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Preface

Systems Biology

The nineteenth and the twentieth century—a time during which our knowledge
about how organisms function on a cellular and molecular level started to explode—
witnessed the emergence of many new branches of biology such as cell biology,
developmental biology, evolutionary biology, biochemistry, genetics, epigenetics,
and molecular biology. Each of them focuses on a different aspect of the mecha-
nisms and principles governing living organisms.

Systems biology brings the findings of these disciplines together with the aim
to develop a holistic rather than reductionist understanding of cells, organisms,
and ecosystems. Its goal is to understand the networks of individual biological
components and to decipher how these networks and regulatory circuits interact
to form living systems. A deep understanding of biological systems is achieved by
gaining insight into their structure, dynamics, and control mechanisms. Systems
biology represents a highly integrative and interdisciplinary approach. In addition
to biology and medicine, it heavily relies on computer sciences and mathematics
while also involving chemistry and physics.

The concept of systems biology emerged during the early twentieth century,
when the notion became more and more accepted that biological systems follow
physical and mechanical laws, elegantly outlined in D’Arcy Thompson’s work
“On Growth and Form,” 1917. Other theories and discoveries contributed to the
refinement of this concept during the course of the twentieth century. Notable
examples include Conrad Waddington, who characterized networks of genes, cells,
and tissues as decision-making dynamical systems; Ludwig von Bertallanffy with
his “Outline of General Systems Theory” in 1950; Alan Lloyd Hodgkin and Andrew
Fielding Huxley, who in 1952 spearheaded mathematical modeling of biological
systems by describing how an action potential moves along the axon of a neuronal
cell; Jacques Jacob and Francois Monod, who, when conducting their famous
research on gene regulatory elements in the 1960s, concluded that mechanisms of
gene regulation could form a variety of networks endowed with any desired degree

v



vi Preface

of stability; as well as Eric Davidson and Roy Britten, who in 1969 pioneered
the concept of gene regulatory networks. The term systems biology is attributed
to systems theorist Mihajlo Mesarovic. He coined it in 1966 when hosting the
international symposium “Systems Theory and Biology” at the Case Institute of
Technology in Cleveland, OH. With the Institute for Systems Biology in Seattle
and the Systems Biology Institute in Tokyo, the first systems biology institutes were
founded in the year 2000, and many others followed.

The rise of systems biology as a key biological discipline in the new millennium
was fueled by the preceding and concurrent development of high-throughput
technologies such as genomics, transcriptomics, proteomics, metabolomics, and
epigenomics. Omics technologies required novel specialized devices and experi-
mental workflows as well as accompanying computational tools and mathematical
models. The latter, which are needed to integrate the wealth of the generated data,
were made possible thanks to the simultaneous vast expansion of computing power.
Vice versa, systems biology continues to be a driving force behind the constant
development and improvement both of experimental techniques and equipment to
extract large amounts of qualitative and quantitative information from complex bio-
logical samples and of the bioinformatic pipelines necessary to obtain meaningful
biological insights. An example of a more recent technological advancement in
systems biology is represented by the development of single-cell omics technologies
over the last decade, which now permit us to study the molecular make-up and
dynamics of tissues and entire organisms at single-cell resolution.

A current challenge in systems biology is the integration of different regulatory
levels such as genetic, epigenetic, and posttranscriptional gene regulation and the
comprehension of the interplay between these levels. The long-term goal is the
deduction of predictive models that enable us to foresee how cells and organisms
change over time and in response to external stimuli or perturbations. Machine
learning and artificial intelligence are going to be essential in the development
of such multidimensional models that take spatial and temporal information into
account. Being able to predict the fate of cells, tissues, organs, and organisms would
be extremely powerful, since it would not only provide us with a fundamental
understanding of how life works on a molecular and cellular level, but would also
be a huge step forward for personalized medicine. It would allow us to foresee the
course of human diseases and to choose the most effective therapies for each patient.

This book illustrates how systems biology is instrumental in advancing our
knowledge about the principles of cellular and tissue organization. Themes cov-
ered include regulation of gene expression by genome structure, RNA-binding
proteins, RNA–RNA interactions, noncoding RNAs, transcriptomics, epigenomics,
metabolomics, posttranscriptional gene regulation, systems biology in health and
disease, experimental and computational tools for systems biology research, com-
putational methods for multidimensional data analysis, and integration as well as
the deduction of predictive models.



Preface vii

The chapters will provide the reader with examples of how important scientific
questions are addressed in systems biology and of bioinformatic tools designed to
reach valuable conclusions from the abundance of the generated information.

