
Instrument Pricing
Using C++

Second Edition

DANIEL J. DUFFY

Financial

Financial Instrument
Pricing Using C++ 2e

Founded in 1807, John Wiley & Sons is the oldest independent publishing company in the
United States. With offices in North America, Europe, Australia and Asia, Wiley is glob-
ally committed to developing and marketing print and electronic products and services for
our customers’ professional and personal knowledge and understanding.

The Wiley Finance series contains books written specifically for finance and invest-
ment professionals as well as sophisticated individual investors and their financial advi-
sors. Book topics range from portfolio management to e-commerce, risk management,
financial engineering, valuation and financial instrument analysis, as well as much more.

For a list of available titles, visit our website at www.WileyFinance.com.

http://www.WileyFinance.com

Financial Instrument
Pricing Using C++ 2e

DANIEL J. DUFFY

This edition first published 2018
© 2018 John Wiley & Sons, Ltd

Registered office
John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United
Kingdom

For details of our global editorial offices, for customer services and for information about how to apply
for permission to reuse the copyright material in this book please see our website at www.wiley.com.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or
otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior
permission of the publisher.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some material
included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the version
you purchased, you may download this material at http://booksupport.wiley.com. For more information
about Wiley products, visit www.wiley.com.

Designations used by companies to distinguish their products are often claimed as trademarks. All
brand names and product names used in this book are trade names, service marks, trademarks or
registered trademarks of their respective owners. The publisher is not associated with any product or
vendor mentioned in this book.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. It is sold on the understanding that the publisher is
not engaged in rendering professional services and neither the publisher nor the author shall be liable
for damages arising herefrom. If professional advice or other expert assistance is required, the services
of a competent professional should be sought.

Library of Congress Cataloging-in-Publication Data
Names: Duffy, Daniel J., author.
Title: Financial instrument pricing using C++ / Daniel J. Duffy.
Description: Second Edition. | Hoboken : Wiley, [2018] | Series: Wiley finance series |

Revised and updated edition of the author’s Financial instrument pricing using C++,
c2004. | Includes bibliographical references and index. |

Identifiers: LCCN 2018017672 (print) | LCCN 2018019643 (ebook) |
ISBN 9781119170495 (Adobe PDF) | ISBN 9781119170488 (ePub) |
ISBN 9780470971192 (hardcover) | ISBN 9781119170495 (ePDF) | ISBN 9781119170518 (Obook)

Subjects: LCSH: Investments–Mathematical models. | Financial engineering. |
C++ (Computer program language)

Classification: LCC HG4515.2 (ebook) | LCC HG4515.2 .D85 2018 (print) |
DDC 332.60285/5133–dc23

LC record available at https://lccn.loc.gov/2018017672

A catalogue record for this book is available from the British Library.

ISBN 978-0-470-97119-2 (hardback) ISBN 978-1-119-17049-5 (ePDF)
ISBN 978-1-119-17048-8 (ePub) ISBN 978-1-119-17051-8 (Obook)

10 9 8 7 6 5 4 3 2 1

Cover design: Wiley
Cover images: © whiteMocca/Shutterstock

Set in 10/12pt Times by Aptara Inc., New Delhi, India
Printed in Great Britain by TJ International Ltd, Padstow, Cornwall, UK

http://www.wiley.com
http://booksupport.wiley.com
http://www.wiley.com
https://lccn.loc.gov/2018017672

Contents

CHAPTER 1
A Tour of C++ and Environs 1
1.1 Introduction and Objectives 1
1.2 What is C++? 1
1.3 C++ as a Multiparadigm Programming Language 2
1.4 The Structure and Contents of this Book: Overview 4
1.5 A Tour of C++11: Black–Scholes and Environs 6

1.5.1 System Architecture 6
1.5.2 Detailed Design 7
1.5.3 Libraries and Algorithms 8
1.5.4 Configuration and Execution 10

1.6 Parallel Programming in C++ and Parallel C++ Libraries 12
1.7 Writing C++ Applications; Where and How to Start? 14
1.8 For Whom is this Book Intended? 16
1.9 Next-Generation Design and Design Patterns in C++ 16
1.10 Some Useful Guidelines and Developer Folklore 17
1.11 About the Author 18
1.12 The Source Code and Getting the Source Code 19

CHAPTER 2
New and Improved C++ Fundamentals 21
2.1 Introduction and Objectives 21
2.2 The C++ Smart Pointers 21

2.2.1 An Introduction to Memory Management 22
2.3 Using Smart Pointers in Code 23

2.3.1 Class std::shared_ptr 23
2.3.2 Class std::unique_ptr 26
2.3.3 std::weak_ptr 28
2.3.4 Should We Use Smart Pointers and When? 29

2.4 Extended Examples of Smart Pointers Usage 30
2.4.1 Classes with Embedded Pointers 30
2.4.2 Re-engineering Object-Oriented Design Patterns 31

2.5 Move Semantics and Rvalue References 34
2.5.1 A Quick Overview of Value Categories 34
2.5.2 Why Some Classes Need Move Semantics 35

v

vi CONTENTS

2.5.3 Move Semantics and Performance 37
2.5.4 Move Semantics and Shared Pointers 38

2.6 Other Bits and Pieces: Usability Enhancements 39
2.6.1 Type Alias and Alias Templates 39
2.6.2 Automatic Type Deduction and the auto Specifier 41
2.6.3 Range-Based for Loops 42
2.6.4 nullptr 43
2.6.5 New Fundamental Data Types 44
2.6.6 Scoped and Strongly Typed Enumerations 44
2.6.7 The Attribute [[deprecated]] 45
2.6.8 Digit Separators 47
2.6.9 Unrestricted Unions 47
2.6.10 std::variant (C++17) and boost::variant 49

2.7 Summary and Conclusions 52
2.8 Exercises and Projects 52

CHAPTER 3
Modelling Functions in C++ 59
3.1 Introduction and Objectives 59
3.2 Analysing and Classifying Functions 60

3.2.1 An Introduction to Functional Programming 60
3.2.2 Function Closure 61
3.2.3 Currying 62
3.2.4 Partial Function Application 62
3.2.5 Lambda (Anonymous) Functions 62
3.2.6 Eager and Lazy Evaluation 63
3.2.7 Fold 63
3.2.8 Continuation 63

3.3 New Functionality in C++: std::function<> 64
3.4 New Functionality in C++: Lambda Functions and Lambda Expressions 65

