ACSP · Analog Circuits And Signal Processing

Temesghen Tekeste Habte · Hani Saleh Baker Mohammad · Mohammed Ismail

Ultra Low Power ECG Processing System for IoT Devices

Analog Circuits and Signal Processing

Series Editors: Mohammed Ismail, Dublin, USA Mohamad Sawan, Montreal, Canada The Analog Circuits and Signal Processing book series, formerly known as the Kluwer International Series in Engineering and Computer Science, is a high level academic and professional series publishing research on the design and applications of analog integrated circuits and signal processing circuits and systems. Typically per year we publish between 5–15 research monographs, professional books, handbooks, edited volumes and textbooks with worldwide distribution to engineers, researchers, educators, and libraries.

The book series promotes and expedites the dissemination of new research results and tutorial views in the analog field. There is an exciting and large volume of research activity in the field worldwide. Researchers are striving to bridge the gap between classical analog work and recent advances in very large scale integration (VLSI) technologies with improved analog capabilities. Analog VLSI has been recognized as a major technology for future information processing. Analog work is showing signs of dramatic changes with emphasis on interdisciplinary research efforts combining device/circuit/technology issues. Consequently, new design concepts, strategies and design tools are being unveiled.

Topics of interest include:

Analog Interface Circuits and Systems;

Data converters;

Active-RC, switched-capacitor and continuous-time integrated filters;

Mixed analog/digital VLSI;

Simulation and modeling, mixed-mode simulation;

Analog nonlinear and computational circuits and signal processing;

Analog Artificial Neural Networks/Artificial Intelligence;

Current-mode Signal Processing; Computer-Aided Design (CAD) tools;

Analog Design in emerging technologies (Scalable CMOS, BiCMOS, GaAs, heterojunction and floating gate technologies, etc.);

Analog Design for Test;

Integrated sensors and actuators; Analog Design Automation/Knowledge-based Systems; Analog VLSI cell libraries; Analog product development; RF Front ends, Wireless communications and Microwave Circuits;

Analog behavioral modeling, Analog HDL.

More information about this series at http://www.springer.com/series/7381

Temesghen Tekeste Habte • Hani Saleh Baker Mohammad • Mohammed Ismail

Ultra Low Power ECG Processing System for IoT Devices

Temesghen Tekeste Habte Khalifa University Abu Dhabi, UAE

Baker Mohammad Khalifa University Abu Dhabi, UAE Hani Saleh Khalifa University Abu Dhabi, UAE

Mohammed Ismail Wayne State University Detroit, MI, USA

ISSN 1872-082X ISSN 2197-1854 (electronic) Analog Circuits and Signal Processing ISBN 978-3-319-97015-8 ISBN 978-3-319-97016-5 (eBook) https://doi.org/10.1007/978-3-319-97016-5

Library of Congress Control Number: 2018950666

© Springer International Publishing AG, part of Springer Nature 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Contents

1	Introduction to Ultra-Low Power ECG Processor			
	1.1	Motiv	ation	1
	1.2	Desig	n Challenges and Ultra-Low Power Techniques	2
	1.3	Book	Contribution and Organization	4
		1.3.1	Book Organization	6
2	ІоТ	for He	althcare	7
	2.1	Introduction		
	2.2	ealthcare Applications	7	
		2.2.1	Glucose Level Sensing	8
		2.2.2	Electrocardiogram Monitoring	8
		2.2.3	Blood Pressure Monitoring	9
		2.2.4	Oxygen Saturation Monitoring	9
	2.3	IoT H	ealthcare Technologies	9
		2.3.1	Ultra-Low Power Sensing	9
		2.3.2	IoT Processors	10
		2.3.3	Cloud Computing	10
		2.3.4	Grid Computing	10
		2.3.5	Big Data	10
		2.3.6	Communication Networks	10
		2.3.7	Wearable	11
	2.4	IoT C	hallenges in Healthcare	11
		2.4.1	IoT Healthcare Security	11
		2.4.2	Energy Consumption of IoT Healthcare Devices	11
		2.4.3	Communication Network	12
		2.4.4	Data Storage and Continuous Monitoring	12
3	Bac	kgroun	d on ECG Processing	13
	3.1	Introduction		
	3.2	ECG Basics		
	3.3	3 ECG Feature Extraction Techniques		
		3.3.1	Methods Based on Discrete Wavelet Transform	16

