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Preface

This book covers the fundamentals of thermodynamics required to understand
electrical power generation systems. It also covers the application of these principles
to nuclear reactor power systems. It is not a general thermodynamics text, but is a
thermodynamics text aimed at explaining the fundamentals and applying them to the
challenges facing actual nuclear power systems. It is written at an undergraduate
level but should also be useful to practicing engineers.

This book starts with the fundamental definitions of thermodynamic variables
such as temperature, pressure, and specific volume. It defines the zeroth law of
thermodynamics. It then explains open and closed systems. The ideal gas law is
introduced, along with some of its limitations for real gases. Gas kinetic theory is
then introduced to provide a background for the ideal gas law and a foundation for
understanding for the theory of specific heats. Then it moves on to the first law of
thermodynamics and its realization in the internal energy and enthalpy potentials.
After addressing several applications, it moves on to the second law of thermody-
namics and the concept of entropy. It then approaches entropy from the statistical
mechanics viewpoint to validate that it truly is a measurable physical quantity. It
concludes the fundamental theory portion of this book by discussing irreversibility,
availability, and the Maxwell relations, touching slightly on the third law of
thermodynamics.

The second portion of this book is devoted to specific applications of the
fundamentals to Brayton and Rankine cycles for power generation. Brayton cycle
compressors, turbines, and recuperators are covered, along with the fundamentals of
heat exchanger design. Rankine steam generators, turbines, condensers, and pumps
are discussed. Reheaters and feed water heaters are also covered. Ultimate heat
rejections by circulating water systems are also discussed.
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viii Preface

The third part of this book covers current and projected reactor systems and how
the thermodynamic principles are applied to their design, operation, and safety
analyses.

Detailed appendices cover metric and English system units and conversions,
detailed steam and gas tables, heat transfer properties, and nuclear reactor system
descriptions.

Albuquerque, NM, USA Bahman Zohuri
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Chapter 1 ®)
Definitions and Basic Principles s

Nuclear power plants currently generate better than 20% of the central station
electricity produced in the United States. The United States currently has 104 oper-
ating power-producing reactors, with 9 more planned. France has 58 with 1 more
planned. China has 13 with 43 planned. Japan has 54 with 3 more planned. In
addition, Russia has 32 with 12 more planned. Nuclear-generated electricity has
certainly come into its own existence and is the safest, cleanest, and greenest form of
electricity currently produced on this planet. However, many current thermodynam-
ics texts ignore nuclear energy and use few examples of nuclear power systems.
Nuclear energy presents some interesting thermodynamic challenges, and it helps to
introduce them at the fundamental level. Our goal here will be to introduce thermo-
dynamics as the energy conversion science that it is and apply it to nuclear systems.
Certainly, there will be many aspects of thermodynamics that are given little or no
coverage. However, that is true for any textual introduction to this science; however
by considering concrete systems, it is easier to give insight into the fundamental laws
of science and to provide an intuitive feeling for further study. For further informa-
tion, please refer to references [1-4] at the end of this chapter.

1.1 Typical Pressurized Water Reactor

By far the most widely built nuclear system is the pressurized water reactor (PWR).
There are a number of reasons for this. Steam turbines have for many decades been
the dominant means of generating mechanical energy to turn electrical generators.
The temperatures reached in the thermodynamic cycle of a PWR are within the range
of fairly, common engineering materials. They were the first system built and
operated reliably to produce electricity. A typical PWR system is described in
Fig. 1.1.

The basic PWR consists of five major components, the reactor core, steam
generator(s), steam turbine, condenser, and electrical generator and three water/
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Fig. 1.1 Pressurized water reactor schematic

steam loops. Each loop requires a pump that is not shown to keep the diagram
cleaner. The nuclear energy is converted to thermal energy in the reactor core. This
thermal energy is then transported via the first loop to the steam generator where it is
passed to the water in the second loop. The water in the second loop enters as a liquid
and is turned to steam. The steam then passes to the turbine where the thermal energy
is converted to mechanical energy to rotate the electrical generator. After the thermal
energy has been converted to mechanical energy in the steam turbine, the
low-pressure steam passes to the condenser to be cooled by the water in the third
loop. The second law of thermodynamics tells us that we cannot simply expand the
steam to a low enough energy state that it can return to the steam generator in its
original liquid state. Therefore, we must extract more thermal energy from the
low-pressure steam to return it to its liquid state where it can be pumped back into
the steam generator. The third loop is called the circulating water system, and it is
open to the environment. There are multiple ways of providing this cooling water
including intake and return to a river or the ocean, intake and return to a cooling
pond, or intake from a river and exhaust through a cooling tower. However, we are
getting ahead of ourselves.