Berlin, Germany Nikolaus Rajewsky
Berlin, Germany Verena Maier
Poznań, Poland Stefan Jurga
Poznań, Poland Jan Barciszewski
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Abstract Our view of the packed genome inside a nucleus has evolved greatly over
the past decade. Aided by novel experimental and bioinformatic analysis techniques
and detailed computational models, fundamental insights into the structure and
dynamics of chromosomes have been gained. This has revealed that genome
organisation has an essential role in controlling genome function during normal
growth, cellular differentiation, and stress response, showing that, overall, 3D
reorganisation is tightly linked to changes in gene expression. Chromatin, which
is composed of DNA and a large number of different chromatin-associated proteins
and RNAs, is often chemically modified, in patterns that affect gene expression.
It has become clear that this highly interconnected system requires computational
simulations to gain an understanding of the underlying system-wide mechanisms.

In this review, we describe different modelling approaches that are used to
investigate both the linear and spatial arrangement of chromatin. We illustrate how
dynamic computer simulations are used to study the mechanisms that control and
maintain genome architecture and drive changes in this structure. We focus on
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models of the dynamics of epigenetic modifications, of protein–DNA interactions,
and the polymer dynamics of chromosomes. These approaches provide reliable
frameworks to integrate additional biological data; enable accurate, genome-wide
predictions; and allow the discovery of new mechanisms.

Keywords Chromatin organisation · Computational model · Histone
modification · Facilitated diffusion · Polymer · Chromatin loop ·
Self-organisation

1 Background

Intensive studies over the past decades have revealed multiple levels of organisation
in eukaryotic genomes. The DNA wraps around eight histone proteins to make
a nucleosome, the fundamental subunit of the chromatin fibre (van Holde 1989;
Ramakrishnan 1997; Sewitz et al. 2017b). In mammals, the chromatin then folds
to build higher genomic structures of different scales such as sub-megabase
topologically associated domains (TADs), megabase A and B compartments, and
chromosomal territories (Bonev and Cavalli 2016; Sewitz et al. 2017b). The
nucleus is a highly crowded environment with efficiently packed and organised
chromatin and hundreds to thousands of protein species, engaged in various types
of interactions, such as protein–protein, DNA–protein, chromatin–chromatin, and
chromatin–lamina interactions. It is now known that these interactions play an
important role in controlling the organised structure and regulating the transcrip-
tional activity of the genome (Gómez-Díaz and Corces 2014; Long et al. 2016;
Flavahan et al. 2016) and that the structure changes upon differentiation and internal
and external conditions (Guidi et al. 2015; Javierre et al. 2016; Sewitz et al. 2017a;
Lazar-Stefanita et al. 2017). However, a comprehensive view of the mechanisms that
drive organisation and dynamics of this highly complex system remains elusive.

Many research projects have investigated the linear arrangement of DNA,
identifying the local regulatory elements that modulate transcription, such as
transcription factor binding sites and their consensus sequences (Levine and Tjian
2003), enhancers (Long et al. 2016), histone modifications (Smolle and Workman
2013), and sites of DNA methylation (Schübeler 2015). Activator and repressor
proteins recruit enzymes, such as histone acetyltransferase or histone deacetylase,
that modify histones. Histone modifications control gene expression by altering the
local chromatin structure and inhibiting or attracting DNA-binding factors (Dindot
and Cohen 2013). In addition, DNA methylation can repress transcription through
blocking the binding of transcription factors or mediating the binding of repressors
(Jaenisch and Bird 2003).

It has more recently become possible to quantitatively investigate 3D genome
architecture using live-cell microscopy, and chromosome conformation capture
techniques, such as 3C, 4C, 5C, Hi-C, and Capture Hi-C (Schmitt et al. 2016b).
This has greatly enhanced our understanding of gene regulatory mechanisms, by
showing how the three-dimensional organisation of the genome influences gene
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regulation (Babu et al. 2008; Cavalli and Misteli 2013; Zuin et al. 2014; Lupiáñez et
al. 2015; Dixon et al. 2016; Schmitt et al. 2016a). Many genes occupy preferred non-
random positions within the nucleus: in mammals, gene-poor or transcriptionally
inactive regions are located close to the nuclear envelope in most cell types, whereas
gene-rich or transcriptionally active regions prefer to localise at the borders of
chromosome territories, away from the nuclear periphery (Foster and Bridger 2005;
Nagano et al. 2013). Manipulating the position of genes can also affect their activity;
for human and mouse cells, it has been shown that relocating genes from their
normal position to regions close to the nuclear periphery results in gene silencing
(Reddy et al. 2008; Finlan et al. 2008). The single-celled eukaryote S. cerevisiae
displays a mosaic arrangement of heterochromatin and euchromatin at the nuclear
periphery, with active genes located close to nuclear pores (Casolari et al. 2004) and
inactive genes associated with other parts of the nuclear periphery and the nuclear
centre (Zimmer and Fabre 2011).

