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Preface

The book is a collection of high-quality peer-reviewed research papers presented at
the International Conference of Experimental and Numerical Investigations and New
Technologies (CNNTech 2018) held at Zlatibor, Serbia, from July 4 to 6, 2018. The
conference is organized by the Innovation Center of the Faculty of Mechanical
Engineering, Faculty of Mechanical Engineering at the University of Belgrade, and
Center for Business Trainings. Over 30 delegates was attending the CNNTech 2018
—academicians, practitioners, and scientists from 11 countries—presenting and
authoring 40 papers. The conference program included two keynote lectures with
five invited lectures, four sessions (oral and poster), and two workshops. Seventeen
selected full papers went through the double-blind reviewing process.

The main goal of the conference is to make positive atmosphere for the dis-
cussion on a wide variety of industrial, engineering, and scientific applications
of the engineering techniques. Participation of a number of domestic and interna-
tional authors, as well as the diversity of topics, has justified our efforts to organize
this conference and contribute to exchange of knowledge, research results, and
experience of industry experts, research institutions, and faculties which all share a
common interest in the field in experimental and numerical investigations.

The CNNTech 2018 was focused on the following topics:

• Mechanical Engineering,
• Materials Science,
• Chemical and Process Engineering,
• Experimental Techniques,
• Numerical Methods,
• New Technologies.

We express our gratitude to all people involved in conference planning,
preparation, and realization, especially to

• All authors, specially keynote speakers and invited speakers, who have con-
tributed to the high scientific and professional level of the conference,

• All members of the Organizing Committee,
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• All members of the International Scientific Committee for reviewing the papers
and Chairing the Conference Sessions,

• Ministry of Education, Science and Technological development of Republic of
Serbia for supporting of the Conference.

We wish to express a special gratitude to Ms. Dragana Perovic for her effort in
preparing and managing the conference in the best way.
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Thermal and Mechanical Characteristics
of Dual Cure Self-etching, Self-adhesive Resin

Based Cement

Aleksandra Mitrovic1(&), Nenad Mitrovic2, Aleksandar Maslarevic3,
Vuk Adzic2, Dejana Popovic4, Milos Milosevic3,

and Dusan Antonovic1

1 Faculty of Technology and Metallurgy, University of Belgrade,
Karnegijeva 4, Belgrade, Serbia

aleksandramitrovic1926@gmail.com
2 Faculty of Mechanical Engineering, University of Belgrade,

Kraljice Marije 16, Belgrade, Serbia
3 Innovation Center of Faculty of Mechanical Engineering,

Kraljice Marije 16, Belgrade, Serbia
4 Vinca Institute, University of Belgrade, Mike Petrovica Alasa 12-14,

Belgrade, Serbia

Abstract. One of the main objectives in research and development of resin
based cements (RBCs) is to enhance their clinical longevity and ease of use. In
spite of the undeniable technological advances introduced in the last few dec-
ades, the polymerization shrinkage i.e. strain that accompanies the chain-growth
polymerization of dimethacrylate monomers remains one of the major concerns
for the clinical performance of composite restorations. Also, RBCs can produce
a considerable amount of heat, due to the light energy from the curing lights and
exothermic reaction of polymerization.
The purpose of this study was to determine the temperature changes during

the photo-polymerization using thermocouples and to measure strain field of the
self-etching, self-adhesive RBC, Maxcem Elite (Kerr, Orange, CA, USA)
(ø5 � 1 mm - Group I and ø5 � 2 mm - Group II) using experimental tech-
nique, 3D Digital Image Correlation (DIC) method. Digital images were
recorded immediately after photo-polymerization of the samples with a LED-
curing unit for 20 s, according to manufacturer’s recommendation. Vickers
microhardness was determined after photo-polymerization and after 24 h.
Temperature curves for both groups indicated similar patterns but the peak
temperature of Group II was significantly higher compared to peak temperature
of Group I. DIC showed that peripheral zone of the samples had the highest
strain values in both groups. Group I indicated significantly higher values of
hardness. All the results were material-dependent and probably correlated to the
composition of each material, which is not fully disclosed by the manufacturers.