Consider for a minute why nuclear energy is so useful. A great deal of energy is
produced by a very little mass.

Example calculation Calculate the U-235 consumed to produce 1 MW of thermal
energy for 1 day. Note that a megawatt is a unit of power or energy per unit time.

1 MW = 10°W = 10° J/s 1 day = 24 h = 24*3600 s

The energy released in fission of a U-235 atom is ~200 Mev.
leV=16x10""J1MeV =16 x 107" J200 MeV = 32 PJ.
Fissioning one atom of U-235 produces 3.2 x 107" J.

To produce 10° J requires 106/3.2 x 10" atoms = 3.125 x 10'® atoms
and for a duration of 8.64 x 10%s.
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The total number of atoms consumed will be 3.125 x 8.64 x 10%° atoms.

Therefore 2.7 x 10?! atoms will be consumed.

A gram-mole of U-235 is 6.022 x 10** atoms.

So a gram is 6.022 x 10%/235 = 2.563 x 10*' atoms/g.

Therefore 1 MW-day of nuclear energy consumes 1.05 g of U-235.

The fundamental thing to understand is that a PWR converts nuclear energy to
electrical energy and it does this by converting the nuclear energy first to thermal
energy and then converting the thermal energy to mechanical energy, which is
finally converted to electrical energy. The science of thermodynamics deals with
each of these conversion processes. To quantify how each of these processes takes
place, we must understand and apply the laws of thermodynamics.

1.2 Scope of Thermodynamics

Thermodynamics is the science that deals with energy production, storage, transfer,
and conversion. It is a very broad subject which affects most fields of science
including biology and microelectronics. The primary forms of energy considered
in this text will be nuclear, thermal, chemical, mechanical, and electrical. Each of
these can be converted to a different form with widely varying efficiencies. Predom-
inantly thermodynamics is most interested in the conversion of energy from one
form to another via thermal means. However, before addressing the details of
thermal energy conversion, consider a more familiar example. Newtonian mechanics
defines work as force acting through a distance on an object. Performing work is a
way of generating mechanical energy. Work itself is not a form of energy, but a way
of transferring energy to a mass. So when one mass gains energy, another mass, or
field, must lose that energy.

Consider a simple example. A 65-kg woman decides to go over Niagara Falls in a
25-kg wooden barrel. (The first person to go over the fall in a barrel was a woman,
Annie Taylor.) Niagara Falls has a vertical drop of 50 m and has the highest flow rate
of any waterfall in the world. The force acting on the woman and barrel is the force
of gravity, which at the surface of the Earth produces a force of 9.8 N for every
kilogram of matter that it acts on. So we have:

W=FxD F=(65+25)x98=882.0N D=50m
W = 882.0 x 50.0 = 44,100 N-m =44.1 K-J

A Newton-meter is a joule and 1000 J is a kJ. Therefore, when the woman and
barrel went over the falls, by the time they had reached the bottom, the force of
gravity had performed 44.1 kJ of work on them. The gravitational field had 44.1 kJ
of potential energy stored in it, when the woman and the barrel were at the top of the
falls. This potential energy was converted to kinetic energy by the time the barrel
reached the bottom of the falls. Kinetic energy is also measured in joules, as with all
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other forms of energy. However, we are usually most interested in velocities when
we talk about kinetic energies, so let us extract the velocity with which she hit the
waters of the inlet to Lake Ontario.

AKE=APE=44.1kI=1/2mV*=(90/2)kg x V> V?=44.1kJ/(90/2) kg

Now it is a matter of converting units. A joule is a Newton-meter. 1 N is defined
as 1 kg accelerated at the rate of 1 m/s/s. So:

44.1 kJ = 44,100 N-m
= 44,100 km/s/s-m
= 44,100 kg (m/s)*
V2= 44,100 kg (m/s)*/(90/2) kg
=490/(1/2) = 980(m/s)?
V=313 m/s (~ 70 mph)

Needless to say she recommended that no one ever try that again. Of course,
others have, some have made it, and some have drowned.