3.4.1 Basic Syntax 65
3.4.2 Initial Examples 66
3.4.3 Lambda Functions and Classes: Capturing Member Data 68
3.4.4 Storing Lambda Functions 69

3.5 Callable Objects 69
3.6 Function Adapters and Binders 70

3.6.1 Binding and Function Objects 72
3.6.2 Binding and Free Functions 73
3.6.3 Binding and Subtype Polymorphism 74

3.7 Application Areas 75
3.8 An Example: Strategy Pattern New Style 75
3.9 Migrating from Traditional Object-Oriented Solutions: Numerical

Quadrature 78
3.10 Summary and Conclusions 81
3.11 Exercises and Projects 82

Contents vii

CHAPTER 4
Advanced C++ Template Programming 89
4.1 Introduction and Objectives 89
4.2 Preliminaries 91

4.2.1 Arithmetic Operators and Implicit Conversions 91
4.2.2 A Primer on Variadic Functions 93
4.2.3 Value Categories 94

4.3 decltype Specifier 94
4.3.1 Initial Examples 94
4.3.2 Extended Examples 96
4.3.3 The Auxiliary Trait std::declval 98
4.3.4 Expressions, lvalues, rvalues and xvalues 99

4.4 Life Before and After decltype 101
4.4.1 Extending the STL to Support Heterogeneous Data Types 103

4.5 std::result_of and SFINAE 106
4.6 std::enable_if 108
4.7 Boost enable_if 112
4.8 std::decay()Trait 114
4.9 A Small Application: Quantities and Units 115
4.10 Conclusions and Summary 118
4.11 Exercises and Projects 118

CHAPTER 5
Tuples in C++ and their Applications 123
5.1 Introduction and Objectives 123
5.2 An std::pair Refresher and New Extensions 123
5.3 Mathematical and Computer Science Background 128
5.4 Tuple Fundamentals and Simple Examples 130
5.5 Advanced Tuples 130

5.5.1 Tuple Nesting 130
5.5.2 Variadic Tuples 132

5.6 Using Tuples in Code 133
5.6.1 Function Return Types 133
5.6.2 Function Input Arguments 136

5.7 Other Related Libraries 138
5.7.1 Boost Tuple 138
5.7.2 Boost Fusion 139

5.8 Tuples and Run-Time Efficiency 140
5.9 Advantages and Applications of Tuples 142
5.10 Summary and Conclusions 143
5.11 Exercises and Projects 143

CHAPTER 6
Type Traits, Advanced Lambdas and Multiparadigm Design in C++ 147
6.1 Introduction and Objectives 147
6.2 Some Building Blocks 149

viii CONTENTS

6.3 C++ Type Traits 150
6.3.1 Primary Type Categories 151
6.3.2 Composite Type Categories 153
6.3.3 Type Properties 155
6.3.4 Type Relationships 156
6.3.5 ‘Internal Properties’ of Types 157
6.3.6 Other Type Traits 158

6.4 Initial Examples of Type Traits 158
6.4.1 Simple Bridge Pattern 159

6.5 Generic Lambdas 161
6.6 How Useful will Generic Lambda Functions be in the Future? 164

6.6.1 Duck Typing and Avoiding Class Hierarchies 164
6.6.2 Something Completely Different: Homotopy Theory 167

6.7 Generalised Lambda Capture 171
6.7.1 Living Without Generalised Lambda Capture 173

6.8 Application to Stochastic Differential Equations 174
6.8.1 SDE Factories 176

6.9 Emerging Multiparadigm Design Patterns: Summary 178
6.10 Summary and Conclusions 179
6.11 Exercises and Projects 179

CHAPTER 7
Multiparadigm Design in C++ 185
7.1 Introduction and Objectives 185
7.2 Modelling and Design 185

7.2.1 Liskov Substitution Principle 186
7.2.2 Single Responsibility Principle 187
7.2.3 An Example: Separation of Concerns for Monte Carlo Simulation 188

7.3 Low-Level C++ Design of Classes 190
7.3.1 Explicit Specifier 190
7.3.2 Deleted and Defaulted Member Functions 191
7.3.3 The constexpr Keyword 193
7.3.4 The override and final Keywords 195
7.3.5 Uniform Initialisation 197
7.3.6 Initialiser Lists 198
7.3.7 Keyword noexcept 199

7.4 Shades of Polymorphism 199
7.5 Is there More to Life than Inheritance? 206
7.6 An Introduction to Object-Oriented Software Metrics 207

7.6.1 Class Size 207
7.6.2 Class Internals 207
7.6.3 Class Coupling 208
7.6.4 Class and Member Function Inheritance 209

7.7 Summary and Conclusions 210
7.8 Exercises and Projects 210

Contents ix

CHAPTER 8
C++ Numerics, IEEE 754 and Boost C++ Multiprecision 215
8.1 Introduction and Objectives 215

8.1.1 Formats 216
8.1.2 Rounding Rules 217
8.1.3 Exception Handling 218
8.1.4 Extended and Extendible Precision Formats 219

8.2 Floating-Point Decomposition Functions in C++ 219
8.3 A Tour of std::numeric_limits<T> 221
8.4 An Introduction to Error Analysis 223

8.4.1 Loss of Significance 224
8.5 Example: Numerical Quadrature 224
8.6 Other Useful Mathematical Functions in C++ 228
8.7 Creating C++ Libraries 231

8.7.1 Creating Static C++ Libraries 231
8.7.2 Dynamic Link Libraries 237
8.7.3 Boost C++ DLLs 239

8.8 Summary and Conclusions 239
8.9 Exercises and Projects 239

CHAPTER 9
An Introduction to Unified Software Design 245
9.1 Introduction and Objectives 245

9.1.1 Future Predictions and Expectations 246
9.2 Background 247

9.2.1 Jackson Problem Frames 248
9.2.2 The Hatley-Pirbhai Method 248
9.2.3 Domain Architectures 249
9.2.4 Garlan-Shaw Architecture 250
9.2.5 System and Design Patterns 250

9.3 System Scoping and Initial Decomposition 251
9.3.1 System Context Diagram 251
9.3.2 System Responsibilities and Services 255
9.3.3 Optimisation: System Context and Domain Architectures 255

9.4 Checklist and Looking Back 259
9.4.1 A Special Case: Defining the System’s Operating Environment 259

9.5 Variants of the Software Process: Policy-Based Design 260
9.5.1 Advantages and Limitations of PBD 266
9.5.2 A Defined Process for PBD 268

