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Foreword

In 1965, a bright undergraduate at Cornell University named Arthur Winfree
undertook an experimental study for his senior thesis. He wired 71 neon tube
oscillators together into a contraption that he called the firefly machine. At a time
when the theory of nonlinear oscillations was largely confined to two and three
oscillators, Winfree was venturing out to study dozens of them. To allow the
oscillators to feel one another’s influence, he connected them all to a common
terminal through a small capacitor, so that each oscillator interacted equally with all
the others, and he grounded that terminal through a larger variable capacitor. This
setup enabled him to easily adjust the coupling strength between the oscillators.

He found that in the absence of coupling, the neon tubes blinked on and off in an
uncoordinated, incoherent fashion. That was to be expected; their natural periods
varied by about 10%. As Winfree slowly dialed up the coupling, the oscillators
remained incoherent until it reached a critical coupling strength. Above that
threshold, all the neon tubes began discharging in unison, much like the famous
congregations of synchronously flashing fireflies of Thailand, Malaysia, and other
parts of Southeast Asia. Winfree had discovered the sudden onset of synchro-
nization in a population of nonlinear oscillators.

Winfree’s inspiration had always been biology—not just fireflies with their rapid
flash rhythms, but the much slower rhythms in sleep and wake and body temper-
ature of mammals, the nearly 24-hour rhythms known as circadian rhythms. The
early 1960s were the heyday of research into circadian rhythms. With his firefly
machine, Winfree opened up a theoretical avenue for studying such rhythms.

At the time, Winfree was a college student majoring in engineering physics. His
training in solid-state theory led him to approach the question of biological syn-
chronization from a perspective that only a physicist would have. He realized that
an infinite-range approximation, in which each oscillator interacted equally with all
the others, offered the best hope of making progress on this daunting, nonlinear,
nonequilibrium, many-body problem. That was why he coupled all the oscillators
through a common capacitor. He was doing the electronic counterpart of mean-field
theory.
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Next, Winfree abstracted his firefly machine into a set of differential equations
that he could simulate on the university’s mainframe computer. At the time,
computer simulations were a rarity in science. One had to go to a computing center
and feed punch cards into a room-sized behemoth. To simplify the differential
equations, Winfree assumed that his model oscillators were weakly coupled,
compared to their attraction to their limit cycles in state space. He realized intu-
itively that under that assumption, each oscillator could be represented by its phase
alone as it moved along its limit cycle; amplitude variations could be neglected. In a
now-celebrated paper published in Journal of Theoretical Biology in 1967, Winfree
showed that his mathematical model could do what his firefly machine had done: it
could spontaneously synchronize. As the coupling strength between the oscillators
was increased, or as the variance of oscillators’ natural frequencies was decreased,
the oscillators abruptly switched from an incoherent, desynchronized state to an
ordered state in which a macroscopic fraction of the system was locked in fre-
quency. In this 1967 paper, he explicitly noted a remarkable connection to ther-
modynamic phase transitions. He wrote:

Disguised in the literature of solid-state physics under an interchange of spatial for temporal
coordinates, the phenomenon of ferroelectric crystallization is strikingly analogous: the
oscillators are replaced by a population of electric dipoles at crystal lattice points; the
orientation of their phase vectors […] becomes the angular orientation of dipoles under a
communally-generated electric field, to which they contribute […] according to orientation;
the spread of synchronized phases […] due to the spread of natural frequencies […]
becomes the distribution of dipole angles due to thermal buffeting; and the threshold [of
synchronization] is mirrored in the Curie temperature for ferroelectric transition.

About a decade later, the Japanese statistical physicist Yoshiko Kuramoto refor-
mulated Winfree’s work and recast it as a beautifully elegant system of differential
equations, now known as the Kuramoto model. Using an ingenious self-consistency
argument, and retaining Winfree’s assumptions of a mean-field model of
phase-only oscillators, but using the more tractable form of coupling between the
oscillators, Kuramoto was able to find his synchronization transition analytically
and to calculate the extent of order above the synchronization threshold.

In the half a century since Winfree’s landmark work, the study of collective
synchronization has mainly been approached through nonlinear dynamics and
computer simulation. The connection to statistical physics, though always present,
has tended to play a subordinate role. The present monograph rectifies this situation.
Shamik Gupta, Alessandro Campa, and Stefano Ruffo do a wonderful job of
summarizing earlier work on the Kuramoto model and enlarging it to embrace the
insights of statistical physics, using concepts like H-theorems, Fokker–Planck
equations, and the breakdown of detailed balance. The problems they tackle are
difficult and fascinating, both from the standpoint of nonlinear dynamics and from
that of statistical physics, because of their nonequilibrium and many-body char-
acter. Furthermore, the authors explore the effects of inertia, always an important
physical consideration, but one that has been given relatively little attention in the
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nonlinear dynamics literature. This is a very valuable addition to the literature of
dynamical systems and nonequilibrium statistical physics. I hope you’ll enjoy
reading it as much as I did.

