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Preface

Adiabatic theory of both classical and quantum systems plays an important role in
addressing various problems with multi-time-scale characteristics, ranging from
atomic and molecular processes to the evolution of the universe. In the classical
case, the well-known adiabatic theorem states, in terms of action-angle variables,
that the action is the adiabatic invariant and that if the Hamiltonian is taken around a
given cycle in parameter space, then the angle variable conjugate to the action
acquires a purely geometrical quantity, which is termed the Hannay angle. The
adiabatic theorem of quantum systems, however, becomes much more intricate due
to the involvement of the complex-valued wave function/probability amplitude.

A complete theory for the adiabatic evolution of quantum systems rests on three
pillars. First, Born and Fock proved the quantum adiabatic theorem shortly after the
discovery of the Schrödinger equation. The adiabatic theorem states that the
probability on each instantaneous (nondegenerate) eigenstate remains constant
when the external condition changes slowly in time. Second, in addition to the
typical dynamical phase, given by the time integral of the eigenenergy, the phase of
an evolving eigenstate has a geometric part, called the Berry phase, that depends
only on the geometric path in the parameter space. Third, this geometric phase can
be interpreted as the flux of a virtual magnetic monopole field through the surface
enclosed by the closed circuit in the parameter space. The adiabatic theory has
played a crucial role in the preparation and control of quantum states. The Berry
phase and related geometric phases have important applications in modern physics,
such as in high-precision quantum measurement, quantum information processing,
quantum computing, and condensed-matter physics.

In this book, we generalize the adiabatic theory to the nonlinear evolution of
quantum systems. In physics, the nonlinearity has been introduced as possible
modifications of quantum mechanics on the fundamental level. However, our
motivation derives mainly from the practical applications of adiabatic control of
Bose-Einstein condensates (BECs), which can often be accurately described by the
nonlinear Schrödinger equation. Here, the nonlinearity stems from a mean-field
treatment of the interactions between coherent atoms. The appearance of nonlin-
earity leads not only to the lack of unitarity but also to the absence of the

v



superposition principle. We overcome these challenges by combining ideas from
classical adiabatic dynamics and quantum geometric phases. The developed theory
of nonlinear quantum adiabatic evolution is expected to be useful in guiding adi-
abatic manipulation of the condensate atoms and other nonlinear systems.

The book is organized as follows. In Chap. 1, we introduce the basic concepts of
adiabatic theory, such as the adiabatic invariant, the Hannay angle, the adiabatic
theorem, the Berry phase, and the virtual magnetic monopole. Some typical
examples of adiabatic evolution are presented. In Chap. 2, we discuss the physical
origins of the nonlinearity in quantum many-body systems. The nonlinear adiabatic
theory, including the adiabatic evolution of the quantum states and the nonlinear
geometric phase, is introduced. In Chap. 3, we discuss the commutability between
the adiabatic limit and the semiclassical limit. We show the relationship between
the quantum Berry phase, the classical Hannay angle, and the mean-field geometric
phase of an interacting bosonic many-body system. In Chap. 4, we introduce exotic
virtual magnetic monopoles and fields such as the disk-shaped virtual magnetic
field, fractional virtual magnetic monopole, and virtual magnetic monopole chain.
In Chap. 5, we describe selected important applications of nonlinear adiabatic
evolution in the geometric phase, in tunneling dynamics, and in quantum inter-
ference. We anticipate that readers will find this book useful in providing basic
concepts and important applications on nonlinear adiabatic evolution of quantum
systems.

I am deeply indebted to my beloved family for their continued support. I am also
grateful to my students Li-Da Zhang, Fu-Quan Dou, Hui Cao, Qiang Wang, and
Wen-Yuan Wang for reading parts of the manuscript and contributing useful
remarks. In particular, I thank Profs. Q. Niu, B. Wu, B. B. Hu, and B. W. Li for
long-term fruitful collaborations. Some of our previous collaborating works are
included in this book.

Beijing, China Jie Liu
January 2018
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Chapter 1
Introduction to Adiabatic Evolution

Abstract In this chapter, we introduce the basic concepts of adiabatic theory in both
classical and quantum systems. We discuss classical adiabatic motion, introduce the
concepts of the classical adiabatic invariant and the Hannay angle, and give three
examples: the one-dimensional harmonic oscillator, the celestial two-body problem,
and the Foucault pendulum. We describe quantum adiabatic evolution, present the
quantum adiabatic theorem, and describe the adiabatic geometric phase (specifically,
the Berry phase) and the virtual magnetic monopole. Five examples of quantum
adiabatic evolution are shown. We also discuss classical-quantum correspondence.