9.6 Using Policy-Based Design for the DVM Problem 268
9.6.1 Introducing Events and Delegates 272

9.7 Advantages of Uniform Design Approach 273
9.8 Summary and Conclusions 274
9.9 Exercises and Projects 275

x CONTENTS

CHAPTER 10
New Data Types, Containers and Algorithms in C++ and Boost C++ Libraries 283
10.1 Introduction and Objectives 283
10.2 Overview of New Features 283
10.3 C++ std::bitset<N> and Boost Dynamic Bitset Library 284

10.3.1 Boolean Operations 286
10.3.2 Type Conversions 286
10.3.3 Boost dynamic_bitset 287
10.3.4 Applications of Dynamic Bitsets 287

10.4 Chrono Library 288
10.4.1 Compile-Time Fractional Arithmetic with std::ratio<> 288
10.4.2 Duration 291
10.4.3 Timepoint and Clocks 292
10.4.4 A Simple Stopwatch 293
10.4.5 Examples and Applications 295
10.4.6 Boost Chrono Library 300

10.5 Boost Date and Time 301
10.5.1 Overview of Concepts and Functionality 301
10.5.2 Gregorian Time 302
10.5.3 Date 302

10.6 Forwards Lists and Compile-Time Arrays 306
10.6.1 std::forward_list<> 306
10.6.2 boost::array<> and std::array<> 309

10.7 Applications of Boost.Array 311
10.8 Boost uBLAS (Matrix Library) 313

10.8.1 Introduction and Objectives 313
10.8.2 BLAS (Basic Linear Algebra Subprograms) 313
10.8.3 BLAS Level 1 314
10.8.4 BLAS Level 2 314
10.8.5 BLAS Level 3 315

10.9 Vectors 316
10.9.1 Dense Vectors 316
10.9.2 Creating and Accessing Dense Vectors 317
10.9.3 Special Dense Vectors 318

10.10 Matrices 318
10.10.1 Dense Matrices 319
10.10.2 Creating and Accessing Dense Matrices 320
10.10.3 Special Dense Matrices 321

10.11 Applying uBLAS: Solving Linear Systems of Equations 322
10.11.1 Conjugate Gradient Method 323
10.11.2 LU Decomposition 325
10.11.3 Cholesky Decomposition 327

10.12 Summary and Conclusions 330
10.13 Exercises and Projects 331

Contents xi

CHAPTER 11
Lattice Models Fundamental Data Structures and Algorithms 333
11.1 Introduction and Objectives 333
11.2 Background and Current Approaches to Lattice Modelling 334
11.3 New Requirements and Use Cases 335
11.4 A New Design Approach: A Layered Approach 335

11.4.1 Layers System Pattern 338
11.4.2 Layer 1: Basic Lattice Data Structures 339
11.4.3 Layer 2: Operations on Lattices 342
11.4.4 Layer 3: Application Configuration 346

11.5 Initial ‘101’ Examples of Option Pricing 347
11.6 Advantages of Software Layering 349

11.6.1 Maintainability 350
11.6.2 Functionality 350
11.6.3 Efficiency 351

11.7 Improving Efficiency and Reliability 352
11.8 Merging Lattices 355
11.9 Summary and Conclusions 357
11.10 Exercises and Projects 357

CHAPTER 12
Lattice Models Applications to Computational Finance 367
12.1 Introduction and Objectives 367
12.2 Stress Testing the Lattice Data Structures 368

12.2.1 Creating Pascal’s Triangle 368
12.2.2 Binomial Coefficients 369
12.2.3 Computing the Powers of Two 370
12.2.4 The Fibonacci Sequence 370
12.2.5 Triangular Numbers 371
12.2.6 Summary: Errors, Defects and Faults in Software 372

12.3 Option Pricing Using Bernoulli Paths 372
12.4 Binomial Model for Assets with Dividends 374

12.4.1 Continuous Dividend Yield 374
12.4.2 Binomial Method with a Known Discrete Proportional Dividend 375
12.4.3 Perpetual American Options 376

12.5 Computing Option Sensitivities 377
12.6 (Quick) Numerical Analysis of the Binomial Method 379

12.6.1 Non-monotonic (Sawtooth) Convergence 380
12.6.2 ‘Negative’ Probabilities and Convection Dominance 381
12.6.3 Which Norm to Use when Measuring Error 381

12.7 Richardson Extrapolation with Binomial Lattices 382
12.8 Two-Dimensional Binomial Method 382
12.9 Trinomial Model of the Asset Price 384
12.10 Stability and Convergence of the Trinomial Method 385
12.11 Explicit Finite Difference Method 386

xii CONTENTS

12.12 Summary and Conclusions 389
12.13 Exercises and Projects 389

CHAPTER 13
Numerical Linear Algebra: Tridiagonal Systems and Applications 395
13.1 Introduction and Objectives 395
13.2 Solving Tridiagonal Matrix Systems 395

13.2.1 Double Sweep Method 396
13.2.2 The Thomas Algorithm 399
13.2.3 Examples 403
13.2.4 Performance Issues 404
13.2.5 Applications of Tridiagonal Matrices 405
13.2.6 Some Remarks on Matrices 405

13.3 The Crank-Nicolson and Theta Methods 406
13.3.1 C++ Implementation of the Theta Method for the Heat Equation 409

13.4 The ADE Method for the Impatient 411
13.4.1 C++ Implementation of ADE (Barakat and Clark)

for the Heat Equation 413
13.5 Cubic Spline Interpolation 415

13.5.1 Examples 424
13.5.2 Caveat: Cubic Splines with Sparse Input Data 426

13.6 Some Handy Utilities 427
13.7 Summary and Conclusions 428
13.8 Exercises and Projects 429

CHAPTER 14
Data Visualisation in Excel 433
14.1 Introduction and Objectives 433
14.2 The Structure of Excel-Related Objects 433
14.3 Sanity Check: Is the Excel Infrastructure Up and Running? 435
14.4 ExcelDriver and Matrices 437

14.4.1 Displaying a Matrix 440
14.4.2 Displaying a Matrix with Labels 441
14.4.3 Lookup Tables, Continuous and Discrete Functions 442

14.5 ExcelDriver and Vectors 444
14.5.1 Single and Multiple Curves 445

14.6 Path Generation for Stochastic Differential Equations 448
14.6.1 The Main Classes 450
14.6.2 Testing the Design and Presentation in Excel 457

