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Preface

Design is the process of properly placing materials in a space to obtain a desired
performance. The placement of materials sets a device’s shape, which determines
its performance. The performance of the electromagnetic system is also determined
by its shape. But, the performance of the electromagnetic system is expressed with
the electromagnetic field; its performance is indirectly related to the shape. This
book presents the design sensitivity analysis for the electromagnetic system, which
is on the relation between the performance and the geometric design variables. The
design sensitivity, which is the variation rate of the system performance with
respect to the design variables, provides information on how the design variables
affect the performance.

The electromagnetic systems are diverse in type and size, ranging from
micro-electronic devices to large power apparatus. For analysis of such various
electromagnetic systems, the finite element method is popular among the engineers,
researchers and graduate students. But, the finite element code is an analysis tool
not a design tool; the design process using the finite element code needs much trial
and error, which requires considerable time and effort.

In the mechanical engineering, a large number of research papers and books for
the optimal structure design are found and some commercial codes with the design
sensitivity analysis are available. By contrast, there are only few books on the
optimal design of the electromagnetic system. This book may be the first one
devoted to the sensitivity analysis for the electromagnetic system.

This book aims to cover the theory and application of the shape sensitivity
analysis for the electromagnetic system in a unified manner. The focus is on the
continuum sensitivity analysis, which has great advantages over the other sensi-
tivity methods: the finite difference method and the discrete method. The continuum
design sensitivity is obtained as an analytical form; thus, it makes it easy to cal-
culate the sensitivity and provides accurate sensitivity. In addition, it can be easily
implemented with existing numerical analysis codes such as finite element method
and boundary element method since its sensitivity calculation does not depend on
the analysis method.
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The continuum shape sensitivity for the electromagnetic system is derived by
taking the material derivative of the design performance and the variational state
equation. In this differentiation, the Lagrange multiplier method is introduced to deal
with the implicit equality constraint of the variational state equation. An adjoint
variable technique is also employed to express explicitly the sensitivity in terms
of the design variables. The variational identities are used to transform the sensitivity
of a domain integral into a boundary integral on the design surface. This continuum
shape sensitivity analysis, which is applied to four electromagnetic systems: the
electrostatic system, the magnetostatic system, the eddy current system and the DC
conductor system, provides the sensitivity formulas for each electromagnetic system.
The sensitivity formulas so obtained are the general three-dimensional ones of an
analytical form. These analytical sensitivity formulas provides not only physical
insight but also great advantages in numerical implementation.

The book contains eight chapters and four appendices. In Chap. 1 a brief review
of optimal design process and design steps for the electromagnetic system is pre-
sented and the geometric design variables are classified. The Maxwell’s equations
and the governing differential equations are introduced and the characteristics of the
electromagnetic system are described for comparison with the structural system in
the mechanical engineering. An overview of design sensitivity calculation method
is also provided.

In Chap. 2, the four variational state equations for the electrostatic system, the
magnetostatic system, the eddy current system and the DC current-carrying con-
ductor are formulated by the variational method of the virtual work principle. The
variational equations are derived from the differential equations with boundary
conditions and they are used for deriving the continuum sensitivity formulas for the
four electromagnetic systems in Chaps. 3–6.

In Chap. 3, the general three-dimensional continuum shape sensitivities for the
electrostatic system are derived by using the material derivative and are applied to
design problems. The shape sensitivity for the electrostatic system is classified into
two types according the design variable. One is for the design problem of outer
boundary and the other is for the design problem of interface. Each one has also two
different types of objective functions: domain integral and system energy. The
sensitivity for the system energy is examined in the electric-circuit point of view to
show its sign dependency on the source condition and to derive the capacitance
sensitivity. The general sensitivity formulas are applied to analytical and numerical
design examples to be validated.

In Chap. 4, the general three-dimensional continuum shape sensitivities for the
magnetostatic system are derived and are applied to design problems. Unlike in the
electrostatic system, the shape sensitivity for the magnetostatic system has only one
type for the design problem of interface. The interface design problem has also two
different types of objective functions: domain integral and system energy. The
magnetostatic system may have four different material regions: ferromagnetic
material, permanent magnet, source current, air; thus, the general sensitivity is
expressed as the sensitivity formulas for nine interfaces. The system energy sen-
sitivity is derived in the electric-circuit point of view, and it is used to the
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inductance sensitivity. The general sensitivity formulas are applied to analytical and
numerical design examples to be validated.