1.1 Classical Adiabatic Motion

1.1.1 Classical Adiabatic Invariant

We introduce the adiabatic invariant, which is the conserved quantity in adiabatic
evolution. For convenience, we consider one-dimensional finite motion of a mechan-
ical system and use the parameter R to describe the properties of the system or of
the external field in which it is placed [1]. We assume that the parameter R(t) slowly
varies with time because of the external field influence. In other words, the change
of the parameter R is very small during one motion period of the system T , i.e.,

dR

dt
� 1. (1.1)

Clearly, if the parameter R is time independent, then the energy of the system
E is conserved, and the system executes periodic motion. If the parameter R is
time dependent, then the energy of the system is not conserved. However, because
the parameter changes very slowly with time, the rate of the energy change dE /dt
should also be very small. Averaging this rate of change over the motion period and
eliminating the fast oscillation part, one can obtain the stable value of dE /dt denoting
the slow change of the system energy; this value is proportional to the rate of the
parameter dR/dt . In fact, the slowly varying quantity E is a function of the parameter

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Introduction to Adiabatic Evolution

R, and the dependence of E on R can be expressed in terms of their combination
equaling a constant quantity. The quantity that remains invariant during the evolution
of a system with a slowly varying parameter is called the “adiabatic invariant”.

TheHamiltonian of the system is H(p, q; R) (here, p and q are a pair of canonical
variables corresponding to the generalized momentum and the generalized coordi-
nate, respectively), and the derivative of energy versus time is

dE

dt
= ∂H

∂R

dR

dt
. (1.2)

The right-hand side of the equation depends not only on the slow variable R but
also on the fast variables p and q. To find the stable variation rule for the system
energy, one must apply averaging to (1.2) over the entire motion period T . The
parameter R changes very slowly; therefore, the change of dR/dt is also slow. As a
result, one can bring dR/dt out of the averaging operation, i.e.,

dE

dt
= ∂H

∂R

dR

dt
. (1.3)

Note that when one applies averaging to the function ∂H/∂R, one considers
only p and q as variables. In other words, this averaging operation is used when the
parameter R remains constant. In explicit form, one has

∂H

∂R
= 1

T

∫ T

0

∂H

∂R
dt. (1.4)

From the Hamilton equation dq/dt = ∂H/∂ p, one has

dt = dq

∂H/∂ p
. (1.5)

Applying this equation, the integration (1.4) with respect to the time t can be
replaced with integration with respect to the generalized coordinate q. Furthermore,
one can rewrite the motion period T in the following integral form:

T =
∫ T

0
dt =

∮
dq

∂H/∂ p
, (1.6)

where
∮
denotes the integral over the whole region of the change of the generalized

coordinate during one period of motion. (For rotation, the coordinate q becomes the
rotation angle φ, and the integral is over a cycle, i.e., from 0 to 2π). Based on this
transformation, the Eq. (1.3) can be rewritten as

dE

dt
= dR

dt

∮ ∂H/∂R
∂H/∂ p dq∮

1
∂H/∂ p dq

. (1.7)
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Note that the integral in this equation is applied along the trajectory of motion for
a fixed parameter R. Clearly, when the motion follows such a trajectory, the Hamilto-
nian retains a constant E . As a result, the generalized momentum p can be expressed
as a given function of the generalized coordinate q and the independent parameters
E and R, i.e., p(q; E, R). Then, by computing the derivative of H(p, q; R) = E
versus the parameter R, one has

∂H

∂R
+ ∂H

∂ p

∂ p

∂R
= dE

dR
= 0, (1.8)

i.e.,
∂H/∂R

∂H/∂ p
= − ∂ p

∂R
. (1.9)

Substituting this equation back into the integral in the numerator on the right-hand
side of Eq. (1.7) and expressing the core of the denominator as ∂ p(q; E, R)/∂E , one
obtains

dE

dt
= −dR

dt

∮ ∂ p
∂R dq∮ ∂ p
∂E dq

, (1.10)

i.e., ∮ (
∂ p

∂E

dE

dt
+ ∂ p

∂R

dR

dt

)
dq = 0. (1.11)

One introduces the integral along the motion trajectory for the given parameters
E and R:

I = 1

2π

∮
pdq. (1.12)

Equation (1.11) can be expressed as

d I

dt
= 0. (1.13)

This result implies that if the parameter R slowly varies with time, then I remains
constant, i.e., I is the adiabatic invariant of the system.