14.7 Summary and Conclusions 459
14.8 Exercises and Projects 459
14.9 Appendix: COM Architecture Overview 463

14.9.1 COM Interfaces and COM Objects 465
14.9.2 HRESULT and Other Data Types 466
14.9.3 Interface Definition Language 468
14.9.4 Class Identifiers 468

Contents xiii

14.10 An Example 468
14.11 Virtual Function Tables 471
14.12 Differences Between COM and Object-Oriented Paradigm 473
14.13 Initialising the COM Library 474

CHAPTER 15
Univariate Statistical Distributions 475
15.1 Introduction, Goals and Objectives 475
15.2 The Error Function and Its Universality 475

15.2.1 Approximating the Error Function 476
15.2.2 Applications of the Error Function 477

15.3 One-Factor Plain Options 478
15.3.1 Other Scenarios 485

15.4 Option Sensitivities and Surfaces 488
15.5 Automating Data Generation 491

15.5.1 Data Generation Using Random Number Generators: Basics 492
15.5.2 A Generic Class to Generate Random Numbers 492
15.5.3 A Special Case: Sampling Distributions in C++ 495
15.5.4 Generating Numbers Using a Producer-Consumer Metaphor 497
15.5.5 Generating Numbers and Data with STL Algorithms 498

15.6 Introduction to Statistical Distributions and Functions 499
15.6.1 Some Examples 502

15.7 Advanced Distributions 504
15.7.1 Displaying Boost Distributions in Excel 507

15.8 Summary and Conclusions 511
15.9 Exercises and Projects 511

CHAPTER 16
Bivariate Statistical Distributions and Two-Asset Option Pricing 515
16.1 Introduction and Objectives 515
16.2 Computing Integrals Using PDEs 516

16.2.1 The Finite Difference Method for the Goursat PDE 517
16.2.2 Software Design 518
16.2.3 Richardson Extrapolation 519
16.2.4 Test Cases 520

16.3 The Drezner Algorithm 521
16.4 The Genz Algorithm and the West/Quantlib Implementations 521
16.5 Abramowitz and Stegun Approximation 525
16.6 Performance Testing 528
16.7 Gauss–Legendre Integration 529
16.8 Applications to Two-Asset Pricing 531
16.9 Trivariate Normal Distribution 536

16.9.1 Four-Dimensional Distributions 542
16.10 Chooser Options 543
16.11 Conclusions and Summary 545
16.12 Exercises and Projects 546

xiv CONTENTS

CHAPTER 17
STL Algorithms in Detail 551
17.1 Introduction and Objectives 551
17.2 Binders and std::bind 554

17.2.1 The Essentials of std::bind 554
17.2.2 Further Examples and Applications 555
17.2.3 Deprecated Function Adapters 556
17.2.4 Conclusions 557

17.3 Non-modifying Algorithms 557
17.3.1 Counting the Number of Elements Satisfying a Certain Condition 558
17.3.2 Minimum and Maximum Values in a Container 559
17.3.3 Searching for Elements and Groups of Elements 560
17.3.4 Searching for Subranges 561
17.3.5 Advanced Find Algorithms 563
17.3.6 Predicates for Ranges 565

17.4 Modifying Algorithms 567
17.4.1 Copying and Moving Elements 567
17.4.2 Transforming and Combining Elements 569
17.4.3 Filling and Generating Ranges 571
17.4.4 Replacing Elements 572
17.4.5 Removing Elements 573

17.5 Compile-Time Arrays 575
17.6 Summary and Conclusions 576
17.7 Exercises and Projects 576
17.8 Appendix: Review of STL Containers and Complexity Analysis 583

17.8.1 Sequence Containers 583
17.8.2 Associative Containers 583
17.8.3 Unordered (Associative) Containers 583
17.8.4 Special Containers 584
17.8.5 Other Data Containers 584
17.8.6 Complexity Analysis 585
17.8.7 Asymptotic Behaviour of Functions and Asymptotic Order 585
17.8.8 Some Examples 587

CHAPTER 18
STL Algorithms Part II 589
18.1 Introduction and Objectives 589
18.2 Mutating Algorithms 589

18.2.1 Reversing the Order of Elements 590
18.2.2 Rotating Elements 590
18.2.3 Permuting Elements 592
18.2.4 Shuffling Elements 594
18.2.5 Creating Partitions 595

18.3 Numeric Algorithms 597
18.3.1 Accumulating the Values in a Container Based on Some

Criterion 597
18.3.2 Inner Products 598

Contents xv

18.3.3 Partial Sums 599
18.3.4 Adjacent Difference 600

18.4 Sorting Algorithms 601
18.4.1 Full Sort 601
18.4.2 Partial Sort 602
18.4.3 Heap Sort 603

18.5 Sorted-Range Algorithms 604
18.5.1 Binary Search 604
18.5.2 Inclusion 605
18.5.3 First and Last Positions 606
18.5.4 First and Last Possible Positions as a Pair 607
18.5.5 Merging 608

18.6 Auxiliary Iterator Functions 609
18.6.1 advance() 609
18.6.2 next() and prev() 610
18.6.3 distance() 611
18.6.4 iter_swap() 611

18.7 Needle in a Haystack: Finding the Right STL Algorithm 612
18.8 Applications to Computational Finance 613
18.9 Advantages of STL Algorithms 613
18.10 Summary and Conclusions 614
18.11 Exercises and Projects 614

CHAPTER 19
An Introduction to Optimisation and the Solution of Nonlinear Equations 617
19.1 Introduction and Objectives 617
19.2 Mathematical and Numerical Background 618
19.3 Sequential Search Methods 619
19.4 Solutions of Nonlinear Equations 620
19.5 Fixed-Point Iteration 622
19.6 Aitken’s Acceleration Process 623
19.7 Software Framework 623

19.7.1 Using the Mediator to Reduce Coupling 628
19.7.2 Examples of Use 629

19.8 Implied Volatility 632
19.9 Solvers in the Boost C++ Libraries 632
19.10 Summary and Conclusions 633
19.11 Exercises and Projects 633
19.12 Appendix: The Banach Fixed-Point Theorem 636

CHAPTER 20
The Finite Difference Method for PDEs: Mathematical Background 641
20.1 Introduction and Objectives 641
20.2 General Convection–Diffusion–Reaction Equations and Black–Scholes