	3.4	ECG Classifiers	21
	3.5	Review of Biomedical SoCs	21
		3.5.1 Ultra-Low Power Digital Circuit Design Techniques	23
	3.6	Summary	26
4	Con	abined CLT and DWT-Based ECG Feature Extractor	27
	4 1	Introduction	27
	4.2	System Description	28
	7.2	4.2.1 ECG Feature Extraction Architecture	28
		4.2.2 Power Reduction Techniques	20
	43	Implementation and Measurement Results	34
	4.5	Summary	38
	7.7	Summary	50
5	ACI	LT-Based QRS Detection and ECG Compression Architecture	39
	5.1	Introduction	39
	5.2	Summary of QRS Detection and Compressor Architectures	41
		5.2.1 Summary of QRS Detection Architectures	41
		5.2.2 Summary of ECG Compression Architectures	42
	5.3	Proposed QRS Detection Architecture	42
		5.3.1 Algorithm Formulation	43
		5.3.2 Proposed ACLT Architecture	45
		5.3.3 QRS Peak Detection	46
		5.3.4 Optimization Parameters	48
	5.4	Proposed ECG Compression Architecture	49
	5.5	Performance and Results	50
		5.5.1 QRS Detection Performance	50
		5.5.2 Computational Complexity of QRS Detector	52
		5.5.3 Compression Architecture Performance	53
		5.5.4 Hardware Implementations and Synthesis Results	55
	5.6	Compressor Comparison with Literature	56
	5.7	Summary	57
6	Ulfr	a-Low Power CAN Detection and VA Prediction	59
Č	6.1	Significance of CAN	59
	6.2	CAN Detection Algorithms.	61
	•	6.2.1 Tone-Entropy Technique	61
		6.2.2 Time Domain RR-Based Methods	61
		6.2.3 OTVI-Based Methods	62
		62.4 Renvi Entropy-Based Method	62
	63	Proposed System Architecture	63
	0.0	6.3.1 Proposed ORS Peak Detector	64
		6.3.2 ECG Feature Delineation	66
		6.3.3 ECG Intervals	68
	6.4	Proposed CAN Severity Detector Architecture	68
		6.4.1 OTVI-Based CAN Detection	68
		6.4.2 Mean RR-Based CAN Detection	69
			~ /

	6.4.3	RMSSD-Based CAN Detection	69
	6.4.4	SD-Based CAN Detection	70
6.5	Result	s and Discussion	70
	6.5.1	QRS Detection Results	70
	6.5.2	ECG Feature Delineation Results	71
	6.5.3	CAN Detection Results	72
6.6	Chip l	mplementation and Power Optimization	75
6.7	VTVF	Classifier Architecture	77
	6.7.1	ECG Pre-processing	78
	6.7.2	Feature Extraction Stage	78
	6.7.3	Classification Stage	79
	6.7.4	Secure VA Prediction Architecture	80
	6.7.5	ASIC Design	81
6.8	Summ	nary	82
Bibliog	raphy .		85
Index			91

Abbreviations

- ACLT Absolute-value Curve Length Transform
- AHA American Heart Association
- CAN Cardiac Autonomic Neuropathy
- CLT Curve Length Transform
- CPU Central Processing Unit
- DWT Discrete Wavelet Transform
- ECG Electrocardiogram
- HRV Heart Rate Variability
- IoT Internet of Things
- MMP Maximum Modulus Pair
- PAT Pan And Tompkins
- SoC System on Chip
- SVM Support Vector Machine
- VA Ventricular Arrhythmia
- WT Wavelet Transform