Before leaving this example, it is worth pointing out that when we went to
calculate the velocity, it was unaffected by the mass of the object that had dropped
50 m. So one-half the velocity squared represents what we will call a specific energy
or energy per kilogram. In addition, the potential energy at the top of the falls could
be expressed as a specific potential energy relative to the waters below. The potential
energy per pound-mass would just be the acceleration of gravity times the height of
the falls. Typically, we will use lowercase letters to represent specific quantities and
uppercase letters to represent extensive quantities. Extensive quantities are depen-
dent upon the amount of mass present. Specific quantities are also referred to as
intensive variables, though there are some intensive variables that have no extensive
counterpart, such as pressure or temperature.

p.e. =mgh/m = gh=9.8 x 50 = 0.49 kJ /kg
It is also worth pointing out that Newton’s law of gravity states that:

miM,

F=G=5

(1.1)

where m; is the smaller mass and M, is the mass of the Earth. We can find the
specific force on an object by dividing the gravitational force by the mass of the
object. For distances like 50 m on the surface of the Earth (R = 6, 378, 140 m), we
can treat R as constant, but if the distance the gravitational force acts through is
comparable to the radius of the Earth, an integration would be required. Even on the
top of Mount Everest, the gravitational potential is within 0.25% of that at sea level,
so gravity is essentially constant for all systems operating on the face of the Earth.
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1.3 Units

In this section, we will discuss the Systeme International (SI) and English (E) systems.

1.3.1 Fundamental Units

Before going further it will be a very good idea to discuss units for physical
quantities and the conversion of units from one system to another. Unfortunately,
the field of thermodynamics is beset with two popular systems of units. One is the
Systeme International (SI) system consisting of the kilogram, meter, and second. The
other is the English (E) system consisting of the pound-mass, foot, and second.

Starting with the SI system, the unit of force is the Newton. The unit of work or
energy is the joule, and the unit of pressure is the Pascal. We have:

1 N=1 k-m/s’
1 J=1 N-m
1 Pa=1 N/m?

Now the acceleration of gravity at sea level on Earth is 9.8066 m/s?, so a 100 kg
mass will weigh 980.66 N. Also when we want to avoid spelling out very large or
small quantities, we will usually use the standard abbreviations for powers of ten in
units of 1000. We have:

kilo = 10°
mega = 10°
giga = 10°
deci = 107!
centi = 1072
milli = 1073

micro = 107°
nano = 10~°

For the English system, we have:

Ibm => 1 Ibf (at Sea Level)

1 ft-Ibf = 1Ibf x 1 ft

1 British Thermal Unit (BTU) = 778 ft-Ibf
1 psi = 1 Ibf/in?

Note that the fact that 1 Ibf = 1 Ibm at sea level on Earth means that a mass of
100 1bm will weigh 100 1bf at sea level on Earth.

The acceleration of gravity at sea level on Earth is 32.174 ft/s*. Thus we have
1 Ibf/(1 Ibm-ft/s>) = 32.174. If we move to another planet where the acceleration of
gravity is different, the statement that 1 Ibm > 1 Ibf doesn’t hold.
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Consider comparative weights on Mars. The acceleration of gravity on Mars is
38.5% of the acceleration of gravity on Earth. So in the SI system, we have:

W = 0.385%9.8066 m/s> x 100 kg = 377.7N
In the English system, we have:

W = 0.385%100 Ibm = 38.5 Ibf

1.3.2 Thermal Energy Units

The British thermal unit (Btu) is defined to be the amount of heat that must be
absorbed by a 1 Ib-mass to raise its temperature 1 °F. The calorie is the SI unit that is
defined in a similar way. It is the amount of heat that must be absorbed by 1 g of
water to raise its temperature 1 °C. This raises the question as to how a calorie
compares with a joule since both appear to be measures of energy in the SI system.
James Prescott Joule spent a major part of his life proving that thermal energy was
simply another form of energy like mechanical kinetic or potential energy. Eventu-
ally his hypothesis was accepted, and the conversion factor between the calorie and
joule has been defined by:

1 cal =4.1868 1]

The constant 4.1868 is called the mechanical equivalent of heat.

1.3.3 Unit Conversion

As long as one remains in either the SI system or the English system, calculations
and designs are simple. However, that is no longer possible as different organiza-
tions and different individuals usually think and work in their favorite system. In
order to communicate with an audience that uses both SI and English systems, it is
important to be able to convert back and forth between the two systems. The basic
conversion factors are:
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1 kg = 2.20462 Ibm
11bm = 0.45359 kg

1 m = 3.2808 feet
1 foot = 0.3048 m

1J =0.00094805 Btu
1 Btu = 105517

1 atm = 14.696 psi

1 atm = 101325 Pa
1 psi = 6894.7 Pa

1 bar = 100000.0 Pa
1 bar = 14.504 psi

The bar unit is simply defined by rounding off sea-level atmospheric pressure to
the nearest 100 K-Pa. There are many more conversion factors defined in the
Appendix, but they are all derived from this basic few.