We now employ the concept of phase space to show the geometric meaning
of the integral in Eq. (1.12). For a system with one degree of freedom, the phase
space simplifies to the phase plane spanned by the generalized coordinate p and
the generalized momentum q, and the phase trajectory for the periodic motion is a
closed orbit in this phase plane. The integral (1.12) along this orbit gives the area
enclosed by the closed trajectory. Thus, the adiabatic invariant can be expressed in
the following integral form:
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I = 1

2π

∫ ∫
dpdq. (1.14)

We now discuss a near-integrable Hamiltonian for small perturbations and for
slow (or “adiabatic”) perturbations [2]. For small perturbations, the Hamiltonian has
the general form

H = H0(I, t) + εH1(I,θ, t) + · · · , (1.15)

where H0 describes completely integrable motion, I and θ are the N -dimensional
actions and angles, and ε is a small parameter characterizing the magnitude of the
nonintegrable part of H . For small perturbations, the derivatives of H0 and H1 are
assumed to be of the same order as H0 and H1 themselves, i.e.,

∣∣∣∣∂H0

∂t

∣∣∣∣ ∼ |H0|,
∣∣∣∣∂H1

∂t

∣∣∣∣ ∼ |H1|, etc. (1.16)

For slow perturbations, the terms produced by differentiation are assumed to be
smaller by order ε than the terms from which they are derived, e.g., for slow time
variation, ∣∣∣∣∂H0

∂t

∣∣∣∣ ∼ ε|H0|, etc. (1.17)

To keep track of this ordering, one can often insert the small parameter ε and write

H0 = H0(εt) (1.18)

such that
∂H0

∂t
= εH ′

0, (1.19)

where the prime notation denotes differentiationwith respect to the argument τ = εt .
In this section, we are interested in systems for which the variation in all but one

of the degrees of freedom, as well as in time, is slow [2]. Accordingly, one can write
the Hamiltonian in the form

H = H0(I, εη, εt) + εH1(I, θ, εη, εt) + · · · , (1.20)

where I and θ are the action-angle variables for the unperturbed (ε = 0) motion in
the single fast degree of freedom and η = ( p, q) are the “slow” canonical variables,
not necessarily in action-angle form, for the remaining degrees of freedom. Since
the system is effectively one-dimensional when ε = 0, this system is integrable, and
I and θ can always be found. The small parameter ε in (1.20) “automatically” keeps
track of the ordering when one differentiates H to construct the perturbation series;
this parameter can be set to unity at the end of the calculation.

One can construct to first order the classical adiabatic invariant for theHamiltonian
(1.20). In zero order, the invariant is the action I associated with the fast degree of
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freedom. To calculate the effect of the perturbation εH1, one can find a transformation
from (I, θ,η) to ( Ī , θ̄, η̄) such that the new Hamiltonian

H̄ = H̄0 + εH̄1 + · · · (1.21)

is independent of the “fast” phase variable θ̄. Introducing the near-identity generating
function

S = Īθ + p̄ · q + εS1( Ī , θ, p̄, q, t) + · · · , (1.22)

one has, to first order, the transformations

I = Ī + ε
∂S1
∂θ̄

, (1.23)

θ = θ̄ − ε
∂S1
∂ Ī

, (1.24)

p = p̄ + ε
∂S1
∂q̄

, (1.25)

q = q̄ − ε
∂S1
∂ p̄

. (1.26)

Inserting these into H0 and expanding to first order in ε, one has

H0(I, εη, εt) = H0( Ī , εη̄, εt) + εω
∂S1
∂θ̄

, (1.27)

where ω = ∂H0/∂ Ī is the fast frequency. Note that the terms in

− ∂H0

∂q̄
· ∂S1

∂ p̄
,

∂H0

∂ p̄
· ∂S1

∂q̄
(1.28)

are second order in ε and can be neglected. The canonical transformation equation
is