In Chap. 5, the three-dimensional continuum shape sensitivities for the eddy
current system are derived and are applied to design problems. Like in the magneto-
static system, the shape sensitivity for the eddy current systemhas only one type for the
design problem of interface. The interface design problem has also two different types
of objective functions: domain integral and system power. The eddy current system
may have four different material regions: ferromagneticmaterial, conductivematerial,
source current, air; thus, the general sensitivity is expressed as the sensitivity formulas
for nine interfaces. The system power sensitivity is derived in the electric-circuit point
of view, and then the inductance sensitivity and the resistance sensitivity are derived.
The two sensitivity formulas are applied to numerical examples to be validated.

In Chap. 6, the general three-dimensional continuum shape sensitivity for the
DC conductor system is derived and are applied to design problems. The design
problem of the DC conductor system is similar to that of the electrostatic system,
but it has only the design variable of outer boundary. The design problem of outer
boundary has also two different types of objective functions: domain integral and
system loss power. The derived sensitivity formula is expressed as a boundary
integral of Dirichlet boundary and Neumann boundary. The loss power sensitivity
is used to derive the resistance sensitivity. The general sensitivity formulas are
applied to analytical and numerical design examples to be validated.

The shape optimal design using the sensitivity requires the optimization algo-
rithms and the successive geometry modeling for evolving shapes. For this purpose,
Chap. 7 introduces the level set method. The level set method expresses the shape
variation with the velocity field; thus, it matches well with the continuum shape
sensitivity, whose sensitivity formulas are expressed with the velocity. The level set
method and the continuum sensitivity are coupled to transform the usual iterative
optimization into the solving process of the level set equation, which is the transient
analysis in the time domain. The adaptive level set method and the artificial dif-
fusion technique are also presented for solving the coupled level set equation with
existing finite element codes.

In Chap. 8, the hole and the dot sensitivity analyses are presented for the
topology optimization of the electrostatic and the magnetostatic systems. The hole
sensitivity formulas in the dielectric and the magnetic material regions are derived
by using a hole sensitivity concept and the continuum sensitivity in the electrostatic
and the magnetostatic system. The dot sensitivity formulas in the dielectric and the
magnetic material regions are also derived by using a dot sensitivity concept and the
continuum sensitivity. The derived hole and the dot sensitivity formulas are applied
to numerical examples to show its usefulness.

The four Appendices A-D provide more analytical and numerical examples for
the four electromagnetic systems, most of which are ones for other coordinates and
interfaces not included in the examples of the Chaps. 3–6.

Suwon, Korea (Republic of) Il Han Park
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Chapter 1
Introduction

1.1 Optimal Design Process

Optimal design of electromagnetic system consists of procedures to improve the
performance by evolving design variables. There are many kinds of performance
measures such as electric/magnetic field distribution, system energy, system power,
force/torque, energy loss, equivalent circuit parameters, induced voltage, material
volume, etc. Moreover, the electromagnetic system has various constraints and
design variables since it is composed of many different materials such as dielectrics,
conductor, insulator, charge, magnetic material, current, permanent magnet and
electrolet.

The structure of the electromagnetic system is usually so complex and sophis-
ticated that its design process has been dependent on the engineer’s experience and
intuition. A systematic design process will enable the designer to develop an
improved device with less time and cost. For this purpose, simulation-based design
is efficient for development and production of the better electromagnetic devices [1].

The simulation-based design consists of modeling, system analysis, sensitivity
analysis, and optimization. The optimal design process is shown in Fig. 1.1, where
the system analysis and the sensitivity analysis are important procedures [2].

1.2 Design Steps of Electromagnetic System

Choosing the design variables in system modeling is an important step to a suc-
cessful design. It is often difficult to identify the design variables that have sub-
stantial influence on the performance. It is mainly due to system structure’s
complexity. Wrong choice of the design variables, which limits the size of design
space for searching the design variables, results in a wrong design.

