1

4
Δ̃,

where
Δ̃ = (1 − |x |2)2Δ + 2(n − 2)(1 − |x |2)E

is the invariant Laplacian (or Laplace-Beltrami operator with respect to the
Poincaré metric on B

n). We call solutions to Δ̃u = 0 invariant harmonic (or
M -harmonic) [18].

Beforewe discussmore about theλ-Laplacian,we first look at the invariant Laplacian
in a different light.

3 The Invariant Laplacian
(
λ = n−2

2

)

The invariant Laplacian Δ̃ is the Laplace-Beltrami operator with respect to the

Poincaré metric ds = 2|dx |
1 − |x |2 on B

n . We can also define Δ̃ in a geometric way.

We remark that the content from this subsection comes from [18].

Definition 2 LetΩ be an open subset ofBn with f ∈ C2(Bn) and a ∈ B
n .We define

the invariant Laplacian by

(Δ̃ f )(a) = Δ( f ◦ φa)(0),

where

x∗ =

⎧
⎪⎨

⎪⎩

x/|x |2, if x �= 0

0, if x = ∞
∞, if x = 0,

φa(x) = ψa(x)
∗ = ψa(x)

|ψa(x)|2 ,

and
ψa(x) = a + (1 − |a|2)(a − x)∗.

It is easy to see that ψa is a Möbius transformation mapping 0 to a∗ and a to ∞.
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Definition 3 LetΩ be an open subset ofBn with f ∈ C1(Bn) and a ∈ B
n .We define

the invariant gradient by

(∇̃ f )(a) = −∇( f ◦ φa)(0),

where ∇ =
(

∂
∂x1

, . . . , ∂
∂xn

)
is the usual gradient.

Remark 1 The minus sign in the definition above ensures that both∇u and ∇̃u point
in the same direction.

Let f ∈ C2(Bn) and let y = ψ(x) be a C2 map from B
n into Bn . If g = f ◦ ψ , then

∇g(x) = ψ
′
(x)∇ f (ψ(x))

and

Δg(x) =
n∑

i, j=1

∂2 f

∂yi∂y j
〈∇ yi ,∇ y j 〉 +

n∑

j=1

∂ f

∂yi
Δyi ,

where ψ
′
(x) is the Jacobian matrix of ψ and 〈·, ·〉 is the standard inner product in

R
n . Setting y = φa(x), we have that

∇̃ f (a) = (1 − |a|2)∇ f (a)

and
Δ̃ f (a) = (1 − |a|2)2Δ f (a) + 2(n − 2)(1 − |a|2)〈a,∇ f (a)〉

as before.
Solutions to the invariant Laplacian are invariant under Möbius transformations

of Bn . We denote the group of Möbius transformations that leave B
n invariant by

M (Bn).

Theorem 1 Let f ∈ C2(Bn) and ψ ∈ M (Bn). Then

Δ̃( f ◦ ψ) = (Δ̃ f ) ◦ ψ

and
|∇̃( f ◦ ψ)| = |(∇̃ f ) ◦ ψ |.

Proof The proof of the first equality can be found in [18]. For the second, we mimic
the proof from [15]. Let b ∈ ψ−1(Ω) and set a = ψ(b). Thenwe see thatφa ◦ ψ ◦ φb

is a Möbius transformation of Bn that fixes 0. Therefore ψ ◦ φb = φa ◦ A, where A
is some orthogonal transformation. Thus
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|∇̃( f ◦ ψ)(b)| = |−∇( f ◦ ψ ◦ φb)(0)|
= |−∇( f ◦ φa ◦ A)(0)|
= |−∇( f ◦ φa)(0)|
= |∇̃( f )(a)|
= |∇̃( f )(ψ(b))|.

We now present a few nice facts about the invariant Laplacian.

Theorem 2 Invariance Properties of Δ̃

1. Δ̃ is a linear operator mapping C2(Bn) → C(Bn)

2. translations of invariant harmonic functions are invariant harmonic
3. r−dilates of invariant harmonic functions are invariant harmonic
4. Δ̃ commutes with orthogonal transformations

Proof To prove the first property, it is enough to assume that u, v ∈ C2(Bn) and
c, d ∈ R. Then

Δ̃(cu + dv) =
(
1 − |x |2

) [
1 − |x |2

4
Δ(cu + dv) +

(
n − 2

2

)
E(cu + dv)

]

=
(
1 − |x |2

) [
1 − |x |2

4
(Δ(cu) + Δ(dv)) +

(
n − 2

2

)
E(cu) +

(
n − 2

2

)
E(dv)

]

= cΔ̃(u) + dΔ̃(v).

The proof of 2. is clear.
To prove 3, we first assume r ∈ R with r > 0 and define ur (x) = u(r x), for

x ∈ (1/r)Bn . Then direct calculations show that

Δ(ur ) = r2(Δu)r

and
E(ur ) = r2(Eu)r .