H̄( Ī , θ̄, εη̄, εt) = H(I, θ, εη, εt) + ε
∂S( Ī , θ, ε p̄, εq, εt)

∂(εt)
. (1.29)

Expanding H̄ , H , and S using the above transformations and equating like powers
of ε, to zero order, one obtains

H̄0( Ī , εη̄, εt) = H0( Ī , εη̄, εt), (1.30)

and to first order, one has

H̄1( Ī , θ̄, εη̄, εt) = ω
∂S1
∂θ̄

+ H1( Ī , θ̄, εη̄, εt), (1.31)
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where S1 = S1( Ī , θ̄, εη̄, εt). Again, the term ∂S1/∂t in (1.29) is second order and
has been omitted from (1.31).

To make H̄1 independent of θ̄, one can choose S1 to eliminate the oscillating part
(in θ̄) of H1. Holding the slow angle variables fixed, one can define the average over
θ̄ alone as

〈H̄1〉θ̄ = 1

2π

∫ 2π

0
H1d θ̄ (1.32)

and the oscillating part over θ̄ as

{H1}θ̄ = H1 − 〈H̄1〉θ̄. (1.33)

Separating (1.31) into its average and oscillating parts yields, for H̄ to first order,

H̄( Ī , εη̄, εt) = H0 + ε〈H̄1〉θ̄ (1.34)

and, for S1,

ω
∂S1
∂θ̄

= −{H1}θ̄, (1.35)

which is easily integrated. To zero order, the adiabatic invariant is I . To first order,
the new invariant is Ī , which is given in terms of the old variables as

Ī (I, εη, εt) = I − ε
∂S1
∂θ

. (1.36)

Substituting (1.35) into (1.36) andwriting θ for the dummy variable θ̄, one obtains

Ī = I + ε{H1}θ
ω

. (1.37)

In fact, any function of Ī can be chosen as the adiabatic invariant.

1.1.2 Adiabatic Geometric Angle—Hannay Angle

In the phase space (p, q), the particle races around a track (i.e., a contour of the
instantaneous Hamiltonian H(p, q; t)) of fixed area 2π I (with I being the action
variable) but slowly changing shape. Given the rule of conservation of action I for
the contour that the particle lies on, it seems natural to explore the development of
the complementary variable, the angle variable, which describes the location of the
particle on the contour; that is, one might ask how many circuits the particle has
made [3].
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When the Hamiltonian H(p, q; t) is “frozen”, the instantaneous frequency of
motion of the particle that can be obtained can be expressed by the derivative
(2π)−1dH/d I . Thus, it is tempting to write the total angle traversed over time T as
simply ∫ T

0

dH(p(t), q(t); t)
d I

dt =
∫ T

0

dH(I ; t)
d I

dt, (1.38)

where, in the last form, H is considered a function H(I ; t) of the area of its con-
tours and the adiabatic invariant and I (t) = I (constant) is invoked. Since the angle
variable can be changed by virtue of the changing (I, θ) coordinate system in phase
space, this framework (1.38) is obviously incomplete. To reveal the true structure
of the situation, it is necessary to interpret the time dependence of the Hamiltonian
function (and the (I, θ) coordinate system) as being produced by carrying them along
a path R(t) in a parameter space R ≡ (R1, R2, . . .) of two or more dimensions in
which the functions H(p, q; R), I (p, q; R), and θ(p, q; R) are uniquely defined.
The point of making R more than one dimensional is that one wishes to consider
closed evolutions R(T ) = R(0) in which R(t) forms a loop. With just one parame-
ter (the length of the shortening pendulum, for instance), the only way to restore the
original length is to reverse the shortening, in which case the holonomy effect is not
realized.