© Springer Nature Singapore Pte Ltd. 2019
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Mathematical and Analytical Techniques with Applications to Engineering,
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The result of system analysis is used to evaluate the system performance.
Nowadays, most of the system analyses for electromagnetic devices are carried out
using numerical methods such as the finite element method, the boundary element
method, etc. The finite element method, which is widely applicable to various
electromagnetic systems including nonlinear system, provides reliable and accurate
result; it is most frequently employed by the researchers and engineers. This book
also employs the finite element method to analyze the electromagnetic system.

The objective function (performance measure, cost function), which is a criterion
to ascertain whether the design is satisfactory or not, is evaluated with the results of
the system analysis. Definition of the objective function, which has great influence
on sensitivity evaluation and convergence, is also important to obtain a successful
design. For example, the force/torque of the electromechanical system can be easily
controlled with the objective function of the system energy in comparison with the
objective function of force/torque, which often leads to difficulty and complexity of
sensitivity evaluation. During the design optimization process, the objective func-
tion is minimized or maximized by the optimization algorithm of the mathematical
programming.

The objective function for the electromagnetic system is usually nonlinear to the
design variables. It is common to use the gradient-based method for the opti-
mization algorithm. The gradient, which is called the design sensitivity of the
objective function, is obtained by differentiating the objective function with respect
to the design variables. The gradient information is used as the searching direction
in the design space. The sensitivity analysis is the main concern of this book. The
sensitivity, which means the effect of the design variables on the objective function,
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System analysis 
(FEM, BEM, ··· )

Design sensitivity analysis 
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Fig. 1.1 Design process of
electromagnetic system
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provides the information on how the design variables have influence on the
objective function. The sensitivity information can be also used for identifying the
key design variables.

The optimization problems are usually subject to constraints. If a design satisfies
given constraints, it is called feasible design. If not, it is infeasible design. Whereas
some design problems have simple constraints such as the upper/lower limits of the
design variables and the constant volume of used material, others have complex
constraints that are indirectly affected by the design variable. For example, when an
electric field at a point of an electrostatic system is given as a constraint, it is usually
impossible to explicitly express that with the design variables. This kind of con-
straint is called implicit constraint. The constraint of an explicit function of the
design variables is simple, whereas the constraint of an implicit function of the
design variables is complex to deal with. In this book, the electromagnetic state
equation of the variational form is taken as a constraint and incorporated into the
objective function by the Lagrange multiplier method.

1.3 Design Variables

The optimal design is the searching process for the better design variables providing
the desired performance. Unless the design variables are well defined, the design
space is limited so that a good design is not obtained no matter how accurate
solution is used. For example, while a coarse geometrical modeling does not matter
for an insensitive design region, a fine geometrical modeling is needed for a sen-
sitive design region.

The material of the electromagnetic systems can be classified into two categories:
active ones and passive ones. The active materials generate the source field, whereas
the passive materials only react to the external field. The ferromagnetic material, the
dielectrics, the electric conductor, the electric insulator, and the air belong to the
passive materials. The electric charge, the electric current, the permanent magnet, and
the electrolet are the active materials. For the optimal design of the electromagnetic
system, the property of these materials is not taken as the design variable in this
book, since it is neither controllable nor continuous in the available materials.

In this sensitivity analysis, only the geometric parameters of the material
structure are taken as the design variables. The geometric design variables are
classified into three categories: size, shape and topology as shown in Fig. 1.2. The
size design variables such as width, height, depth, radius, angle, etc. are used for
simple structures. The shape design variables, which cannot be defined with the size
design variables, are used for more complex geometry. During the shape design
process, its initial topology is maintained. The topology design variables are related
to system layout. When a new material domain is generated outside a given material
domain or an air hole is generated inside the material domain, the system topology
changes. Recently, some topology design methods have been introduced to the
electromagnetic system.