Keywords: Resin based cement � Temperature change � Thermocouples
Strain � 3D Digital Image Correlation � Vickers microhardness
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1 Introduction

Resin based cements (RBCs) have extraordinary aesthetic shade-matching potential and
due to the higher esthetical demands of patients for dental restorations, they have become
very popular [1]. In an attempt to simplify procedures, a new group of RBCs, self-
etching, self-adhesive resin cements (SARCs), have been developed. According to their
manufacturers, these materials are self-adhesive, including acidic and hydrophilic
monomers in their composition, which simultaneously demineralize and infiltrate
enamel and dentin, providing strong bonding [2]. However, one of the shortcomings of
RBCs is polymerization shrinkage that accompanies the chain-growth polymerization of
dimethacrylate monomers and generates stress at the tooth and composite interface. The
strain induced in RBCs during the polymerization can affect therapeutic failure due to de-
cementation i.e. de-bonding. This strain depends on cement-layer thickness and presents
the major source of shrinkage stress [3]. It has been shown that an increment thickness of
2 mm should not be exceeded for these materials with conventional chemistry [4].
Several methods were proposed to measure shrinkage strain such as dilatometry, the
bonded disc method and strain gauges. Current methods include the Digital Image
Correlation (DIC) method as an optical sensor for detecting shrinkage strain [5–7].
Heretofore, the hardness tests were widely used to examine RBCs and to analyze the
efficiency of the light units, its wear resistance ability to keep stabile form and to have
better insight into the degree of conversion (DC) during polymerization [8, 9]. Associ-
ation of these tests with optical methods for strain analysis can reveal potential negative
sides of the RBCs and improve different properties of currently available dental cements.

Another disadvantage of resin based cements is heat emission during polymer-
ization [10]. The polymerization reaction of RBCs involves rupture of the C=C bonds
of dimethacrylate monomers present in their polymeric matrixes and the conversion of
intermolecular distances of 0.3–0.4 nm between polymer chains, maintained by Van
der Waals attraction forces, into primary C–C covalent bonds [11]. Polymerization of
these materials used for the fabrication of temporary restorations is associated with an
exothermic reaction since the final formed enthalpy in the network is lower than that of
the amount of the initial monomer. This temperature rise may cause thermal trauma to
the pulp [12]. It has been proved that the pulp chamber is sensitive to physical,
chemical, biological and thermal changes [13]. An increase of the intrapulpal tem-
perature exceeding 42.58 °C can result in serious damage of the pulp tissue.
Exothermic reactions of the composite resin and radiant heat from the light-curing unit
contribute to heat production [10, 14]. Any curing unit that emits radiant energy in the
blue area of the electromagnetic spectrum, i.e., between 400 and 500 nm, can be used
to start the polymerization reaction of RBCs. Curing units with light-emitting diodes
(LEDs) have been increasingly used lately. These light-curing units emit a narrow light
spectrum with wavelengths close to the absorption peak of camphoroquinone
(468 nm), i.e., the photosensitizer most used in RBCs [4].

Differential thermal analyses [15, 16], differential scanning calorimetry [17],
infrared thermography [18, 19], thermistors [20, 21] and thermocouples [22–26] are
some of methods that have been used to measure temperature increase during the
polymerization of composite resin.

4 A. Mitrovic et al.



This study aims to determine the temperature changes during the photo-
polymerization with LED lamp in a dual-cured self-etching, self-adhesive resin
based cement, Maxcem Elite, using thermocouple, as well to measure strain and
microhardness of investigated material.

2 Experimental Setup and Procedure

The research was carried out as an experimental study. The tested Maxcem Elite (Kerr,
Orange, CA, USA) contains glycerol phosphate dimethacrylate (GPDM), co-monomers
(mono-, di- and tri-functional methacrylate monomers, water, acetone, ethanol, barium,
glass, fumed silica, and sodiumhexafluorosilicate) and ytterbiumfluoride mineral fillers.

The temperature measurement during the polymerization period was performed
using a predefined procedure. The thermocouples used for temperature measurements
were prepared using the OMEGA fine diameter bare wire (0.078 mm) K type
(chromel-alumel) thermocouple, with special limits of error (±0.4%). The thermo-
couple bead was disk shaped to maximize temperature sensing surface area. The
thermocouple was embedded into the center of the Maxcem Elite samples. The ther-
mocouple voltages were acquired by HIOKI LR8431-20 high-speed multichannel data
logger.