1.4 Classical Thermodynamics

Classical thermodynamics was developed long before the atomic theory of matter
was accepted. Therefore, it treats all materials as continuous and all derivatives well
defined by a limiting process. Steam power and an ability to analyze it and optimize
it was one of the main drivers for the development of thermodynamic theory. The
fluids involved always looked continuous. A typical example would be the definition
of the density of a substance at a point. We have:

Am

= lim (1.2)
AV—0 AV

p

As long as AV does not get down to the size of an atom, this works. Since
classical thermodynamics was developed, however, we have come to understand
that all gases and liquids are composed of very small atoms or molecules and a
limiting process that gets down to the atomic or molecular level will eventually
become discontinuous and chaotic. Nevertheless, the continuous model still works
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well for the macroscopic systems that will be discussed in this text, and classical
thermodynamics is based on it.

At times, we will refer to an atomistic description of materials in order to develop
a method of predicting specific thermodynamic variables that classical thermody-
namics cannot predict. A typical example is the derivative that is called the constant-
volume specific heat. This variable is defined as the rate of change of the internal
energy stored in a substance as a function of changes in its temperature. Classical
thermodynamics demonstrates that this variable has to exist and makes great use of
it, but it has no theory for calculating it from first principles. An atomistic view will
allow us to make some theoretical estimates of its value. Therefore, at times we will
deviate from the classical model and adopt an atomistic view that will improve our
understanding of the subject.

Classical thermodynamics is also an equilibrium science. The laws of thermody-
namics apply to objects or systems in equilibrium with themselves and their sur-
roundings. By definition, a system in equilibrium is not likely to change. However,
we are generally interested in how systems change as thermal energy is converted to
and from other forms of energy. This presents a bit of a dilemma in that the
fundamental laws are only good for a system in equilibrium and the parameters we
want to predict are a result of thermal energy changes in the system. To get around
this dilemma, we define what is called a quasi-equilibrium process. A quasi-
equilibrium process is one that moves from one system state to another so slowly
and so incrementally that it looks like a series of equilibrium states. This is a concept
that classical thermodynamics had a great deal of difficulty clarifying and quantify-
ing. Basically, a process was a quasi-equilibrium process if the laws of equilibrium
thermodynamics could characterize it. This is sort of a circular definition, but once
again, we will find that the atomistic view allows us to make some predictions and
quantifications that identify a quasi-equilibrium process. Quasi-equilibrium pro-
cesses can occur very rapidly on time scales typical of human observation. For
example, the expansion of the hot gases out the nozzle of a rocket engine can be well
described as a quasi-equilibrium process with classical thermodynamics.

1.5 Open and Closed Systems

In the transfer and conversion of thermal energy, we will be interested in separating
the entire universe into a system and its environment. We will mainly be interested in
the energy transfers and conversions that go on within the system, but in many cases,
we will need to consider its interactions with the rest of the world or its environment.
Systems that consist of a fixed amount of mass that is contained within fixed
boundaries are called closed systems. Systems that pass the mass back and forth to
the environment will be called open systems. Both open and closed systems allow
energy to flow across their borders, but the flow of mass determines whether they are
open or closed systems. Open systems will also carry energy across their borders with
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the mass as it moves. Consider the simple compressed gas in the piston below as a
closed system (Fig. 1.2).

In analyzing the closed system, we will be concerned about the changes in the
internal energy of the compressed gas as it interacts with its environment and the
transfers of mechanical and thermal energies across its boundary.

In analyzing open systems, the concept of a control volume comes into play. The
control volume is the boundary for the open system where the energy changes that
we are interested in take place. The thing separates the open system from its
environment. Consider the following open system where we have now allowed
mass to flow in and out of the piston of our closed system above (Fig. 1.3).

The control volume 1ooks a lot like our system boundary from before, and it is. The
only difference is that we now allow mass to flow in and out of our control volume.
Thermal and mechanical energy can still flow across the boundary or in and out of the
control volume. The mass flowing in and out can also carry energy with it either way.