PDE 641

xvi CONTENTS

20.3 PDE Preprocessing 645
20.3.1 Log Transformation 645
20.3.2 Reduction of PDE to Conservative Form 646
20.3.3 Domain Truncation 647
20.3.4 Domain Transformation 647

20.4 Maximum Principles for Parabolic PDEs 649
20.5 The Fichera Theory 650

20.5.1 Example: Boundary Conditions for the One-Factor
Black–Scholes PDE 653

20.6 Finite Difference Schemes: Properties and Requirements 654
20.7 Example: A Linear Two-Point Boundary Value Problem 655

20.7.1 The Example 656
20.8 Exponentially Fitted Schemes for Time-Dependent PDEs 659

20.8.1 What Happens When the Volatility Goes to Zero? 662
20.9 Richardson Extrapolation 663
20.10 Summary and Conclusions 665
20.11 Exercises and Projects 666

CHAPTER 21
Software Framework for One-Factor Option Models 669
21.1 Introduction and Objectives 669
21.2 A Software Framework: Architecture and Context 669
21.3 Modelling PDEs and Finite Difference Schemes: What is Supported? 670
21.4 Several Versions of Alternating Direction Explicit 671

21.4.1 Spatial Amplification and ADE 672
21.5 A Software Framework: Detailed Design and Implementation 673
21.6 C++ Code for PDE Classes 674
21.7 C++ Code for FDM Classes 679

21.7.1 Classes Based on Subtype Polymorphism 683
21.7.2 Classes Based on CRTP 685
21.7.3 Assembling FD Schemes from Simpler Schemes 688

21.8 Examples and Test Cases 690
21.9 Summary and Conclusions 693
21.10 Exercises and Projects 694

CHAPTER 22
Extending the Software Framework 701
22.1 Introduction and Objectives 701
22.2 Spline Interpolation of Option Values 701
22.3 Numerical Differentiation Foundations 704

22.3.1 Mathematical Foundations 704
22.3.2 Using Cubic Splines 706
22.3.3 Initial Examples 706
22.3.4 Divided Differences 708
22.3.5 What is the Optimum Step Size? 710

22.4 Numerical Greeks 710
22.4.1 An Example: Crank–Nicolson Scheme 712

Contents xvii

22.5 Constant Elasticity of Variance Model 715
22.6 Using Software Design (GOF) Patterns 715

22.6.1 Underlying Assumptions and Consequences 717
22.6.2 Pattern Classification 718
22.6.3 Patterns: Incremental Improvements 720

22.7 Multiparadigm Design Patterns 720
22.8 Summary and Conclusions 721
22.9 Exercises and Projects 721

CHAPTER 23
A PDE Software Framework in C++11 for a Class of Path-Dependent Options 727
23.1 Introduction and Objectives 727
23.2 Modelling PDEs and Initial Boundary Value Problems in the Functional

Programming Style 728
23.2.1 A Special Case: Asian-Style PDEs 730

23.3 PDE Preprocessing 731
23.4 The Anchoring PDE 732
23.5 ADE for Anchoring PDE 739

23.5.1 The Saul’yev Method and Factory Method Pattern 744
23.6 Useful Utilities 746
23.7 Accuracy and Performance 748
23.8 Summary and Conclusions 750
23.9 Exercises and Projects 751

CHAPTER 24
Ordinary Differential Equations and their Numerical Approximation 755
24.1 Introduction and Objectives 755
24.2 What is an ODE? 755
24.3 Classifying ODEs 756
24.4 A Palette of Model ODEs 757

24.4.1 The Logistic Function 757
24.4.2 Bernoulli Differential Equation 758
24.4.3 Riccati Differential Equation 758
24.4.4 Population Growth and Decay 759

24.5 Existence and Uniqueness Results 760
24.5.1 A Test Case 762

24.6 Overview of Numerical Methods for ODEs: The Big Picture 763
24.6.1 Mapping Mathematical Functions to C++ 763
24.6.2 Runge–Kutta Methods 765
24.6.3 Richardson Extrapolation Methods 766
24.6.4 Embedded Runge–Kutta Methods 767
24.6.5 Implicit Runge–Kutta Methods 767
24.6.6 Stiff ODEs: An Overview 768

24.7 Creating ODE Solvers in C++ 770
24.7.1 Explicit Euler Method 771
24.7.2 Runge–Kutta Method 772
24.7.3 Stiff Systems 775

xviii CONTENTS

24.8 Summary and Conclusions 776
24.9 Exercises and Projects 776
24.10 Appendix 778

CHAPTER 25
Advanced Ordinary Differential Equations and Method of Lines 781
25.1 Introduction and Objectives 781
25.2 An Introduction to the Boost Odeint Library 782

25.2.1 Steppers 782
25.2.2 Examples of Steppers 784
25.2.3 Integrate Functions and Observers 786
25.2.4 Modelling ODEs and their Observers 787

25.3 Systems of Stiff and Non-stiff Equations 791
25.3.1 Scalar ODEs 791
25.3.2 Systems of ODEs 792

25.4 Matrix Differential Equations 796
25.5 The Method of Lines: What is it and what are its Advantages? 799
25.6 Initial Foray in Computational Finance: MOL for One-Factor

Black-Scholes PDE 801
25.7 Barrier Options 806
25.8 Using Exponential Fitting of Barrier Options 808
25.9 Summary and Conclusions 808
25.10 Exercises and Projects 809

CHAPTER 26
Random Number Generation and Distributions 819
26.1 Introduction and Objectives 819
26.2 What is a Random Number Generator? 820

26.2.1 Uniform Random Number Generation 820
26.2.2 Polar Marsaglia Method 820
26.2.3 Box–Muller Method 821

26.3 What is a Distribution? 821
26.3.1 Analytical Solutions for Random Variate Computations 822
26.3.2 Other Methods for Computing Random Variates 823

26.4 Some Initial Examples 825
26.4.1 Calculating the Area of a Circle 826

26.5 Engines in Detail 827
26.5.1 Seeding an Engine 828
26.5.2 Seeding a Collection of Random Number Engines 829

26.6 Distributions in C++: The List 830
26.7 Back to the Future: C-Style Pseudo-Random Number Generation 831
26.8 Cryptographic Generators 833
26.9 Matrix Decomposition Methods 833