The teflon ring-type molds (ø 5 mm � 1 mm – Group I and ø 5 � 2 mm – Group
II) were placed on a strip on the top of the quartz laboratory glass plate suspended on
the laboratory stand. The LED curing light for the polymerization of both groups was
placed just beneath the glass plate. The mold was filled with Maxcem Elite (Fig. 1).
The samples were then cured for 20 s with a LED lamp (450–500 mW/cm2, LEDition,
Ivoclar-Vivadent, Schaan, Liechtenstein) according to manufacturer’s recommenda-
tion. The temperature was recorded at 0.1 s intervals throughout the curing process and
afterwards until it returned to the baseline level. The temperature of the top side of the
glass plate, between the mold and the glass, was measured with a separate thermo-
couple in order to assess the heat input generated form the LED curing light. The
extensive measurement showed that the heat input from the LED curing light was
minimum and constant, contrary to the tested material polymerization temperature.

Fig. 1. Experimental setup for temperature measurement of Maxcem Elite during the
polymerization.
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Strain field was measured using 3D optical system Aramis 2M (GOM,
Braunschweig, Germany) based on DIC method. The Aramis system consisted of two
digital cameras with the resolution of 1600 � 1200 pixels and specialist software
(Aramis v6.2.0). Prior to experiment, system calibration was performed using the
calibration panel for corresponding measurement volume. This volume was chosen
based on the dimensions of the measured area on sample surface. Two groups of the
samples were prepared. First group (Group I) included three ø5 � 1 mm sized samples
of Maxcem Elite (Kerr, Orange, CA, USA) and second group (Group II) included three
ø5 � 2 mm samples of the same material. All samples were prepared by filling Teflon
ring-type molds. The molds were placed on a strip on the top of the quartz laboratory
glass plate suspended on the laboratory stand. The top surface of each sample was
sprayed with fine black and white spray (Kenda Color Acrilico, Kenda Farben) to
create a stochastic pattern with high contrast for image analysis. Digital images were
recorded immediately after sample preparation (before polymerization, Stage 0) and
immediately after photo-polymerization with LED lamp (after 20 s, Stage 1), in
accordance with the manufacturer guidelines.

The images were then analyzed using software Aramisv6.2.0 to determine von
Mises strain which represents criteria for the 3D deformation analysis in the x-, y- and
z-axes of the photographed surface. Analysis of the strain fields was done using three
sections (Sections 0, 1, 2). Circular section (Section 0) was positioned peripherally at
the mold/material interface and two linear sections (Sections 1 and 2) were positioned
orthogonally. Length of the Sections 1 and 2 corresponded to the sample diameter.

Microhardness measurements were performed with a digital device ECHOLAB
type HTV 100 (Echo Research & Development S.p.a) that allows measurement of
Vickers and Knoop micro-hardness. Device can be moved in two perpendicular
directions, allowing distance measurement that ensures recommended distance (more
than 2.5 d) between impressions. The force that can be applied to the device is 0.098–
980.7 N (HV0.01–HV100). Measurements of the samples for both groups (N = 3)
were carried out with a load of 0.49 N (HV0.05), so the ratio of sample thickness
(1 mm and 2 mm) and mean-diagonal indentation was higher than 22 (min > 9) which
meets the test requirements (sample thickness greater than 1.5 d). Loading time was
15 s. Vickers microhardness was measured for each group immediately after poly-
merization and after 24 h on the exposed surface (surface that was directly exposed to
LED lamp). Mean hardness value for each sample was calculated. All experiments
were performed at room temperature.

3 Results and Discussion

Thermocouples were selected to evaluate temperature alterations during the polymer-
ization of tested material due to high precision and reliable readings. At each mea-
surement, the thermocouples were placed in the same position to minimize variation in
measurements that can be caused by changes in thermocouple position. The ambient
temperature was constantly maintained because the temperature may affect the resultant
net temperature rise for a given amount of energy dissipation, in accordance with
Newton’s law of cooling. Investigated material exhibited exothermic reaction during

6 A. Mitrovic et al.



photo-polymerization. The temperature measured within the samples increased quite
rapidly with the initiation of light curing. Group I reached maximum peak value of
46.2 °C within 15 s and Group II 54.2 °C within 19 s (Fig. 2). In accordance with the
manufacturer guidelines, photo-polymerization lasted 20 s. The mean temperature
increase for the Group II was higher than the mean temperature increase for the
Group I. During the next 10 min, the temperature started to decrease to the values of
27.6 °C and 29.9 °C for the Group I and Group II, respectively. The curves reached
plateau after 2 min. Temperature curves for both groups indicated similar patterns, but
Group I showed less sharp increase in temperature than Group II. The peak temperature
of Group II was significantly higher compared to peak temperature of Group I. This can
be explained by the higher concentration of the accelerator due to the greater volume of
the samples in Group II.