It follows that, if Δ̃u = 0, then

Δ̃(ur ) = (
1 − |x |2)

[
1 − |x |2

4
Δ(ur ) +

(
n − 2

2

)
E(ur )

]

= (
1 − |x |2)

[
r2

1 − |x |2
4

(Δu)r + r2
(
n − 2

2

)
(Eu)r

]

= r2(Δ̃u)r

= 0.
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To prove 4, we must show that if T is an orthogonal transformation and u ∈ C2(Bn),
then

Δ̃(u ◦ T ) = (Δ̃u) ◦ T

on T−1(Bn). We proceed following an argument from [2]. Let [t jk] denote the matrix
for T relative to the standard basis in Rn . Then

∂

∂xm
(u ◦ T ) =

n∑

j=1

t jm

(
∂

∂x j
u

)
◦ T . (2)

It is easy to see from (2) that

E(u ◦ T ) = (Eu) ◦ T

and differentiating (2) shows

Δ(u ◦ T ) = (Δu) ◦ T .

Putting these two together then shows that

Δ̃(u ◦ T ) = (Δ̃u) ◦ T .

We conclude this survey of the invariant Laplacian by listing the invariant analogous
of some classical results from harmonic analysis.

Definition 4 Let Ω be an open subset of Bn . A function f ∈ C2(Bn) is invariant
subharmonic (or M -subharmonic) on Ω if Δ̃ f (x) ≥ 0 for all x ∈ Ω .

Remark 2 It is easy to prove that if f is invariant harmonic (invariant subharmonic)
on B

n , then f ◦ ψ is invariant harmonic (invariant subharmonic) on B
n , for all ψ ∈

M (Bn).

We can extend a mean-value property to invariant subharmonic functions.

Theorem 3 Invariant Subharmonic Mean-Value Property
Let Ω be an open subset of Bn and let f ∈ C2(Ω). Then f is invariant subharmonic
on Ω if and only if for all a ∈ Ω

f (a) ≤
∫

Sn−1
f (φa(r t))dσ(t)

for all r > 0 such that E(a, r) ⊂ Ω , whereσ denotes the normalized surfacemeasure
on Sn−1 and E(a, r) is the Euclidean ball centered at a with radius r . f is invariant
harmonic on Ω if and only if the equality holds.

The proof can be found in [18]. Invariant harmonic functions also satisfy a maximum
principle.
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Theorem 4 Invariant Subharmonic Harmonic Maximum Principle
Let Ω be an open subset of Bn and let f ∈ C2(Ω) such that f is invariant subhar-
monic in Ω and continuous on Ω . If f ≤ 0 on ∂Ω , then f ≤ 0 in Ω .

The proof can be found in [18]. More information on the invariant Laplacian on B
n

can be found in [6, 9], whereas [15] discusses the invariant Laplacian on the unit
ball in Cn .

4 λ-Harmonic Functions Continued

In order to continue our discussion on Δλ, we must first review some preliminaries:
the hypergeometric function and spherical harmonics.

4.1 The Hypergeometric Function

We define the (rising) Pochhammer symbol (a)l for an arbitrary a ∈ C and
l = 0, 1, . . . , by

(a)l =
{
1, if l = 0

a(a + 1) · · · (a + l − 1), if l > 0

If a is not a negative integer, then

(a)l = Γ (a + l)

Γ (a)
,

where Γ is the Gamma function defined on C \ {−1,−2, . . .}. Thus, for x ∈ B
n , the

hypergeometric function is defined to be

2F1(a, b; c; x) def==
∞∑

l=0

(a)l(b)l
(c)l

xl

l! ,

and the series converges absolutely for all x ∈ B
n if c − a − b > 0. The function is

undefined if c is a non-positive integer.
For convenience, we define

Fλ,k(x)
def== 2F1

(
−λ, k + n − 2

2
− λ; k + n

2
; x

)
.

We remark that many of the proofs involving the hypergeometric function rely on
various formulas found in [3, 11].
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4.2 Homogeneous Harmonic Polynomials and Spherical
Harmonics

We begin this subsection by discussing some classical results concerning homoge-
neous polynomials from harmonic analysis. We direct the reader to [2, 7, 12, 13] for
more information.

Definition 5 A polynomial Ym is homogeneous of degree m if Ym is of the form

Ym(x)
def==

∑

|α|=m

cαx
α,

where

Alternatively, Ym is homogeneous of degree m if, for all t ∈ R,

Ym(t x) = tmYm(x).

It is well-known that every degreem polynomial Y onRn can be written uniquely
as

Y (x) =
m∑

j=0

Y j (x),

where Y j is homogeneous of degree j . It is then easy to see that Y is harmonic if and
only if Y j is harmonic for each j = 0, 1, . . . ,m.

Notation 5 We denote by Pm(Rn) the set of all homogeneous polynomials on R
n

of degree m and by Hm(Rn) the set of all homogeneous harmonic polynomials on
R

n of degree m.

We are able to decomposePm(Rn) into the direct sum of two subspaces, which we
present in the following theorem [2].

Theorem 6 If m ≥ 2, then we can write

Pm(Rn) ≡ Hm(Rn) ⊕ |x |2Pm−2(R
n).

The proof of Theorem 6 relies on the fact that no multiple of the polynomial |x |2 is
harmonic (see Corollary 5.3 [2]).

To proceed further, we must introduce hyperspherical coordinates on
n-dimensional Euclidean space. Our coordinate system consists of one radial coor-
dinate r and n − 1 angular coordinates denoted by φ1, φ2, . . . , φn−1, where φn−1 ∈
[0, 2π ] and φi ∈ [0, π ], for i = 1, 2, . . . , n − 2. Then the relationship between
Euclidean coordinates x1, . . . xn and hyperspherical coordinates is given by