This organisation is achieved within a highly dynamic nucleoplasm (Misteli
2001; Vazquez et al. 2001; Lanctôt et al. 2007). For example, in mammalian cells,
GFP-tagged proteins were measured to diffuse with diffusion coefficients of 0.24–
0.53 μm2 s−1, taking 24–54 s to travel 5 μm, a distance almost equal to the radius
of the nucleus (Phair and Misteli 2000). Tagged chromosomal loci in living S.
cerevisiae cells move more than 0.5 μm, equivalent to half of nuclear radius, within
a few seconds (Heun et al. 2001). There is now evidence that the dynamics of the
heterogeneous chromatin fibre contributes to thermodynamically driven 3D self-
organisation (Sewitz et al. 2017a).

Investigation of chromatin organisation in space and time by novel experimental
techniques has unravelled some of the key features of this intricate system of
how genome structure relates to the function of the genome. To further study the
dynamics of chromosome structures, particularly aspects that are not amenable
to experimental analysis, scientists have adopted modelling approaches. Models
provide the most direct way to explore mechanisms, as all components, interac-
tions, reactions, and forces are defined, and any observed behaviour must be a
consequence of these. During recent years, a wide range of models of the full or
partial genome have been developed to analyse the interplay of genome structure
and function. In this review, we categorise these models into three major groups:
models of epigenetic modification dynamics, protein–DNA models, and polymer-
based models.

2 Models of Epigenetic Modification Dynamics

Histone proteins can be covalently modified on several residues after translation
(Allfrey et al. 1964), which leads to the recruitment of transcriptional regulatory
proteins and structural proteins over a local chromatin region. For example, the
combined deacetylation and methylation of the lysine at position 9 of histone
H3 (H3K9) is required to create a binding site for the Swi6/HP1 silencing factor
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(Nakayama et al. 2001; Shankaranarayana et al. 2003). Binding of silencing factors
facilitates the modification of histones on adjacent nucleosomes, and sequential
rounds of epigenetic modification and protein binding lead to the spreading of
heterochromatin over a chromatin region (Grewal and Moazed 2003). Specialised
boundary elements inhibit the heterochromatin extension and therefore separate
silent and active chromatin domains (West et al. 2002; Labrador and Corces 2002).

To understand the mechanisms behind the epigenetic memory of monostable
domains, predictive models have investigated the behaviour of H3K9 methylation
domains (Hathaway et al. 2012; Hodges and Crabtree 2012; Müller-Ott et al. 2014;
Erdel and Greene 2016). Simulations at single-nucleosome resolution showed that
confined and heritable steady states of histone marks can be achieved by modelling
linear propagation of histone modifications from nucleation sites to adjacent
nucleosomes. Turnover of modified nucleosomes could also happen simultaneously
(Hathaway et al. 2012; Hodges and Crabtree 2012). In contrast, another model
assumed loop-driven spreading of histone marks with sparse nucleation sites. By
adjusting parameters such as modification rates, the model was shown to be robust
against replication (Erdel and Greene 2016), and the response towards transient
perturbations was in line with experimental data (Müller-Ott et al. 2014).

Genomic regions of high epigenetic dynamics are bistable states, characterised
by the presence of both activating and repressive histone marks (Bernstein et al.
2006). They have been observed for confined chromatin domains in various cell
types (Rohlf et al. 2012; Tee et al. 2014). To study the features and dynamics
of these states, several computational models have been developed (Dodd et al.
2007; Sedighi and Sengupta 2007; David-Rus et al. 2009; Micheelsen et al. 2010;
Mukhopadhyay et al. 2010; Angel et al. 2011; Dodd and Sneppen 2011; Berry et
al. 2017). In these models, a region of chromatin is represented as a sequence of
nucleosomes. At every time step, each nucleosome has a state or a rate of histone
modification based on its histone marks, with rules that govern state transitions or
changes in rates. These models have shown that nonlinear positive feedback loops
are required for robust and heritable bistable epigenetic states. Positive feedback
loops arise when modifications of one nucleosome stimulate the modifications of
other nucleosomes. The required nonlinearity can be achieved in different ways:
(1) via the cooperativity of two or more nucleosomes with the same histone marks,
which recruit histone modifiers on other nucleosomes (Dodd et al. 2007; Sedighi and
Sengupta 2007; David-Rus et al. 2009; Micheelsen et al. 2010; Mukhopadhyay et al.
2010; Angel et al. 2011; Dodd and Sneppen 2011); (2) through two-step feedback
loops, where the switch of histone modification states of nucleosomes occurs via
an intermediate state, i.e. the state first changes to the intermediate state and then
to the favoured state (Dodd et al. 2007; Angel et al. 2011; Berry et al. 2017); (3)
through the local transcription rate, which can be affected by silencing, in turn
leading to a change in the local modification rate (Sedighi and Sengupta 2007);
and (4) through interactions with non-neighbour nucleosomes (Dodd et al. 2007).
Another mathematical model with a 1D array of nucleosomes has been formulated
to study the dynamics of histone modification in bivalent domains, where active and
repressive histone marks coexist on nucleosomes (Ku et al. 2013). These domains
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are important elements in stem cells, and according to the model’s prediction, their
formation process is generally slow. The model also suggested that a coordinated set
of parameters, such as recruitment and exchange rates of marks, leads to established
and maintained bivalent domains over several cell cycles.

