Zielführende Weiterentwicklung von Energietechnologien

Nutzung von Stoffdatenscreening zur Optimierung von thermochemischen Prozessen

Zielführende Weiterentwicklung von Energietechnologien

Karsten Müller

Zielführende Weiterentwicklung von Energietechnologien

Nutzung von Stoffdatenscreening zur Optimierung von thermochemischen Prozessen

Karsten Müller Lehrstuhl für Thermische Verfahrenstechnik Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen, Deutschland

Habilitation Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Deutschland, 2018

ISBN 978-3-658-23598-7 ISBN 978-3-658-23599-4 (eBook) https://doi.org/10.1007/978-3-658-23599-4

Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind im Internet über http://dnb.d-nb.de abrufbar.

Springer Vieweg

© Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature 2018

Das Werk einschließlich aller seiner Teile ist urheberrechtlich geschützt. Jede Verwertung, die nicht ausdrücklich vom Urheberrechtsgesetz zugelassen ist, bedarf der vorherigen Zustimmung des Verlags. Das gilt insbesondere für Vervielfältigungen, Bearbeitungen, Übersetzungen, Mikroverfilmungen und die Einspeicherung und Verarbeitung in elektronischen Systemen.

Die Wiedergabe von Gebrauchsnamen, Handelsnamen, Warenbezeichnungen usw. in diesem Werk berechtigt auch ohne besondere Kennzeichnung nicht zu der Annahme, dass solche Namen im Sinne der Warenzeichen- und Markenschutz-Gesetzgebung als frei zu betrachten wären und daher von jedermann benutzt werden dürften.

Der Verlag, die Autoren und die Herausgeber gehen davon aus, dass die Angaben und Informationen in diesem Werk zum Zeitpunkt der Veröffentlichung vollständig und korrekt sind. Weder der Verlag noch die Autoren oder die Herausgeber übernehmen, ausdrücklich oder implizit, Gewähr für den Inhalt des Werkes, etwaige Fehler oder Äußerungen. Der Verlag bleibt im Hinblick auf geografische Zuordnungen und Gebietsbezeichnungen in veröffentlichten Karten und Institutionsadressen neutral.

Springer Vieweg ist ein Imprint der eingetragenen Gesellschaft Springer Fachmedien Wiesbaden GmbH und ist ein Teil von Springer Nature

Die Anschrift der Gesellschaft ist: Abraham-Lincoln-Str. 46, 65189 Wiesbaden, Germany

Danksagungen

Mein Dank gebührt an erster Stelle Prof. Wolfgang Arlt. Dieser Dank betrifft nicht nur das Vertrauen, das er in mich gesetzt hat, als er mir die Leitung der Arbeitsgruppe Energie übertrug, sondern auch die wissenschaftlichen Freiräume, die er mir überließ. Die Möglichkeiten, die er mir während meiner ganzen Zeit an seinem Lehrstuhl eingeräumt hat, gehen weit über das übliche Maß hinaus. Diese Arbeit und die darin enthaltenen Ergebnisse wären niemals möglich gewesen ohne die mehr als großzügige Bereitstellung nicht nur von personellen und finanziellen Mitteln, sondern auch von Rat und Anregung.

Meinen herzlichen Dank möchte ich meinen Fachmentoren Prof. Jürgen Karl und Prof. Stefan Will aussprechen. Sie haben beide meine Arbeit durch vielfältige Anregungen bereichert und Anstöße für neue Forschungsarbeiten gegeben. Darüber hinaus möchte ich mich bei Prof. Stephan Kabelac und Prof. Robert Schlögl bedanken, die als externe Gutachter meine Habilitationsschrift geprüft haben.

Besonderer Dank gebührt den Doktoranden, die ich in meiner Arbeitsgruppe begleiten durfte: Patrick Adametz, Rabya Aslam, Andrea Baumgärtner, Michael Beck, André Fikrt, Armin Fischer, Axel Haupt, Christoph Krieger, Tobias Kohler, Benjamin Müller, Jonas Obermeier, Daniel Siebert und Katharina Stark. Ohne ihren Einsatz wäre diese Arbeit niemals möglich gewesen. Auch allen anderen (ehemaligen und aktiven) Mitgliedern des Lehrstuhls für Thermische Verfahrenstechnik sei an dieser Stelle für viele kleine und große Beiträge, Hilfen und einfach eine gute Zeit gedankt.