26.9.1 Cholesky (Square-Root) Decomposition 835
26.9.2 LU Decomposition 840
26.9.3 QR Decomposition 842

Contents xix

26.10 Generating Random Numbers 845
26.10.1 Appendix: Overview of the Eigen Matrix Library 846

26.11 Summary and Conclusions 848
26.12 Exercises and Projects 849

CHAPTER 27
Microsoft .Net, C# and C++11 Interoperability 853
27.1 Introduction and Objectives 853
27.2 The Big Picture 854
27.3 Types 858
27.4 Memory Management 859
27.5 An Introduction to Native Classes 861
27.6 Interfaces and Abstract Classes 861
27.7 Use Case: C++/CLI as ‘Main Language’ 862
27.8 Use Case: Creating Proxies, Adapters and Wrappers for Legacy C++

Applications 864
27.8.1 Alternative: SWIG (Simplified Wrapper and Interface Generator) 871

27.9 ‘Back to the Future’ Use Case: Calling C# Code from C++11 872
27.10 Modelling Event-Driven Applications with Delegates 876

27.10.1 Next-Generation Strategy (Plug-in) Patterns 877
27.10.2 Events and Multicast Delegates 881

27.11 Use Case: Interfacing with Legacy Code 886
27.11.1 Legacy DLLs 886
27.11.2 Runtime Callable Wrapper (RCW) 887
27.11.3 COM Callable Wrapper (CCW) 888

27.12 Assemblies and Namespaces for C++/CLI 889
27.12.1 Assembly Types 889
27.12.2 Specifying Assembly Attributes in AssemblyInfo.cs 890
27.12.3 An Example: Dynamically Loading Algorithms from an

Assembly 891
27.13 Summary and Conclusions 895
27.14 Exercises and Projects 896

CHAPTER 28
C++ Concurrency, Part I Threads 899
28.1 Introduction and Objectives 899
28.2 Thread Fundamentals 900

28.2.1 A Small Digression into the World of OpenMP 902
28.3 Six Ways to Create a Thread 903

28.3.1 Detaching a Thread 908
28.3.2 Cooperative Tasking with Threads 908

28.4 Intermezzo: Parallelising the Binomial Method 909
28.5 Atomics 916

28.5.1 The C++ Memory Model 918
28.5.2 Atomic Flags 920
28.5.3 Simple Producer-Consumer Example 922

28.6 Smart Pointers and the Thread-Safe Pointer Interface 924

xx CONTENTS

28.7 Thread Synchronisation 926
28.8 When Should we use Threads? 929
28.9 Summary and Conclusions 929
28.10 Exercises and Projects 930

CHAPTER 29
C++ Concurrency, Part II Tasks 935
29.1 Introduction and Objectives 935
29.2 Finding Concurrency: Motivation 936

29.2.1 Data and Task Parallelism 936
29.3 Tasks and Task Decomposition 937

29.3.1 Data Dependency Graph: First Example 937
29.3.2 Data Dependency Graph: Generalisations 939
29.3.3 Steps to Parallelisation 940

29.4 Futures and Promises 941
29.4.1 Examples of Futures and Promises in C++ 942
29.4.2 Mapping Dependency Graphs to C++ 944

29.5 Shared Futures 945
29.6 Waiting on Tasks to Complete 948
29.7 Continuations and Futures in Boost 950
29.8 Pure Functions 952
29.9 Tasks versus Threads 953
29.10 Parallel Design Patterns 953
29.11 Summary and Conclusions 955
29.12 Quizzes, Exercises and Projects 955

CHAPTER 30
Parallel Patterns Language (PPL) 961
30.1 Introduction and Objectives 961
30.2 Parallel Algorithms 962

30.2.1 Parallel For 963
30.2.2 Parallel for_each 964
30.2.3 Parallel Invoke and Task Groups 964
30.2.4 Parallel Transform and Parallel Reduction 967

30.3 Partitioning Work 967
30.3.1 Parallel Sort 970

30.4 The Aggregation/Reduction Pattern in PPL 971
30.4.1 An Extended Example: Computing Prime Numbers 973
30.4.2 An Extended Example: Merging and Filtering Sets 975

30.5 Concurrent Containers 977
30.6 An Introduction to the Asynchronous Agents Library and Event-Based

Systems 978
30.6.1 Agents Library Overview 979
30.6.2 Initial Examples and Essential Syntax 980
30.6.3 Simulating Stock Quotes Work Flow 983
30.6.4 Monte Carlo Option Pricing Using Agents 985
30.6.5 Conclusions and Epilogue 985

Contents xxi

30.7 A Design Plan to Implement a Framework Using Message Passing and
Other Approaches 986

30.8 Summary and Conclusions 989
30.9 Exercises and Projects 990

CHAPTER 31
Monte Carlo Simulation, Part I 993
31.1 Introduction and Objectives 993

31.1.1 Software Product and Process Management 994
31.1.2 Who can Benefit from this Chapter? 995

31.2 The Boost Parameters Library for the Impatient 995
31.2.1 Other Ways to Initialise Data 997
31.2.2 Boost Parameter and Option Data 999

31.3 Monte Carlo Version 1: The Monolith Program (‘Ball of Mud’) 1000
31.4 Policy-Based Design: Dynamic Polymorphism 1003
31.5 Policy-Based Design Approach: CRTP and Static Polymorphism 1011
31.6 Builders and their Subcontractors (Factory Method Pattern) 1013
31.7 Practical Issue: Structuring the Project Directory and File Contents 1014
31.8 Summary and Conclusions 1016
31.9 Exercises and Projects 1017

CHAPTER 32
Monte Carlo Simulation, Part II 1023
32.1 Introduction and Objectives 1023
32.2 Parallel Processing and Monte Carlo Simulation 1023

32.2.1 Some Random Number Generators 1025
32.2.2 A Test Case 1026
32.2.3 C++ Threads 1029
32.2.4 C++ Futures 1031
32.2.5 PPL Parallel Tasks 1031
32.2.6 OpenMP Parallel Loops 1032
32.2.7 Boost Thread Group 1032

32.3 A Family of Predictor–Corrector Schemes 1033
32.4 An Example (CEV Model) 1038
32.5 Implementing the Monte Carlo Method Using the Asynchronous Agents

Library 1041
32.6 Summary and Conclusions 1047

32.6.1 Appendix: C++ for Closed-Form Solution of CEV Option Prices 1047
32.7 Exercises and Projects 1050

Appendix 1: Multiple-Precision Arithmetic 1053

Appendix 2: Computing Implied Volatility 1075

References 1109

Index 1117

CHAPTER 1
A Tour of C++ and Environs

riverrun, past Eve and Adam’s, from swerve of shore to bend of bay, brings us by a
commodius vicus of recirculation back to Howth Castle and Environs

—Joyce (1939)

1.1 INTRODUCTION AND OBJECTIVES

This book is the second edition of Financial Instrument Pricing Using C++, also written by the
author (Duffy, 2004B). The most important reason for writing this hands-on book is to reflect
the many changes and improvements to the C++ language, in particular due to the announce-
ment of the new standard C++11 (and to a lesser extent C++14 and C++17). It feels like a
new language compared to C++03 and in a sense it is. First, C++11 improves and extends the
syntax of C++03. Second, it has become a programming language that supports the functional
programming model in addition to the object-oriented and generic programming models.