3 Protein–DNA Models

Transcription factors (TF) affect the transcriptional activity of specific genes
through binding to specific DNA sequences (Ptashne and Gann 2002). It has been
proposed that these proteins search for their target sequences through facilitated
diffusion (Berg et al. 1981, 1982; Berg and von Hippel 1985), i.e. alternating rounds
of 3D diffusion in the solution, sliding along the DNA, short-range excursions called
hopping, and intersegmental transfer between DNA segments. The characteristics
of this search mechanism have been widely studied, and computational models of
different scales have brought new insights into its dynamics. All models discussed
in this section have focused on facilitated diffusion of TFs.

At the most detailed, atomistic level, molecular dynamics (MD) simulations have
been used to explain how, e.g. the lac repressor protein (LacI) moves along DNA
(Marklund et al. 2013) and how it identifies its target site (Furini et al. 2013).
LacI is modelled to take a helical path to probe the DNA, with its DNA-binding
interface being insensitive to modest bends in DNA conformation. The hydrogen
bonds formed between the DNA and the LacI interface are dynamic and flexible,
allowing fast sliding of the protein (Marklund et al. 2013). This was found to
enable the protein to probe the DNA quickly and reach the proximity of the target
site. Once the specific DNA sequence is bound, it becomes significantly slower,
resulting in the formation of a stable protein–DNA structure and a drop in enthalpy
(Iwahara and Levy 2013; Furini et al. 2013). Another fine-grained MD simulation
has proposed that binding of the CSL (CBF1/Suppressor of Hairless/LAG-1) protein
to the DNA can transmit a signal through the protein structure according to the
bound sequences. This influences the inter-domain dynamics of the protein and
consequently its functional activities (Torella et al. 2014).

The effects of DNA conformation on the dynamics of TF proteins probing the
DNA were explored via coarse-grained MD simulations, where proteins interact
with the DNA via electrostatic interactions (Bhattacherjee and Levy 2014a, b). The
geometry of DNA was tuned by two factors, curvature and the degree of helical
twisting. Highly curved or highly twisted DNA was seen to lead to a decrease
in sliding frequencies and an increase in hopping events (Bhattacherjee and Levy
2014a). In addition, introducing curvatures in the DNA conformation was found to
increase the frequency of jumping events of a multidomain protein between distant
DNA sites. However, curvature does not necessarily result in faster search kinetics
as sliding happens less often (Bhattacherjee and Levy 2014b). Hence, an optimal
DNA conformation can lead to a balanced number of searching events and maximal
probing of DNA.
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To investigate the role of nonspecific DNA–protein interactions during the
search for specific target sites, Monte Carlo simulations were adopted (Das and
Kolomeisky 2010; Tabaka et al. 2014; Mahmutovic et al. 2015). It was argued
that the binding of the LacI repressor to nonspecific DNA is controlled by either
activation or steric effects instead of being limited by diffusion (Tabaka et al.
2014; Mahmutovic et al. 2015). Furthermore, it was shown that for efficient
and fast probing of DNA, moderate ranges of nonspecific binding energies and
protein concentrations are required (Das and Kolomeisky 2010). The necessity
for moderate DNA–protein binding strength has been indicated for proteins with
different subdiffusive motions using simulations based on Brownian dynamics (Liu
et al. 2017).

Large-scale computer simulations have been performed to study the search
kinetics of transcription factors both in prokaryotic and eukaryotic cells. Software
called GRiP (Gene Regulation in Prokaryotes) (Zabet and Adryan 2012a) provides
a simulation framework for analysing the stochastic target search process of TF
proteins. In GRiP the DNA is modelled as a string of base pairs, and TFs are highly
diffusing components that interact with DNA sequences or with each other. This
framework has been utilised to build a detailed model of facilitated diffusion, where
TF orientation on the DNA, cooperativity of TFs, and crowding were incorporated
(Zabet and Adryan 2012b). A similar model was adopted to dissect the effects of
biologically relevant levels of mobile and immobile crowding on TF performance
in a bacterial cell (Zabet and Adryan 2013): immobile crowding fixed on the DNA
raises the occupancy of target sites significantly, whereas both mobile and immobile
crowding have negligible impacts on the mean search time. Another model of the
bacterial genome has taken two types of crowding molecules into account (Brackley
et al. 2013). Proteins which bind to and move along DNA (1D crowding) do not
change the search time significantly, even at very high densities. However, crowding
molecules diffusing freely in 3D space increase the frequency of 1D sliding of TFs
along DNA, while they enhance the robustness of the search time against any change
in protein–DNA affinity.