Ein eigener Dank soll allen Studenten zukommen, deren Abschlussarbeiten ich während meiner Zeit als Habilitand betreuen durfte: Johannes Albert, Kevin Busch, Pia Herrmann, Moritz Hafner, Lars Hübner, Jorge Luis Juárez Peña, Steffen Lauterbach, Christoph Kliemann, Julian Klier, Guorui Ren, Timo Rüde, Felix Uhrig, Tobias Weidlich und Martin Westermeyer. Die Betreuung dieser Arbeiten hat mir nicht nur viel Freude gemacht, sondern hat auch viele wertvolle Ergebnisse hervorgebracht.

Nicht vergessen will ich an dieser Stelle meine Kooperationspartner an der Universität Erlangen, an anderen Forschungseinrichtungen und in der Industrie. Ganz besonders möchte ich in diesem Zusammenhang Prof. Peter Wasserscheid hervorheben. Die Zusammenarbeit mit ihm in zahllosen Projekten war stets eine Bereicherung. Allen Menschen, die mir in meiner wissenschaftlichen Laufbahn begegnet sind, mit denen ich kooperiert habe, die mich gefördert haben, von denen ich Dinge gelernt habe, denen ich etwas beibringen durfte oder mit denen ich einfach nur eine gute Zeit hatte, will ich meinen herzlichen Dank für alles sagen.

Vorwort

Die chemische Thermodynamik kann essentiell zum Verständnis von Prozessen beitragen. Dabei erlaubt sie es nicht nur, Zusammenhänge in komplexen Systemen zu verstehen, sondern (und das ist vielleicht ihre größte Stärke) sie ermöglicht es, Aussagen über Prozesse zu machen, die noch gar nicht realisiert wurden. Das vorliegende Buch versucht zu illustrieren, wie sie eingesetzt werden kann, um Prozessentwicklung effizient und zielgerichtet durchzuführen. Es entstand im Rahmen meiner Habilitation als Leiter der Arbeitsgruppe Energie des Lehrstuhls für Thermische Verfahrenstechnik der Friedrich-Alexander-Universität Erlangen-Nürnberg.

Neben der Beschreibung von Ansätzen versucht das Buch vor allem anhand von Beispielen zu demonstrieren, wie bei der Entwicklung von Prozessen vorgegangen werden kann. Der Schwerpunkt liegt dabei auf Energieprozessen, mit einem besonderen Fokus auf der Speicherung von Energie. Ein großer Teil der beschriebenen Methoden lässt sich analog auf andere Anwendungen übertragen. Das Buch soll eine Hilfestellung geben, um Forschung und Entwicklung von Prozessen, bei denen chemische Stoffe eine Rolle spielen, sinnvoll voranzutreiben.

Karsten Müller, Juli 2018

Inhaltsverzeichnis

1		Ein	leiti	ing	1
	1.	1	Ko	ntext	1
	1.	2	Zie	lsetzung	2
2		Grı	undl	agen	7
	2.	1	Wi	rkungsgrade und Energiedichte	7
	2.	2	Ide	ntifikation von Arbeitsstoffen	. 10
	2.	3	Nic	ht-stoffliche Verbesserungen an Energieprozessen	. 13
3		Eig	genso	chaften von Arbeitsstoffen	. 17
	3.	1	Тур	en von Vorhersagemethoden	. 17
	3.	2	Ent	wicklung von Vorhersagemethoden	. 21
		3.2	.1	Auswahl und Aufteilung der Daten	. 22
		3.2	.2	Aufstellung des Modells	. 24
	3.2.3		.3	Anpassung der Parameter und Validierung des Modells	. 26
	3.	3	Bei	spiele	. 31
		3.3	.1	Wärmekapazität	. 31
		3.3	.2	Mischungsviskosität	. 36
4		Ide	ntifi	kation von Potentialen	. 41
	4.	1	Pot	ential der einzelnen Parameter	. 42
		4.1	.1	Beispiel 1: Thermische Energiespeicherung durch Adsorption	. 45
		4.1	.2	Beispiel 2: Liquid Organic Hydrogen Carrier	. 49
		4.1	.3	Beispiel 3: Absorptionswärmepumpe	. 51
	4.	2	Ber	ücksichtigung von Transportgrößen	. 53
	4.	3	Abl	hängigkeiten zwischen Stoffgrößen	. 58
	4.	4	We	itere Zielgrößen und Konflikte zwischen Zielgrößen	. 61
	4.	5	Vei	gleich mit bestehenden Ansätzen	. 63