List of Figures

Fig. 1.1 Fig. 1.2	ECG node for IoT healthcare system Integrated biomedical processing platform	2 5
Fig. 2.1	IoT healthcare trends	8
Fig. 3.1	ECG system	14
Fig. 3.2	Basic ECG signal	14
Fig. 3.3	ECG spectrum	15
Fig. 3.4	Two filter-bank implementations of DWT (Trous algorithm)	17
Fig. 3.5	Effect of artifacts on ECG. (a) Clean ECG. (b) 50 Hz	
	corrupted ECG. (c) Baseline-wander ECG	18
Fig. 3.6	Examples of QRS detection and delineation. The first row	
	represents the raw ECG signal. The DWT of $X[n]$ across	
	scales 2^1 and 2^2 are shown in rows 2 and 3, respectively	19
Fig. 3.7	Examples of T and P wave detection and delineation. The	
	first raw represents the raw ECG signal. The DWT of	
	$X[n]$ across scales 2^4 and 2^5 are shown in rows 2 and 3,	
	respectively	20
Fig. 3.8	Detection of CAN based on RR and QTVI	22
Fig. 3.9	Architecture of a biomedical signal processing platform	22
Fig. 3.10	Architecture of a biomedical signal processing platform	23
Fig. 3.11	Biomedical system for IoT	24
Fig. 3.12	Implantable ECG SoC	25
Fig. 3.13	Duty-cycled operation	25
Fig. 3.14	Duty-cycled energy optimization	26
Fig. 4.1	ECG processing architecture	29
Fig. 4.2	Flow diagram of the ECG system	29
Fig. 4.3	Pipelined architecture for CLT	31
Fig. 4.4	CLT signal out of chip for sample ECG	32
Fig. 4.5	Clock gating	33
Fig. 4.6	Clock gating timing diagram	34

Fig. 4.7	(a) Total power with and without clock gating at 7.5 kHz.	
	(b) Total power saving due to clock gating at 7.5 kHz	34
Fig. 4.8	ECG feature extraction example	34
Fig. 4.9	Extracted <i>P</i> on <i>R</i> , <i>RT</i> peak, QT intervals, and heart rate	35
Fig. 4.10	(a) Measured power consumption. (b) Energy per cycle	36
Fig. 4.11	(a) Measured dynamic power. (b) Dynamic energy per cycle	37
Fig. 4.12	Energy optimization for duty-cycled operation	38
Fig. 4.13	Die photo and specification summary	38
Fig 51	IoT healthcare platform	40
Fig. 5.2	Block diagram of proposed algorithm	43
Fig. 5.3	ACLT for MIT-BIH Record 112	45
Fig. 5.4	Proposed absolute-value-CLT	46
Fig. 5.5	Window and threshold factor selection	47
Fig. 5.6	Threshold value for record MIT-BIH 112	48
Fig. 5.7	ORS detection FSM	48
Fig. 5.8	Histogram for data distribution MIT-BIH rec1112	49
Fig. 5.9	Proposed compressor architecture	50
Fig. 5.10	Variable length compressor flow chart	51
Fig. 5.11	ORS detection for MIT-BIH record 112	52
Fig. 5.12	Compression: first derivative for MIT-BIH record 112	54
Fig. 5.13	Compression ratio for MIT-BIH (a) using first derivative	
C .	and (b) using second derivative	54
Fig. 5.14	Schematic ACLT core	56
Fig. 5.15	Layout of the ACLT core	56
Fig 6.1	Evaluated tone and entrony in T.F. space	62
Fig. 6.2	ECG processing architecture with CAN detector	63
Fig. 6.3	RAM type selection	64
Fig. 6.4	Implemented ACLT	65
Fig. 6.5	ACLT for MIT-BIH record 112	65
Fig. 6.6	Flow diagram of the ECG feature extraction	67
Fig. 6.7	Illustration of windows	68
Fig. 6.8	OTVI evaluation architecture	69
Fig. 6.9	Mean RR-based CAN classifying architecture	69
Fig. 6.10	RMSSD RR-based CAN classifying architecture	70
Fig. 6.11	SDRR-based CAN classifying architecture	70
Fig. 6.12	(a) Annotation on extracted ORS peaks. (b) Extracted RR	
0, 1,	intervals in comparison with Matlab results	71
Fig. 6.13	ECG feature extraction demonstration	72
Fig. 6.14	RR time series for thee categories of CAN	73
Fig. 6.15	Time domain HRV parameters	74
Fig. 6.16	Error bar plot for extracted QTc	74
Fig. 6.17	Linear QTVI for CAN classification	74
Fig. 6.18	Die photo and specification summary	76