We apply modern C++ to design and implement applications in computational finance,
in particular option pricing problems using partial differential equation (PDE)/finite differ-
ence method (FDM), Monte Carlo and lattice models. We show the benefits of using C++11
compared to similar solutions in C++03. The resulting code tends to be more maintainable
and extendible, especially if the software system has been properly designed. We recommend
spending some time on designing the software system before jumping into code and to this
end we include a defined process to take a problem description, design the problem and then
implement it in such a way that it results in a product that satisfies the requirements and that
is delivered on time and within budget.

This book is a detailed exposition of the language features in C++, how to use these fea-
tures and how to design applications in computational finance. We discuss modern numer-
ical methods to price plain and American options and the book is written in a hands-on,
step-by-step fashion.

1.2 WHAT IS C++?

C++ is a general-purpose systems programming language that was originally designed as an
extension to the C programming language. Its original name was ‘C with classes’ and its

1

2 FINANCIAL INSTRUMENT PRICING USING C++ 2E

object-oriented roots can be traced to the programming language Simula which was one of the
first object-oriented languages. C++ was standardised by the International Organization for
Standardization (ISO) in 1998 (called the C++03 standard) and C++14 is the standard at the
moment of writing. It can be seen as a minor extension to C++11 which is a major update to
the language.

C++ was designed primarily for applications in which performance, efficiency and flexi-
bility play a vital role. In this sense it is a systems programming language and early applications
in the 1990s were in telecommunications, embedded systems, medical devices and Computer
Aided Design (CAD) as well as first-generation option pricing risk management systems in
computational finance. The rise in popularity continued well into the late 1990s as major ven-
dors such as Microsoft, Sun and IBM began to endorse object-oriented technology in general
and C++ in particular. It was also in this period that the Java programming language appeared
which in time became a competitor to C++.

C++ remains one of the most important programming languages at the moment of writing.
It is evolving to support new hardware such as multicore processors, GPUs (graphics process-
ing units) and heterogeneous computing environments. It also has a number of mathematical
libraries that are useful in computational finance applications.

1.3 C++ AS A MULTIPARADIGM PROGRAMMING LANGUAGE

We give an overview of the programming paradigms that C++ supports. In general, a pro-
gramming paradigm is a way to classify programming languages according to the style of
computer programming. Features of various programming languages determine which pro-
gramming paradigms they belong to. C++ is a multiparadigm programming language because
it supports the following styles:

� Procedural: organises code around functions, as typically seen in programs written in
C, FORTRAN and COBOL. The style is based on structured programming in which a
function or program is decomposed into simpler functions.

� Object-oriented: organises code around classes. A class is an abstract entity that encap-
sulates functions and data into a logical unit. We instantiate a class to produce objects.
Furthermore, classes can be grouped into hierarchies. It is probably safe to say that this
style is the most popular one in the C++ community.

� Generic/template: templates are a feature of C++ that allow functions and classes to oper-
ate with generic types. A function or class can then work on different data types.

� Functional: treats computation as the evaluation of mathematical functions. It is a declar-
ative programming paradigm; this means that programming is done with expressions and
declarations instead of statements. The output value of a function depends only on its
input arguments.

The generic programming style is becoming more important and pronounced in C++,
possibly at the expense of the traditional object-oriented model which is based on class hierar-
chies and subtype (dynamic) polymorphism. Template code tends to perform better at run-time
while many errors are caught at compile-time, in contrast to object-oriented code where the
errors tend to be caught by the linker or even at run-time.

A Tour of C++ and Environs 3

The most recent style that C++ has (some) support for is functional programming. This
style predates both structured and object-oriented programming. Functional programming
has its origins in lambda calculus, a formal system developed by Alonzo Church in the 1930s
to investigate computability, function definition, function application and recursion. Many
functional programming languages can be viewed as elaborations on the lambda calculus.
C++ supports the notion of lambda functions. A lambda function in C++ is an unnamed
function but it has all the characteristics of a normal function. Here is an example of defining a
stored lambda function (which we can define in place in code) and we then call it as a normal
function:

// TestLambda101.cpp
//
// Simple example of a lambda function
//
// (C) Datasim Education BV 2018
//
//

#include <iostream>
#include <string>

int main()
{

// Captured variable
std::string cVar("Hello");

// Stored lambda function, with captured variable
auto hello = [&cVar](const std::string& s)
{ // Return type automatically deduced

std::cout << cVar << " " << s << '\n';
};

// Call the stored lambda function
hello(std::string("C"));
hello(std::string("C++"));

return 0;
}

In this case we see that the lambda function has a formal input string argument and it uses
a captured variable cVar. Lambda functions are simple but powerful and we shall show how
they can be used in computational finance.

C++11 is a major improvement on C++03 and it has a number of features that facilitate
the design of software systems based on a combination of Structured Analysis and object-
oriented technology. In general, we have a defined process to decompose a system into loosely
coupled subsystems (Duffy, 2004). We then implement each subsystem in C++11. We discuss
this process in detail in this book.

4 FINANCIAL INSTRUMENT PRICING USING C++ 2E

1.4 THE STRUCTURE AND CONTENTS OF THIS BOOK:
OVERVIEW

This book examines C++ from a number of perspectives. In this sense it differs from other C++
literature because it discusses the full software lifecycle, starting with the problem descrip-
tion and eventually producing a working C++ program. In this book the topics are based on
numerical analysis and its applications to computational finance (in particular, option pricing).
In order to design and implement maintainable and efficient software systems we discuss each
of the following building blocks in detail:

� A1: The new and improved syntax and language features in C++.
� A2: Integrating object-oriented, generic and functional programming styles in C++ code.
� A3: Replacing and upgrading the traditional Gang-of-Four software design patterns to fit

into a multiparadigm design methodology.
� A4: Analysing and designing large and complex software systems using a combination

of top-down system decomposition and bottom-up object assembly.
� A5: When writing applications, determining how much of the features in A1, A2, A3 and

A4 to use.