5	Wa	Wasserstoffspeicherung in LOHCs		. 67
	5.1	His	storischer Abriss der LOHC-Forschung	. 67
	5.2 Prinzip der Energiespeicherung i		nzip der Energiespeicherung in LOHCs	. 70
	5.3	5.3 Konzepte für den Einsatz von LOHCs		
	5.4	The	ermodynamische Aspekte von LOHC-Materialien	. 75
	5.5	Anforderungen an LOHCs		
	5.6	Ide	ntifikation neuer LOHC-Materialien	. 90
	5.6	.1	Betrachtung eines Einzelparameters	. 90
	5.6	.2	Screening im Multiparameterraum	. 91
6	Th	ermi	ische Energiespeicherung	. 99
	6.1	Üb	erblick über thermische Energiespeicher	. 99
6.2 Screening von Stoffsys6.3 Chemische Wärmepun6.4 Sorptionsenergiespeich		Scr	eening von Stoffsystemen für thermochemische Energiespeicher	108
		Ch	emische Wärmepumpen	113
		Sor	ptionsenergiespeicher	118
	6.4	.1	Temperaturunabhängige Beschreibung der Adsorption	119
	6.4	.2	Temperaturunabhängige Beschreibung von Typ V-Sorptionssystemen	121
	6.4.3		Modellierung des kompletten Sorptionsspeichers	123
7	Ge	naui	gkeit von Aussagen	127
	7.1	An	sätze zur Abschätzung von Unsicherheiten	128
	7.2	Un	sicherheiten bei der Berechnung von Reaktionsgleichgewichten	133
	7.3	Un	sicherheiten bei Prozesssimulationen	140
8	Ab	schl	ießende Diskussion	145
L	iteratu	rver	zeichnis	149

Symbol- und Abkürzungsverzeichnis

Symbol	Bedeutung	Einheit
Lateinische	Buchstaben:	
А	Parameter	variabel
В	Parameter	variabel
С	Parameter	variabel
C _P	Molare, isobare Wärmekapazität	J mol ⁻¹ K ⁻¹
Ε	Energie	J bzw. kJ
E ⁰	Spannung bei offenem Stromkreis	V
F	Faraday-Konstante	C mol ⁻¹
$\Delta^{ads}F$	Freie Adsorptionsenthalpie	kJ mol ⁻¹
g	Molare Freie Enthalpie	kJ mol ⁻¹
$\Delta^R g^{\scriptscriptstyle +}$	Freie Reaktionsenthalpie bei Standardbedingungen	kJ mol ⁻¹
h	Molare Enthalpie	kJ mol ⁻¹
$\Delta^{\! LV} h$	Verdampfungsenthalpie	kJ mol ⁻¹
$\Delta^{PC}h$	Enthalpieänderung bei einem Phasenwechsel	kJ mol ⁻¹
$\Delta^{\!R} h^{\!+}$	Reaktionsenthalpie bei Standardbedingungen	kJ mol ⁻¹
i	Index zur allgemeinen Bezeichnung für konkreten Stoff oder Parameter	-
Κ	Gleichgewichtskonstante	-
L	Charakteristische Länge	m
М	Molare Masse	g mol ⁻¹
n	Anzahl	-
n	Exponent	-
Nu	Nußelt-Zahl	-
\mathbf{P}_{i}	Partialdruck der Komponente i	Ра
P_{0i}^{LV}	Dampfdruck der reinen Komponente i	Ра
Pr	Prandtl-Zahl	-

qs	(Sättigungs-)Beladung	-
Q ²	kreuzvalidiertes Bestimmtheitsmaß	-
R	Allgemeine Gaskonstante	J mol ⁻¹ K ⁻¹
R ²	Bestimmtheitsmaß	-
Re	Reynolds-Zahl	-
S	Molare Entropie	J mol ⁻¹ K ⁻¹
SD _{grav.}	Massenbezogene Wasserstoffspeicherdichte	g g ⁻¹
Т	Temperatur	Κ
ν	Molares Volumen	m ³ mol ⁻¹
W	Adsorptionsvolumen	cm3 kg-1
х	Molenbruch	-
Χ	Platzhalter für physikalische Größe	variabel
Y	Platzhalter für physikalische Größe	variabel
Ζ	Anzahl der übertragenen Elektronen	-

Griechische Buchstaben:

α	Wärmeübergangskoeffizient	W m ⁻² K ⁻¹
α	thermischer Ausdehnungskoeffizient	K-1
δ_P	Kohäsive Energiedichte	J cm ⁻³
η	Wirkungsgrad	%
η	Viskosität	Pa s
λ	Wärmeleitfähigkeit	W m ⁻¹ K ⁻¹
μ	Dipolmoment	D
ρ	Dichte	g m ⁻³

Abkürzungen

AAE	mittlere Absolutabweichung (von englisch: <i>absolute average error</i>)
AAPE	mittlere, relative Absolutabweichung (von englisch: <i>absolute average percentage error</i>)
Ads	Adsorption
CAMD	Rechnergestütztes Molekulardesign (von englisch: computer-aided molecular design)
CEPU	kombinierte Unsicherheit von Experiment und Vorhersage (von englisch: <i>combined experimental and predictive uncertainty</i>)
CHP	Chemische Wärmepumpe (von englisch: chemical heat pump)
СОР	Leistungszahl (von englisch: <i>coefficient of performance</i>)
CV	Kreuzvalidierung (von englisch: cross validation)
DBT	Dibenzyltoluol
DoE	Department of Energy (US-amerikanisches Energieministerium)
Ex	Exergie
HHV	Oberer Heizwert / Brennwert (von englisch: <i>Higher Heating Value</i>)
IL	Ionische Flüssigkeit (von englisch: <i>Ionic Liquid</i>)
LHV	Unterer Heizwert (von englisch: Lower Heating Value)
LMO	Leave-Many-Out

LOH	Flüssiges Organisches Hydrid (von englisch: Liquid Organic Hydride)
LOHC	Flüssiger Organischer Wasserstoffträger (von englisch: Liquid Organic Hydrogen Carrier)
LOO	Leave-One-Out
MOF	Metal Organic Framework
ORC	Organic Rankine Cycle
РСМ	Speichermaterial in einem thermischen Energiespeicher auf Basis von latenter Wärme (von englisch: <i>phase change material</i>)
PEM	Polymer-Elektrolyt-Membran
QSAR	Quantitative Structure-Activity Relationship
QSPR	Quantitative Structure-Property Relationship
RMSD	mittlere quadratisch Abweichung (von englisch: root mean square deviation)
SNG	Synthetisches Methan (von englisch: <i>synthetic natural gas</i>)
TAM	Time average model
TES	Thermischer Energiespeicher
TSM	Time slice model
UNIFAC	Universal Quasichemical Functional Group Activity Coefficients

Abbildungsverzeichnis

Abbildung 1-1:	Vorgeschlagene Vorgehensweise zur Verbesserung von Prozessen mit Blick auf die eingesetzten Stoffe	3
Abbildung 2-1:	Mögliche Ziehungen von Bilanzräumen um Energie- speicher	
Abbildung 2-2:	Veranschaulichung der Wärmeintegration mit Hilfe der Pinch-Analyse	14
Abbildung 2-3:	Veranschaulichung der Kategorisierung von Maß- nahmen eines Energieeinsparungsportfolios nach Drumm et al. [31]	16
Abbildung 3-1:	Prinzip der Gruppeneinteilung für Gruppen- beitragsmethoden verschiedener Ordnungen am Beispiel Ethanol	19
Abbildung 3-2:	Grundschema der Vorgehensweise bei der Entwicklung von Vorhersagemethoden	21
Abbildung 3-3:	Grundschema einer Kreuzvalidierung	
Abbildung 3-4:	Beschriebene Möglichkeiten zur Gruppeneinteilung am Beispiel 1-Ethyl-3-Methylimidazolium Ethylsulfat	33
Abbildung 3-5:	Paritätendiagramm für a) die Erweiterung der logarithmischen Mischungsregel nach Grunberg und Nissan sowie Parameterschätzung durch die Gruppen- beitragsmethode und b) die logarithmische Mischungs- regel (jeweils bei 298,15 K)	
Abbildung 4-1:	Mögliche Steigerungen des Wirkungsgrads ni* bei einem offenen Sorptionsenergiespeicher (optimierte Stoffdaten: schwarz; verbesserte Apparate: grau)	47
Abbildung 4-2:	Mögliche Steigerungen der spezifischen Energiedichte bei einem offenen Sorptionsenergiespeicher (optimierte Stoffdaten: schwarz; verbesserte Apparate: grau)	
Abbildung 4-3:	Mögliche Steigerungen des Wirkungsgrads ηi* eines LOHC-Prozesses (optimierte Stoffdaten: schwarz; verbesserte Apparate: grau)	50