A different approach based on the Gillespie stochastic simulation algorithm
has been developed to analyse the influence of macromolecular crowding on gene
expression in stem cells (Golkaram et al. 2017). The crowding was assumed to
be correlated with the local chromatin density, which was calculated using Hi-
C data. Diffusive TFs and RNA polymerases were only moving in the proximity
of promoters, as crowding would not allow them to diffuse to other regions
between rebindings. The model predicted that an increase in chromatin density
during development leads to a rise in transcriptional bursting and subsequently
heterogeneous expression of genes in a cell population.

Our lab has developed a computational model of TF motions in eukaryotes
(Schmidt et al. 2014; Sewitz and Lipkow 2016) using the particle-based simulator
Smoldyn (Andrews et al. 2010). This model has considered different types of
movements for TFs: 3D diffusion, sliding, hopping, and intersegmental transfer.
Among others, it showed the importance of intersegmental transfer, and it provided
an explanation for the size of nucleosome-free regions on the DNA, which improve
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the process of TFs binding to their targets. Similar to a prokaryotic model (Tabaka
et al. 2014), inclusion of 1D diffusion reduced the time to find the target sites by one
and two orders of magnitude.

Finally, the complexity of gene regulation in higher eukaryotes has motivated the
study of evolutionary dynamics of the TF repertoire and their binding preferences.
A stochastic model based on duplication and mutation of genes suggested that more
complex organisms with higher number of genes have higher levels of redundancy
of TF binding (Rosanova et al. 2017).

4 Polymer-Based Models

The dynamic nature of the chromatin fibre lends itself to simulating chromatin as an
extended, highly mobile polymer. Several studies have extended concepts developed
in physics and applied them to the analysis of chromatin (Tark-Dame et al. 2011;
Koslover and Spakowitz 2014; Shukron and Holcman 2017). This has led to an
understanding of genome-wide data of chromosome folding and their interactions
with each other and with other nuclear elements. In all models presented here, the
chromatin fibre is a diffusing and self-avoiding chain of beads arranged in 3D space.

4.1 Models Based on Chromatin Loops

Chromatin loops have been observed in both eukaryotes and prokaryotes (Hofmann
and Heermann 2015), and their vital regulatory impact has been demonstrated. A
number of these models have suggested that chromatin loops are formed mainly by
interactions between specific protein complexes like condensin (Cheng et al. 2015)
or CTCF (Tark-Dame et al. 2014). These models have successfully reproduced
the experimentally observed genome compaction. In addition, the importance of
balance between short-range and long-range loops for controlling the changes
in chromosomes structure has been revealed (Tark-Dame et al. 2014). It has
furthermore been indicated that the dynamic bridges between condensin complexes
bring about the intrachromosomal interactions during both interphase and mitosis
in budding yeast (Cheng et al. 2015).

Other models have explored the general effects of protein interactions on
chromatin structure. A heteropolymer model incorporated proteins implicitly, by
mapping different epigenetic states onto the beads. Specific interactions between
beads of the same state were differentiated from nonspecific interactions between
any pair of beads (Jost et al. 2014). The model predicted that inter-TAD interactions
are highly dynamic, which was in line with Hi-C results. It also predicted the
fast formation of TADs, followed by a slow and long process of compaction
(Jost et al. 2014). The lattice version of this model (Olarte-Plata et al. 2016),
and another heteropolymer model (Ulianov et al. 2016) with active or inactive
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epigenomic states for beads, confirmed stronger self-attraction for inactive domains
(Ulianov et al. 2016; Olarte-Plata et al. 2016) and an increase in their compaction
as the domain size grows (Olarte-Plata et al. 2016). Other models based their
assignment on levels of gene activity, with highly active or less active states
assigned according to their expression levels (Jerabek and Heermann 2012). Highly
active chromatin sections had low interaction strength, while less active ones had
higher interaction affinity. The average distances between genomic loci, the average
volume ratio between highly active and less active regions, and the positioning of
highly active loci close to the boundary of chromosome territories were all in line
with experimental measurements. In another work the polymer model was informed
by protein binding sites and histone modifications (Brackley et al. 2016) and
produced a population of genome conformations, which predicted the 3D distances
between selected genomic sites on the globin locus in mouse ES cells.