Both groups showed a gradual temperature reduction after the peak values due to
the heat loss through dissipation to the surroundings exceeded the heat. The heat
generated by the exothermic reaction mostly occurred in the initial phase of poly-
merization. Many studies have demonstrated a positive relationship between the light-
curing unit intensity and temperature rise [19, 21, 23, 27]. Some in vitro studies
reported that temperature rise depends on material used and photoactivation protocol
i.e. depends, beside the light-curing unit type, on power density, exposure duration, the
distance between composite surface and light guide tip end, composite shade and

Fig. 2. Representative temperature curves for the Group I and Group II recorded during the
photo-polymerization.
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thickness of composite materials [28–30]. Many authors have quantified the amount of
heat generated in resin-containing material during light curing. It was found that the
temperature increase with LED lamps varies from 41 °C to 53 °C [31] which is con-
sistent with our results. However, the measured temperatures recorded by Vallittu (6–
40 °C) [32] were generally lower than measured temperature for Group I and Group II.
This can be explained by the differences in the test conditions because the amount of
exothermic heat during polymerization depends upon the amount of materials and the
ambient temperature [33].

It is necessary to emphasize the limitations of in vitro studies (methodology).
A significant amount of heat was generated in both groups of the investigated material,
Maxcem Elite. Clinicians should be aware of the heat generated in RBCs during light-
curing, which may be a potential source of pulpal injury.

The strain fields of representative samples of Group I (Fig. 3a and b) and Group II
(Fig. 4a and b), after polymerization in Teflon molds, were shown.

Fig. 3. (a) Shrinkage strain field at the Stage 1 of Group I; (b) von Mises strain as a function of
distance for each section.

Fig. 4. (a) Shrinkage strain field at the Stage 1 of Group II; (b) von Mises strain as a function of
distance for each section.

8 A. Mitrovic et al.



Section 0 (circular section) was placed at the mold/tested material interface. Sec-
tion 1 and Section 2 represented linear sections that were orthogonally positioned.
Group I and Group II showed a non-homogeneous strain field, especially in the center
of the sample. Minor differences between mean strain values in the peripheral zone
(Section 0) and central zone (Section 1 and Section 2) were presented for Group I
samples (Table 1). The highest strain values (about 3.5%) were observed on the
peripheral zone for Group I (Fig. 3a). For Group II, the highest strain values, about
4.0%, were noticed as well on the peripheral zone (Fig. 4a). However, major differ-
ences between mean strain values in the peripheral zone (Section 0) and central zone
(Section 1 and Section 2) were observed for Group II. Obviously, peripheral zone was
subjected to the highest strain values in both groups.

It should be noted that the values in the central zone for Group I were significantly
higher compared to Group II, since they had a similar value at the periphery. Possible
explanation lies in fact that due to elongation, in absolute numbers, that is proportional
to the material’s initial dimension, thicker layers favor stress relief. Strain values
reported in this study are consistent with dental composites, which range between 2%
and 3% [34, 35].

Digital Image Correlation based on a two-camera 3D measurement system has been
proven reliable for determining the strain i.e. polymerization shrinkage of RBCs [36–
39]. In this study von Mises strain immediately after polymerization for both Maxcem
Elite groups was measured. Unlike other methods for determining the dimensional
stability of composite materials, the DIC method also enables the measurement of
maximum strain value. In light-cured samples, the polymerization is much faster so the
polymer matrix becomes semi-rigid in a few seconds. Therefore, immediately after
light activation, the strain reached a high value, although the polymerization and
crosslinking of the matrix were still on-going [40]. The study confirms previous
findings that shrinkage behavior, including shrinkage magnitude of strain, is influenced

Table 1. Mean and standard deviation (SD) of von Mises strain (%) values.

Maxcem Elite ø5 � 1 mm
(Group I)

Mean value of von Mises strain Standard deviation

Section 0 2.206 0.704
Sections 1 and 2 1.578 0.709
Maxcem Elite ø5 � 2 mm
(Group II)

Mean value of von Mises strain Standard deviation

Section 0 2.084 0.843
Sections 1 and 2 0.897 0.674
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by the curing mode in some degree [3, 4, 41, 42]. Particularly, this means that LED
lamp may modify the overall strain pattern in terms of strain distribution. Previous
studies [43, 44] have been conducted on the standardized sample size showing data for
mean strain. These methods excluded peripheral section (Section 0) although the
peripheral strain has to be considered when interpreting the overall strain. DIC method,
in this study, detected maximal von Misses strain values and determined the zones of
the maximal strain through presenting images of 3D full strain field. This study
revealed additional information about curing mode dependent shrinkage patterns
focusing on shrinkage and strain.