Abbildung 4-4:	Mögliche Steigerungen der Leistungszahl einer Absorptionswärmepumpe durch den Einsatz von Ionischen Flüssigkeiten (optimierte Stoffdaten: schwarz; verbesserte Apparate: grau)	52
Abbildung 4-5:	Mögliche Steigerungen des Wirkungsgrads ni* eines LOHC-Prozesses erweitert um Transportgrößen (Transportgrößen: schwarz; restliche Parameter: grau)	56
Abbildung 4-6:	Änderung des Wirkungsgrads η_i^* eines LOHC-Prozesses bei Variation der Wärmekapazität relativ zum Referenz- system Dibenzyltoluol aufgeteilt auf den Beitrag zur Wärmeübertragung und zum Energiebedarf für die Aufheizung des Trägers	57
Abbildung 4-7:	Geschätzter Anteil der einzelnen Komponenten an den Gesamtinvestitionskosten eines LOHC-Prozesses und am Einsparpotential der Investitionskosten	62
Abbildung 5-1:	Publikationen mit Stichworten zum Thema LOHC	70
Abbildung 5-2:	Vereinfachtes Schema eines LOHC-Prozesses	70
Abbildung 5-3:	Pilotanlage eines LOHC-Containersystems an der Universität Erlangen (2016)	73
Abbildung 5-4:	Freie Reaktionsenthalpie der Hydrierung bei 1 bar als Funktion der Temperatur für Benzol und Pyrrol	76
Abbildung 5-5:	Bindungsstärke für Wasserstoff für verschiedene Stoffklassen	78
Abbildung 5-6:	Gleichgewichtsumsatz der Dehydrierung bei 1 bar als Funktion der Temperatur für ausgewählte Vertreter verschiedener Stoffklassen (Beispielsubstanzen: Aliphat - Ethan; Homozyklus - Benzol; Heterozyklus - Pyrrol; Azaborin – 1,2-Dihydro-1,2-azaborin)	79
Abbildung 5-7:	Energieniveaus der Zwischenstufen bei der Hydrierung von a) Benzol und b) 1,2-Dihydro-1,2 -azaborin	81
Abbildung 5-8:	Energieniveaus der Zwischenstufen bei der Hydrierung von Styrol	82
Abbildung 5-9:	Gleichgewichtsumsatz der Dehydrierung von Ethylcyclohexan als Funktion der Temperatur	83

Abbildung 5-10:	Energieniveaus der Zwischenstufen bei der Hydrierung von N-Ethylcarbazol	84
Abbildung 5-11:	Eignung verschiedener Stoffklassen als LOHCs	89
Abbildung 5-12:	Reihenfolge potentieller LOHC-Materialien angeordnet nach den erzielbaren Speicherwirkungsgraden (abgeschätzt für die Speicherung elektrischer Energie basierend auf Gleichung 5-11; benannt ist jeweils die dehydrierte Form)	
Abbildung 6-1:	Grundtypen thermischer Energiespeicher	99
Abbildung 6-2:	Schematische Darstellung der aufgenommene Wärmemenge als Funktion der Temperatur bei Erwärmung eines PCMs von T1 auf T2 mit dazwischen stattfindender Umlagerung des Feststoffgefüges von Modifikation S1 zu Modifikation S2 und anschließendem Schmelzen des Feststoffs	102
Abbildung 6-3:	Vereinfachtes Schema eines gekoppelten Systems aus thermischer Energiespeicherung durch Oxidation mit Wasser mit einer LOHC-basierten Energiespeicherung	108
Abbildung 6-4:	Eingrenzung der Kandidaten beim Screening von metallischen Stoffsystemen als thermochemische Speicher durch reversible Oxidation mit Wasserdampf	112
Abbildung 6-5:	Funktionsprinzip einer chemischen Wärmepumpe vom Typ I	113
Abbildung 6-6:	Funktionsprinzip einer chemischen Wärmepumpe vom Typ II	114
Abbildung 6-7:	Adsorptionsisothermen für das System Wasser auf ALPO-18 (a), transformiert mit der klassischen Potentialtheorie (b) und mit der beschriebenen Adaption der Potentialtheorie (c).	123
Abbildung 6-8:	Nutzwirkungsgrad von offenen Sorptionsenergie- speichern als Funktion der Desorptionstemperatur; Berücksichtigt sind dabei die Energiebedarfe zur Verdampfung des Adsorptivs vor der Adsorption und die Erwärmung von Trägergasstrom und Adsorbens sowohl im Adsorptions- als auch im Desorptionsschritt; die Adsorptionswärme wird nach dem Adsorptionsschritt bei einer Temperatur von 50 °C aus dem Trägergasstrom	