In addition, polymer models based on protein interactions and without relying
on predetermined information for the state of chromatin beads were developed
(Giorgetti et al. 2014; Tiana et al. 2016; Chiariello et al. 2016). Using iterative
Monte Carlo simulations and comparisons to the measured contact frequencies,
the parameters of the models were optimised, and ensembles of chromatin con-
figurations were achieved (Giorgetti et al. 2014; Tiana et al. 2016; Chiariello et al.
2016). These models correctly estimated the contact frequencies of TADs (Giorgetti
et al. 2014; Chiariello et al. 2016) and the mean 3D distances between labelled loci
upon perturbations of specific sites (Giorgetti et al. 2014). Combined with live-cell
measurements, it has been suggested that changes in TAD conformations happen
fast enough (in a much shorter time frame than the cell cycle) to facilitate dynamic
interactions between regulatory elements, such as enhancer–promoter interactions
(Tiana et al. 2016). A homopolymer model (Doyle et al. 2014), which implemented
chromatin loops in the proximity of enhancer and promoter elements, indicated
that the loops can either facilitate or insulate the enhancer–promoter interactions
significantly. It was shown that the regulatory effect of the loop was dependant
on the relative positions of loop anchors. To minimise the reliance on specific
biological data, a heteropolymer model was built based on hierarchical folding and
statistical physics of disordered systems (Nazarov et al. 2015). This model has two
types of monomers that can interact with each other. By tuning the 1D sequence of
monomers and the temperature controlling the folding, the simulated contact maps
achieved a resemblance to Hi-C data.

Besides the notion that direct interactions between bound proteins shape chro-
matin loops, another mechanism, called loop extrusion, has been proposed (Nas-
myth 2001; Alipour and Marko 2012; Sanborn et al. 2015; Fudenberg et al. 2016).
This model calls for the action of extruding machines, possibly condensin or cohesin
complexes, to bind and move along the DNA in opposite directions (Nasmyth 2001;
Alipour and Marko 2012; Sanborn et al. 2015; Fudenberg et al. 2016). This leads to
the extrusion of DNA loops until domain boundaries, occupied by CTCF proteins,
are reached (Sanborn et al. 2015; Fudenberg et al. 2016). This mechanism can
account for the compaction and folding of mitotic chromosomes (Nasmyth 2001;
Alipour and Marko 2012). Furthermore, in combination with polymer physics,
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the model reproduced the observed decay of contact probabilities with increasing
genomic distance, leading to simulated contact maps consistent with Hi-C data. It
also predicted the changes in contact frequencies and 3D distances between loci due
to CTCF and cohesin perturbations (Sanborn et al. 2015; Fudenberg et al. 2016).

4.2 Models Based on Supercoiling

Different levels of unconstrained supercoiling have been observed for chromatin
(Kouzine et al. 2013; Naughton et al. 2013), and it has been reported that
transcription leads to supercoiling (Wu et al. 1988; Kouzine et al. 2008; Papantonis
and Cook 2011). To explore the effects of supercoiling on genome organisation
in both eukaryotic (Benedetti et al. 2014) and prokaryotic (Le et al. 2013) cells,
detailed polymer models have been employed. In a eukaryotic model, borders of
TADs were mapped to the chromatin fibre, and strong supercoiling was imposed to
the intervening chromatin (Benedetti et al. 2014). This led to the formation of TADs
and contact maps broadly consistent with 3C data. In a bacterial model, chromatin
was simulated as a dense array of plectonemes that were attached to a back bone
(Le et al. 2013). By inserting plectoneme-free regions in the model at the positions
of highly expressed genes, the contact frequencies observed for chromosomal
interaction domains were reproduced. Overall, supercoiling is essential for creating
chromosomal interaction domains (Le et al. 2013) and topologically associated
domains (Benedetti et al. 2014). Intriguingly, a recent model investigated the role of
supercoiling introduced by the transcribing RNA polymerase (Racko et al. 2017):
when both CTCF and cohesin were included in the simulation, cohesin rings were
seen to accumulate at CTCF sites demarking TAD borders. These observations are
also seen experimentally (Uusküla-Reimand et al. 2016). Under these conditions,
supercoiled DNA loops were extruded, and the supercoiling was the driving force
for extruding the DNA loops. This is interesting because until now it was unclear
how the energetically expensive loop extrusion could be achieved. Now, RNA
polymerase-generated supercoiling provides a credible and testable hypothesis.

4.3 Integrative Models and Self-Organisation

With significant amounts of genome-wide datasets becoming available, computa-
tional models of chromatin are becoming more sophisticated and feature-rich. Com-
putational models have explored the role of this heterogeneity in self-organisation
of the genome structure.

In budding yeast, highly expressed genes are less occupied by chromatin-
associated proteins, whereas genes that show lower overall expression are bound
more extensively (Sewitz et al. 2017a). Protein occupancy can affect the local
physical properties of the chromatin segment by means of a range of parameters
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such as changes in mass, diameter, local viscosity (Jirgensons 1958; Oldfield and
Dunker 2014), diffusion speed (Jerabek and Heermann 2012; Phillip and Schreiber
2013; Wollman et al. 2017), and electrical charge of chromatin. This has led
to the development of heteropolymeric models which incorporate some of the
underlying complexity and points towards protein occupancy being a causal factor
in determining self-organisation of genome structure in yeast (Sewitz et al. 2017a).