The exact rates of change of a particle’s action and angle in this framework are
as follows:

İ = −∂H

∂θ
+ Ṙ · ∂ I

∂R
= Ṙ · ∂ I

∂R
, (1.39)

θ̇ = ∂H

∂ I
+ Ṙ · ∂θ

∂R
, (1.40)

where the overdot denotes the time derivative. The last terms in both (1.39) and
(1.40) are the rates of change of action and angle coordinates at a fixed point (p, q)

in phase space. These equations for nonadiabatic evolution of the Hamiltonian lead
to changes in both I and θ that depend on the trajectory selected, i.e., on the initial
values of both I and θ. For adiabatic evolution, the equations become

İ = 0 + Ṙ ·
〈

∂ I

∂R

〉
= 0, (1.41)

θ̇ = ∂H

∂ I
+ Ṙ ·

〈
∂θ

∂R

〉
, (1.42)

where the average brackets denote the average around the Hamiltonian contour on
which the particle lies. For any function f (p, q), one can define a function 〈 f 〉 of
action I by

〈 f 〉 = 1

2π

∮
contour through(p,q)

f dθ ≡ 1

2π

∫
f (p, q)δ(I (p, q) − I )dpdq. (1.43)
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The average in (1.41) vanishes identically by Liouville’s theorem and yields İ = 0
as required. There is no reason, however, why the average in (1.42) should vanish;
therefore, the integration of this equation gives the dynamical angle change antici-
pated in (1.38) plus the additional angular change (namely,Δθ) that we are interested
in:

Δθ =
∫

Ṙ ·
〈
∂θ(p(t), q(t); R(t))

∂R

〉
dt =

∫ 〈
∂θ

∂R

〉
· dR. (1.44)

In the last expression, time t has been completely eliminated because by definition
(1.43), the average is a function of a conserved parameter (i.e., the initial action I ).
A different field 〈∂θ/∂R〉 exists for each I , on which Δθ therefore depends. This
parameter does not depend on the initial angle.

For fixed I , the field 〈∂θ/∂R〉 depends on the angle variable coordination
θ(p, q; R), which is to some extent arbitrary. Unlike the lines of constant action
I (p, q; R), which, for fixed R, are fully determined as the contours of the Hamilto-
nian H(p, q; R), the lines of constant angle are specified only after one of them (say
θ = 0) is chosen. This one, and thus all the others, can be arbitrarily twisted into a
spiral, for example. Thus, the angle variable change Δθ inevitably depends on the
angle coordinates chosen for the initial and final parameters R(0) and R(T ). Only if
these coordinate systems are identical, which in turn requires R(0) = R(T ) (barring
especially favorable circumstances), can one expect to make coordinate-independent
statements about Δθ. The evolutions must be closed loops.

1.1.3 Example I: One-Dimensional Harmonic Oscillator

As the first example, we introduce the one-dimensional harmonic oscillator. To show
the general method, we calculate to first order the adiabatic invariant for the slowly
varying linear oscillator [2], whose Hamiltonian is

Hho = 1

2
g(τ )p2 + 1

2
f (τ )q2, (1.45)

where the small parameter ε has been inserted using τ = εt to order the perturbation
series. To prepare the system, one can transform to the action-angle variables I and
θ of H0 = Hho(ε = 0). In treating the harmonic oscillator, we adopt the generating
function F(q, θ, τ ) given by

F = 1

2
Rq2 cot θ, (1.46)

where R(τ ) = √
f/g. Using p = ∂F/∂q, I = −∂F/∂θ, and H(I, θ, τ ) = Hho

(p, q, τ ) + ∂F(q, θ, τ )/∂t , one obtains q = √
2I/R sin θ and p = √

2I/R cos θ.
As a result, the transformed Hamiltonian is
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H = ω0 I + ε
1

2

R′

R
I sin 2θ, (1.47)

where ω0(τ ) = √
f g. The prime notation denotes differentiation with respect to τ .

To zero order, the adiabatic invariant is just

I = H0

ω0
= const.. (1.48)

This result implies that the number of quanta �ω0 is conserved as the frequency of
oscillation slowly varies. To find the first-order invariant, we apply (1.37) to (1.47)
and obtain

Ī = I (1 + εP sin 2θ) = const., (1.49)

with P(εt) = R′/(2ω0R). This expression shows that to first order, I contains a small
component oscillating at twice the frequency of the fast variable. One can verify the
constancy of the quantity Ī by taking the time derivative of (1.49),

˙̄I = İ + εṖ I sin 2θ + 2εP I cos 2θ + O(ε2), (1.50)

where the overdot denotes d/dt . If one applies Hamilton’s equations to (1.47), the
first and third terms on the right cancel, leaving to first order in ε

˙̄I = εṖ I sin 2θ. (1.51)

When the standard slow perturbation ordering Ṗ ∼ εP is used, ˙̄I is of order ε2.
Therefore, Ī is a first-order invariant.