	ausgekoppelt; der Trägergasstrom wird vor der Adsorption bei 25 °C gesättigt	125
Abbildung 7-1:	Wahrscheinlichkeit von Werten einer normalverteilten Variable mit Erwartungswert 0 und Standardabweichung 1 (die Pfeile bezeichnen die Bereiche mit von je $\pm 1, \pm 2$ bzw. ± 3 Standardabweichungen und die zugehörigen Wahrscheinlichkeiten)	130
Abbildung 7-2:	Veranschaulichung des Latin Hypercube Samplings im zweidimensionalen Parameterraum (links: gleichverteilte Werte; rechts: normalverteilte Werte)	131
Abbildung 7-3:	Histogramm der Monte-Carlo-Studie zur Unsicherheit bei der Berechnung des Gleichgewichts der Reaktion einer stöchiometrischen Mischung aus Wasserstoff und Stickstoff zu Ammoniak ($P = 100$ mbar und T = 298,15 K; Anzahl der Iterationen: 1000)	132
Abbildung 7-4:	Unsicherheit der Berechnung des Gleichgewichts- umsatzes der Ammoniaksynthese bei 298,15 K als Funktion des Gleichgewichtsumsatzes (hierbei wurde der Druck in der Rechnung stufenweise erhöht, um den Gleichgewichtsumsatz zu erhöhen)	133
Abbildung 7-5:	Reaktionsgleichgewicht der Dehydrierung von Methylcyclohexan bei 1 bar als Funktion der Temperatur mit Angabe der 95 %-Konfidenzintervalle	135
Abbildung 7-6:	Wahrscheinlichkeitsdichteverteilung für den Gleich- gewichtsumsatz der Dehydrierung von Methyl- cyclohexan bei 1 bar (links: bei 538 K; rechts bei 553 K); die Monte-Carlo-Studien basieren auf jeweils 100000 Iterationen	136
Abbildung 7-7:	Reaktionsgleichgewicht der Dehydrierung von Methyl- cyclohexan bei 1 bar als Funktion der Temperatur mit Angabe der Standardabweichung	137
Abbildung 7-8:	Wahrscheinlichkeitsdichteverteilung der logarithmierten Gleichgewichtskonstante (links) und Gleichgewichts- umsatz als Funktion der logarithmierten Gleichgewichts- konstante für die Dehydrierung von H18-DBT bei 526 K und 1 bar	138

Abbildung 7-9:	Wahrscheinlichkeitsdichteverteilung für den Gleich- gewichtsumsatz bei der Dehydrierung von H18-DBT bei 526 K und 1 bar	139
Abbildung 7-10:	Beiträge der Unsicherheiten der einzelnen Eingangsgrößen zur Unsicherheit der Berechnung des Gleichgewichtsumsatzes für die Dehydrierung von LOHCs bei 526 K und 1 bar	140
Abbildung 7-11:	Beiträge zur Gesamtunsicherheit einer Wirkungsgrad- berechnung für einen LOHC-Prozess mit Beheizung der Dehydrierung durch einen Wasserstoffbrenner	142
Abbildung 8-1:	Fragestellungen der Einzelschritte bei der (Weiter-) Entwicklung von Prozessen	147

Tabellenverzeichnis

Tabelle 4-1:	Exponenten der Abhängigkeit des Wärmeübergangs von Stoffparametern	55
Tabelle 4-2:	Korrelationskoeffizienten nach Pearson zwischen Stoffgrößen für 200 zufällig ausgewählte organische Verbindungen	59
Tabelle 5-1:	Zusammenfassung der Anforderungen an LOHC- Materialien	88
Tabelle 5-2:	Linearisierungsfaktoren zur Abschätzung des Wirkungsgrads von LOHC-Materialien ausgehend vom Basisfall Dibenzyltoluol einschließlich der Gültigkeitsgrenzen (max. zulässige Abweichung: 2 %)	95
Tabelle 6-1:	Beispielreaktionen für die wichtigsten Reaktionstypen thermochemischer TES	05
Tabelle 6-2:	Übersicht über die Grundtypen thermischer Energie- speicher	07