A significant challenge in this area is to continue to develop physical models
of heteropolymeric motion applicable to chromatin. In many instances, insights
are mainly qualitative and require physical parameters that are known to be
unphysiological. As an example, it was shown that two chromosomes that differed
in temperature-driven mobility would separate via a process akin to phase separation
(Loi et al. 2008). Chromatin segments that harboured more active genes were
given a higher temperature. This model reproduced the experimentally observed
chromosomal territories (Ganai et al. 2014), but only if a temperature difference
of 20-fold was assumed. Using much longer chromosomal segments, similar phase
separations could already be observed with much smaller differences in temperature,
bringing the model in closer proximity to real-life biological systems (Smrek and
Kremer 2017). Still, current models are not yet fully able to deal with the structural
complexity that is the hallmark of chromatin.

5 Conclusion and Outlook

It is now evident that the study of chromatin structure is at a stage where
computational models are not just an accessory but a required component of any
thorough investigation. The advent of pervasive high-performance computing has
made it possible to attempt whole genome simulations at moderate resolutions,
or smaller genomes at higher resolutions. Two future strands of development are
now visible. Firstly, an ever-increasing amount of relevant genomic data is making
its way into computational simulations. This will lead to more complex models
that incorporate genome-wide protein binding data, extended epigenetic data, and
measures of local chromatin conformation. This will also push the theoretical
descriptions in polymer physics, where we foresee that increased and intensive
collaboration and exchange is necessary. This will be mutually beneficial, as both
fields will fundamentally improve their understanding of an area of biological
physics that underpins questions of gene regulation during development, in response
to external changes, and, in cases of misregulation, disease. These efforts are just at
the beginning and will require the combined expertise of computational scientists,
physicists, and experimental biologists to fully unravel the complex dynamics that
lead to chromatin self-organisation.
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and the human beings has kept researchers far from a holistic understanding of
underlying biological processes. Over the past decade, there has been a rapid and
vast accumulation of large scale high-throughput biological data at physiological,
cellular, molecular, and submolecular levels. It includes genetic association stud-
ies of complex human diseases and traits, quantification of genome-wide RNA
expression patterns, comprehensive profiling of cellular proteins and metabolites,
gene regulatory information (DNA methylation, histone modifications, chromatin
accessibility, evolutionary constraint, etc.), and characterization of networks of
molecular interactions. The clinical utility of such enormous data demands inter-
pretation and understanding at the biological level to reveal mechanistic insights of
molecular etiology. An important element of this task is to complement the detailed
pieces of biological information with new advanced methods of system integration
and reconstruction. This requires conversion of actual biological systems into
computational models to make reliable predictions of biological responses following
targeted manipulation under untested conditions. The frequency at which signals are
presently being discovered mandates a systematic and integrative “omics” approach
to bridge the “genotype to phenotype” gap. The chapter highlights the fundamental
ways to integrate high-quality biological data that await systemic interpretations.

Keywords Complex systems · Common diseases · High-throughput data ·
Computational models · Systematic interpretation

1 Introduction to Systems Biology

1.1 Establishing the Need

The classic reductionist approach in biological sciences, generally known by
the terms like molecular biology and biochemistry, has led to generation of
enormous “parts-data.” The collection of data has been aided by the parallel
development of sequencing, structural, and expression measurement technologies.
From low-throughput data collection, the community has reached high-throughput
data collection, storage and analytical technologies.

The enormous success of reductionist approach has helped to determine the com-
position of the system and individual correlation of parts with a given phenotype, in
a large number of situations. However, it has also thrown up a major challenge, i.e.,
to understand collective behavior of thousands of parts working together to maintain
the functioning and robustness of a cell and an organism. The big challenge is to
construct a large virtual matrix where biological components interact virtually and
help understand biological decisions various scales and granularity.

Back in 1944, Norbert Weiner foresaw the need for a new approach that focused
on stitching individual parts to describe collective response and coined the term
“Systems Biology.” Though the idea was novel and path-building, the time was not
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yet ripe for launching a new approach, due to scarcity of data and computational
resources.

The idea of systems approach again picked up in the mid-1960s and 1970s, when
concepts like metabolic flux and control analysis gained traction. The aim was to
study the flow of metabolites through a certain path/pathway and identify choke
points that controlled the flux. A large body of literature during this time led to
emergence of a new Biochemical Systems Theory.