Ithaca, New York, USA Prof. Steven Strogatz
Department of Mathematics

Cornell University
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Preface

A remarkable phenomenon common in nature is that of spontaneous synchronization,
whereby a large population of coupled oscillating units of diverse frequencies spon-
taneously evolve to operate in unison. Such a cooperative effect commonly occurs in
physical and biological systems over length and time scales of several orders of
magnitude. Examples are flashing of fireflies, animal flocking behavior, audience
clapping in concert halls, pedestrians on footbridges, and a variety of experiments
involving electrochemical and electronic oscillators, metronomes, Josephson junctions,
and laser arrays. Besides its necessity in firing of cardiac cells that keeps the heart
beating and life going, synchrony is desired in man-made systems, e.g., in parallel
computing, whereby computer processors must coordinate to finish a task on time, and
in electrical power grids, whereby generators must run in synchrony to be locked in
frequency to that of the grid. Synchrony could also be hazardous, e.g., in neurons,
leading to impaired brain functions in, e.g., epilepsy. Collective synchrony among
oscillators has attracted immensely the attention of physicists and applied mathemati-
cians, and finds applications in many fields, from quantum electronics to electro-
chemistry, from bridge engineering to social science, and others.

Synchronizing systems may be viewed from two contrasting perspectives,
namely, that of dynamical systems theory and statistical physics. To summarize in
one sentence the characterizing aspects of the two perspectives, one could say that
in the former, spontaneous synchronization occurs as a bifurcation in the dynamical
behavior of the system as a function of the strength of interaction between the
oscillating units, while in the latter, it represents a phase transition between different
forms of statistical distribution of the dynamical variables of the system con-
stituents. Until now, the approach based on dynamical systems theory has received
much more attention. This could be partly due to the fact that synchronizing
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systems have mostly been investigated using models not belonging to any class of
Hamiltonian systems, the latter constituting the prominent subject of study in
mainstream statistical physics. The use of mainly models with first-order dynamics
(only very recently are models with second-order dynamics being studied) has been
one other reason for the abundance of studies employing tools of dynamical
systems theory.

Viewed from the perspective of statistical physics, the following characteristics
of synchronizing systems may be noted. Presence of long-range interactions in
synchronizing systems allows the use of mean-field models, which may be seen as a
major simplifying feature for extensive analytical treatments. The mean-field
analysis becomes exact in the limit of a very large number of units (in particular, in
the thermodynamic limit, which is naturally achieved in synchronizing systems) for
systems where the interaction is the same between every pair of constituents. The
latter feature is not always prevalent in real systems, as there are cases where the
interaction, although long-ranged, decays slowly with the distance between the
constituents; nevertheless, also in this case, the mean-field analysis is a very useful
first approximation, and corrections can in principle be evaluated systematically.
Another essential feature of synchronizing systems is the presence of diverse nat-
ural frequencies. In the language of statistical physics, diverse frequencies may be
interpreted as quenched disordered random variables; the randomness implies the
necessity to average observable quantities over the distribution of natural fre-
quencies. Probably, the most notable feature of synchronizing systems is the fact
that the stationary states to which the dynamics settles to after a transient are not
equilibrium ones (in technical terms, such states do not satisfy detailed balance).
Thus, synchrony is necessarily a nonequilibrium phenomenon, which therefore
cannot be described by equilibrium statistical mechanics. There is as yet no theory
akin to the latter that can treat and make predictions on general terms for
nonequilibrium systems, thus necessitating the study of representative model sys-
tems so as to gain valuable insights into the physics of synchronizing systems.
Summarizing, synchronizing systems involve the study of statistical physics of
long-range systems with quenched random variables settling into nonequilibrium
steady states. This brief monograph aims to present from this perspective a study of
synchronizing systems.

Extensive studies of synchronizing systems over the years have led to the
introduction of novel theoretical concepts in nonlinear science such as the chimera
states. Chimeras are broken-symmetry states occurring in identical, symmetrically
coupled oscillator ensembles in which synchronized and desynchronized subpop-
ulations coexist. These states have been observed in a variety of experimental
situations involving, e.g., chemical and mechanical oscillators. Dynamical phe-
nomena such as chimeras have been studied analytically using the approach of
dynamical systems theory. Our focus in this monograph is on statistical physics
approach to synchronization, and interpreting chimeras, etc., within this approach is
still largely an open issue. Hence, we will not dwell on such dynamical phenomena,
interesting in their own right, in this brief monograph.
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