The chapters can be categorised into those that deal with modern C++ syntax and language
features, those that focus on system design and finally those chapters that discuss applications.
In general, the first ten chapters introduce new language features. Chapters 11 to 19 focus
on using C++ to create numerical libraries, visualisation software in Excel and lattice option
pricing code. Chapters 20 to 29 are devoted to the finite difference method on the one hand
and to multithreading and parallel processing on the other hand. The last three chapters of the
book deal with Monte Carlo methods. For easy reference, we give a one-line summary of each
chapter in the book:

2. Smart pointers, move semantics, r-value references.

3. All kinds of function types; lambda functions, std::bind, functional programming
fundamentals.

4. Advanced templates, variadic templates, decltype, template metaprogramming.

5. Tuples A–Z and their applications.

6. Type traits and compile-time introspection of template types.

7. Fundamental C++ syntax improvements.

8. IEEE 754 standard: operations on floating-point types.

9. A defined process to decompose systems into software components.

10. Useful data types: static and dynamic bitsets, fractions, date and time, fixed-sized
arrays, matrices, matrix solvers.

11. Fundamental software design and data structures for lattice models.

12. Option pricing with lattice models. Both plain and early-exercise cases are
considered.

13. Essential numerical linear algebra and cubic spline interpolation.

14. A C++ package to visualise data in Excel (for example, a matrix or array of option
prices from a finite difference solver). This package also allows us to use Excel for
simple data storage.

A Tour of C++ and Environs 5

15. Univariate statistical distributions in C++ and Boost. We also discuss some
applications.

16. The different ways to compute the bivariate cumulative normal (BVN) distribution
accurately and efficiently using the Genz algorithm and by solving a hyperbolic PDE.
Applications to computing the analytic solution of two-factor asset option pricing
problems are given.

17. STL algorithms A–Z. Part I.

18. STL algorithms A–Z. Part II.

19. The solution of nonlinear equations and optimisation. The scope is restricted to the
univariate case.

20. A mathematical background to convection–diffusion–reaction and Black–Scholes
PDEs.

21. A software framework for the Black–Scholes PDE using the finite difference
method.

22. Extending the functionality of the framework in Chapter 21; computing option
sensitivities; an analysis of traditional software design patterns. We also
discuss opportunities to upgrade software patterns to their multiparadigm
extensions.

23. Path-dependent option problems using the finite difference method.

24. Ordinary differential equations (ODEs); theory and numerical approximations.

25. The method of lines (MOL) for PDEs.

26. Random number generation; some numerical linear algebra solvers.

27. Interoperability between ISO C++ and the Microsoft .NET software framework.

28. C++ Concurrency: threads.

29. C++ Concurrency: task.

30. Introduction to Parallel Patterns Library (PPL).

31. Single-threaded Monte Carlo simulation.

32. Multithreaded Monte Carlo simulation.

Appendix 1: Multiprecision data types in C++.

Appendix 2: Computing implied volatility.

This is quite a list of topics. The first ten chapters are essential reading as they lay the
foundation for the rest of the book. In particular, Chapters 2, 3, 4, 5, 7 and 8 introduce the
most important syntax and language features. Chapters 11 to 19 are more or less independent
of each other and we recommend that you read Chapter 9 before embarking on Chapters
11, 12 and 19. Chapters 17 and 18 discuss STL algorithms in great detail. Chapters 20
to 25 are devoted to PDEs and their numerical approximation using the finite difference
method. They should be read sequentially. The same advice holds for Chapters 28 to 30 and
Chapters 31 to 32.

We have put some effort into creating exercises for each chapter. Reading them and under-
standing their intent is crucial in our opinion. Even better, actually programming these exer-
cises is proof that you really understand the material.

6 FINANCIAL INSTRUMENT PRICING USING C++ 2E

1.5 A TOUR OF C++11: BLACK–SCHOLES AND ENVIRONS

Since this is a hands-on book we introduce a simple and relevant example to show some of
the new features in C++. It is a kind of preview or trailer. In particular, we discuss the Black–
Scholes option pricing formula and its sensitivities. We focus on the analytical solutions for
stock options, futures contracts, futures options and currency options (see Haug, 2007). The
approach that we take in this section is similar to how mathematicians solve problems. We
quote the famous mathematician Paul Halmos:

…the source of all great mathematics is the special case, the concrete example. It is
frequent in mathematics that every instance of a concept of generality is, in essence,
the same as a small and concrete special case.

We now describe a mini-system that mirrors many of the design techniques and C++
language features that we will discuss in the other 31 chapters of this book. Of course, it goes
without saying that we could implement this problem in a few lines of C++ code, but the point
of the exercise is to trace the system lifecycle from beginning to end by doing justice to each
stage in the software process, no matter how small these stages are.

We use the following data type:

using value_type = double;

1.5.1 System Architecture

This is the first stage in which we scope the problem (‘what are we trying to solve?’) by defin-
ing the system scope and decomposing the system into loosely coupled subsystems each of
which has a single major responsibility (Duffy, 2004). The subsystems cooperate to satisfy the
system’s core process, which is to compute plain call and put option prices and their sensi-
tivities. The architecture is based on a dataflow metaphor in which each subsystem processes
input data and produces output data. Data is transferred between subsystems using a plug-
and-socket architecture (Leavens and Sitarman, 2000). In general, a system delivers a certain
service to other systems. A service has a type and it can be connected to the service of another
system if the other service is of dual type. We sometimes say that a service is a plug and the
dual service is called a socket.

We represent the architectural model for this problem by the UML (Unified Modelling
Language) component diagram in Figure 1.1. Each system does one job well and it interfaces
with other systems by means of plugs and sockets. We first define the data that is exchanged
between systems:

// Option data {K, T, r, sig/v} from Input system
template <typename T>

using OptionData = std::tuple<T, T, T, T>;

// Return type of Algorithm system
// We compute V, delta and gamma
template <typename T>

using ComputedData = std::tuple<T, T, T>;