The situation remained somewhat unchanged for the next few decades, till a
new high-throughput technology of gene sequencing and expression measurement
arrived. Biological sciences suddenly changed the stick shift and went into a higher
gear of data gathering, management and analysis. The paradigm shift was greatly
helped by parallel technological advancement in the computer industry. The storage
got cheaper, processes got faster and algorithms were written to swim through
oceans of data to find patterns.

The speed, scale and variety of data breathed life into Nobert Weiner’s work
of 1940s and “Systems Biology” as a formal discipline was launched. For many
years the community debated on the concept, definition, scope and tools of the new
systems approach. However, what emerged as a common thread was the acceptance
that (a) collective behavior of biological parts was different than the sum-of-its-
parts and (b) modeling in biology was essential to understand biological decisions,
narrow down the range of experiments and generate hypothesis.

The biological community was beginning to sense the power of mathematics and
computation that played a major role in the origin and evolution of engineering from
physics. The need for modeling was also felt for the reasons that, on one hand, not
enough experiments could be performed to collect all kinds of data in all kinds of
contexts. On the other hand a lot of data in the published literature domain was
inaccurate.

Here it may be relevant to introduce a few definitions.

1.2 What Is a Model?

A model is a representation of a system in a certain form that looks closest to the
real life situation. The skeletal system of a model is made of components and their
interactions. It is somewhat easy to define a static system in terms of components
and interactions. However, the real challenge arrives when one moves from a static
to a dynamic description, i.e., creating a movie out of snapshots arranged along a
certain time series.

Modeling itself is an iterative process that goes on and on till experimental
results match the modeling predictions. A model may be rigorous with mathematical
representation or simply a sketch of nodes and arrows. It may depict a flow of
information (as in metabolic pathways) or direction invariant (as in protein–protein
interaction networks).
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Furthermore, mathematical models may be deterministic (responses are pre-
dictable) or stochastic (responses are determined by probability distribution).
Watching a model grow over an x-axis of time is called simulation. Adding
mathematical muscles to a bare bone model is both an art and a science. One needs to
be convinced of the flow of information in a certain way to adopt a certain modeling
approach. Also, the choice of modeling method is governed by the kind of question
one asks, the availability of data (qualitative to quantitative) and computational
resources.

1.3 Steps in Building a Model

1. Make a parts list data from literature and annotate every part by including
measurements, protocols, perturbations, constraints, and error bar. Here it is
important to know if the data were independently confirmed.

2. Draw a parts-interaction map in the form of pathways. The map may represent
translocation (ion channel), transformation (substrate–enzyme reaction), and
binding events (transcription factor) in the form of nodes (molecules) and edges
(interactions).

3. Use appropriate qualitative or quantitative methods to empower the power of
conversation. Build conceptual, analytical models for simulation.

Apply perturbations at predefined points where phenotypic assays are possible
and generate novel observations and hypothesis (Fig. 1).

1.4 Modeling Methods and Tools

Ever since the first conference of Systems Biology was held in Tokyo in 2000,
a large number of tools have come up addressing various needs of the modeling
community. Some of the most common resources and tools used are:

1. Pre Constructed Pathway Maps
Kyoto Encyclopedia of genes and genomes http://www.genome.ad.jp/kegg/

BioCyc http://www.biocyc.org
BioCarta https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways

2. Enzyme Databases
BRENDA http://www.brenda-enzymes.info/

ExPASy https://www.expasy.org/

3. Tools for Constructing, Simulating, and Analyzing Pathways
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary

http://www.genome.ad.jp/kegg
http://www.biocyc.org
https://cgap.nci.nih.gov/Pathways/BioCarta_Pathways
http://www.brenda-enzymes.info
https://www.expasy.org
http://sbml.org/SBML_Software_Guide/SBML_Software_Summary
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Fig. 1 A general strategy of building pathway models

In general, for modeling metabolic pathways, where large number of molecules
interact (and data are frequently available) one uses ordinary differential equation
based approach. For modeling gene expression events, where numbers are very less
(transcription factor molecules) and fluctuations are high, the method of choice is
stochastic. Some people also use ODE approach, as it comes with less computational
cost. In situations where the large scale networks need to be modeled, rule based,
fuzzy logic based, Boolean based and petri net approaches have been used with
success. As the scale of the network increases in size the computational costs soar.
To find the right balance, one may use a combination of qualitative (Boolean, rule
based) and quantitative (ODE and stochastic) methods. Some of the issues that
often emerge in quantitative modeling approaches are parameter estimation and
optimization.

The need for a good parameter estimation method is felt more when the network
data is incomplete, i.e., there is a space of unknown that needs to be considered and
computed in the model. Several ODE and stochastic methods to estimate missing
parameters are available. However, none of the methods can absolutely guarantee
the accuracy of the output. One needs to feed in predicted data over and over again
for optimization purposes. A fully parameterized and computationally optimized