Vickers microhardness (HV) in both groups Maxcem Elite were measured imme-
diately after the photo-polymerization and after 24 h. Mean microhardness values of
the tested material are listed in Tables 2 and 3.

Table 2. Values of microhardness for Group I

Sample no. Immediately after
polymerization

Exposed surface
HV 0.05

Sample 1 1 34.71
2 38.52
Average 36.62

Sample 2 1 35.22
2 38.62
Average 36.92

Sample 3 1 36.91
2 34.62
Average 35.77

Sample no. After 24 h Exposed surface
HV 0.05

Sample 1 1 39.32
2 36.81
Average 38.07

Sample 2 1 37.46
2 37.46
Average 37.46

Sample 3 1 35.56
2 35.48
Average 35.52
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Considering the results for Group I, the values of microhardness immediately after
polymerization and after 24 h were similar. Measured values of hardness were con-
sistent as well for Group II. Group I indicated significantly higher values of hardness
than Group II, which is in accordance with the results in the literature [5, 8, 22, 36].
Hardness is interpreted as a statistical magnitude that practically depends on the
composition of the tested material structure, particularly in this case, for dual-phase
structure like Maxcem Elite is. As the HV indenter is greater compared to the size of
the fillers and the space in between filled with polymer matrix, the resulting HV value
is a measurement of the filler-matrix system. The filler component is dominant factor
compared to the softer polymer matrix [4]. HV indirectly considers the matrix network
crosslinking. With 46% of filler volume fraction, Maxcem Elite is lower filled com-
pared to other RBCs [45].

In dual-cure RBCs, there is a post-polymerization reaction within the polymer,
which results in increased strain after a few minutes and higher values of hardness after
24 h. Lower content of fillers particles may have contributed to additional crosslinking
or simple physical reorganization of polymer chains, which also leads to an increase in
strain and hardness [46]. Proportional relationship between microhardness and poly-
merization shrinkage of the material has been shown by Li and co-workers [47]. This
finding was in general agreement with other studies [45, 48], which revealed that the

Table 3. Values of microhardness for Group II

Sample no. Immediately after
polymerization

Exposed surface
HV 0.05

Sample 1 1 25.13
2 23.13
Average 24.13

Sample 2 1 30.38
2 31.01
Average 30.70

Sample 3 1 26.08
2 27.45
Average 26.77

Sample no. After 24 h Exposed surface
HV 0.05

Sample 1 1 28.73
2 28.73
Average 28.73

Sample 2 1 35.30
2 30.94
Average 33.12

Sample 3 1 29.77
2 31.01
Average 30.39
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strain was related to the hardness. Previous studies investigated the microhardness of
self-adhesive cements and found that the values greatly varied according to the brand
[9], showing a very strong influence of the material [8].

4 Conclusions

Self-etch, self-adhesive resin cement, Maxcem Elite, was investigated. In the present
study, the instructions of the manufacturer were followed with regard to the photo-
polymerization time of the tested material. Results demonstrated that temperature
increased inevitably after the initiation of the light curing for both groups. These
increases were associated with damage to dental tissues. A significant amount of heat
was generated in both groups. Clinicians should be aware that the heat generated in
tested material during light-curing may be a potential source of pulpal injury. Group I
and Group II showed a non-homogeneous strain field, especially in the center of the
sample. However, peripheral zone was subjected to the highest strain values in both
groups. Also, this fact highlights the advantage of the DIC method as a power tool for
investigation in dentistry research fields. Group I indicated significantly higher values
of hardness than Group II. The results were also material-dependent and correlated to
the composition of the material. The role of each component on the final properties of
the material has not been clarified yet. The complex formulation of tested Maxcem
Elite is only partially disclosed by manufacturer, making it difficult to explain the strain
differences through resin composition and inorganic content. It is important to bear in
mind that all this study has been made in vitro and therefore, has some limitations.
Further investigation will be conducted in order to better understand temperature and
strain changes in the tested material.
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