1.1.4 Example II: Celestial Two-Body Problem

The two-body problem is a special case of the motion of a particle in a central force
field. Because of the conservation of angular momentum, the motion occurs on an
invariant plane [4]. In the plane polar coordinates, the Hamiltonian for the motion of
the particle is

H = 1

2m

(
p2r + p2θ

r2

)
+U (r), (1.52)

where m is the mass of the particle, the momentum components are pr = mṙ and
pθ = mr2θ̇ (with the overdot denoting the time derivative), andU (r) is the potential
function for the central force field. The Hamilton-Jacobi equation reads
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1

2m

[(
∂Sr
∂r

)2

+ 1

r2

(
∂Sθ

∂θ

)2
]

+U (r) = E, (1.53)

where S(r, θ) = Sr (r) + Sθ(θ) is a variable-separated generating function. One can
rewrite the above Hamilton-Jacobi equation as follows:

(
∂Sθ

∂θ

)2

= 2mr2
[
E − 1

2m

(
∂Sr
∂r

)2

−U (r)

]
. (1.54)

The arbitrary choices of both θ and r require

(
∂Sr
∂r

)2

= 2m [E −U (r)] − l2

r2
, (1.55)

(
∂Sθ

∂θ

)2

= l2. (1.56)

Applying the definitions of action-angle variables, i.e.,

Ir = 1

2π

∮
prdr =

∮
∂Sr
∂r

dr, (1.57)

Iθ = 1

2π

∮
pθdθ =

∮
∂Sθ

∂θ
dθ, (1.58)

one has

Ir = 1

2π

∫ 2π

0

[
2m(E −U (r)) − l2

r2

]1/2

dr, (1.59)

Iθ = 1

2π

∫ 2π

0
ldθ = l. (1.60)

If the central force field takes the formU (r) = −μ/r with a constant quantity μ,
then the action variable becomes

Ir = −l + μ

2

√
2m

−E
. (1.61)

The corresponding Hamiltonian is given by

H = E = − mμ2

2(Ir + Iθ)2
. (1.62)

The frequency of particle motion in both the r and θ directions is
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ω = ∂H

∂ Ir
= ∂H

∂ Iθ
= mμ2

(Ir + Iθ)3
. (1.63)

One finds that the motion of the particle in an inverse-square force field is simply
due to the identical motion frequency in two directions. Thus, we can view the two-
body motion with a Newton inverse-square gravity as a reduced motion. Substituting
the familiar two-body elliptic motion energy E ′ = E/m = −μ/(2a) (with a being
the semimajor axis) back into the equation for the action variable Ir , one has

Ir + Iθ = √
μa = L , (1.64)

which implies conservation of the angular momentum L . Combining this variable
with the frequency equation and Kepler’s third law n2a3 = μ, one has

ω = n = 2π

T
, (1.65)

where T is the period of the elliptic motion; thus, n is the angular speed. For typical
celestial motions, T is often large, and thus, ω is very small. This fact implies that
the motions are nearly adiabatic.

1.1.5 Example III: Foucault Pendulum

The Foucault pendulum provides a simple and effective example of the anholon-
omy present in an adiabatically cycled system because the parameter space used to
describe its motion is the physical space in which it moves. The Foucault pendulum
is commonly considered from a rectangular coordinate system (x, y, z) fixed to the
rotating Earth with its origin at the pendulum bob in its rest position and its z-axis
pointing outward from the Earth along the axis or rest orientation of the pendu-
lum. The x- and y-axes point south and east, respectively. The pendulum is treated
in the small-oscillation limit, and the fictitious centrifugal force proportional to the
square of the angular frequency of the Earth (and hence very small) can be neglected.
The Foucault pendulum is then characterized as a simple two-dimensional harmonic
pendulum with an added Coriolis force. The Lagrangian for this system reads [5]

L = m

2
(ẋ2 + ẏ2) − mΩ2

2
(x2 + y2) + mωz(x ẏ − yẋ), (1.66)

where the overdot denotes the time derivative, m is the mass of the pendulum bob,
Ω = √

g/ l is the angular frequency of the unperturbed pendulum, with g being the
acceleration of gravity and l being the length of the pendulum, and ωz = ω cos θ is
the z-component of the angular frequency of the Earth (i.e., ω) at colatitude θ. Since