1.2 Design Steps of Electromagnetic System 3



Mathematically, the size design variables are a subset of the shape design
variables, and the shape design variables are also a subset of the topology design
variables. This book deals with the shape and topology design of the electromag-
netic system. The optimal shape design is carried out by using the shape design
sensitivity, which is derived as the analytical integral forms in the subsequent
chapters. The sensitivity with respect to the size design variables are easily cal-
culated by the design variable parametrization, which relates the size design vari-
able to the shape design sensitivity. The topology sensitivity can be also derived
with the concept of topology sensitivity and the shape design sensitivity.

1.4 Equations and Characteristics of Electromagnetic
Systems

The electromagnetic systems, which are represented with the Maxwell’s equations,
are usually modeled by the partial differential equations for the electric and mag-
netic potentials. The electromagnetic systems are classified into four systems:
electrostatic system, magnetostatic system, eddy current system, and wave system.
These four systems are also represented with the governing partial differential
equations: elliptic, parabolic and hyperbolic equations [3]. The governing equations
for the electrostatic and magnetostatic systems are elliptic, and the ones for the eddy
current and the wave systems are parabolic and hyperbolic, respectively. The
understanding of the characteristics of the electromagnetic system is important to
the development of the sensitivity analysis. In particular, recognition of differences
between the electromagnetic system and the mechanical structure is helpful.

1.4.1 Maxwell’s Equations and Governing Equations

The electromagnetic systems are generally represented with the Maxwell’s equa-
tions and the constitutive relations [4–7]. The Maxwell equations in the differential
form are:

size shape topology

w

h

Fig. 1.2 Geometric design variables
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$ � D ¼ q ð1:4:1Þ

$� E ¼ � @B
@t

ð1:4:2Þ

$ � B ¼ 0 ð1:4:3Þ

$�H ¼ Jþ @D
@t

ð1:4:4Þ

where D is the electric flux density, q the volume charge density, E the electric field
intensity, H the magnetic field intensity, J the volume current density and B the
magnetic flux density. The constitutive relations are given as

D ¼ eEþPo ð1:4:5Þ

H ¼ mB�Mo ð1:4:6Þ

J ¼ rE ð1:4:7Þ

where e is the electric permittivity, Po the permanent polarization, m the magnetic
reluctivity, Mo the permanent magnetization, and r the electric conductivity. This
book deals with only the low frequency system, where the displacement current in
(1.4.4) is ignored. The wave system is out of the scope of this book.

The electrostatic system is represented by two equations from Maxwell’s
equations and one constitutive relation;

$ � D ¼ q ð1:4:8Þ

$� E ¼ 0 ð1:4:9Þ

D ¼ eEþPo ð1:4:10Þ

With the electric scalar potential / introduced, the governing partial differential
equation for the electrostatic system is obtained as Poisson equation;

�$ � e$/ ¼ q� $ � Po ð1:4:11Þ

The magnetostatic system is represented by two equations from Maxwell’s
equations and one constitutive relation;

$�H ¼ J ð1:4:12Þ

$ � B ¼ 0 ð1:4:13Þ
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H ¼ mB�Mo ð1:4:14Þ

With the magnetic vector potential A introduced, the governing partial differ-
ential equation for the magnetostatic system is obtained as

$� m $� Að Þ ¼ Jþ$�Mo ð1:4:15Þ

The eddy current system is represented by three equations from Maxwell’s
equations and two constitutive relations;

$�H ¼ Jþ Je ð1:4:16Þ

$ � B ¼ 0 ð1:4:17Þ

$� E ¼ � @B
@t

ð1:4:18Þ

H ¼ mB ð1:4:19Þ

Je ¼ rE ð1:4:20Þ

where J is the source current density and Je is the eddy current density. By
introducing the magnetic vector potential A and the electric scalar potential /, the
governing partial differential equation for the eddy current system is obtained as

$� m$� A ¼ J� r
@A
@t

þ$/

� �
ð1:4:21Þ

In the linear eddy current system without the term$/, when the harmonic source
is considered, the governing equation for the steady state is expressed using the
complex variables as

$� m$� Aþ jxrA ¼ J ð1:4:22Þ

In this book, the DC current-carrying conductor is separately described. The DC
current-carrying conductor, although it has the same form of governing equation as
the electrostatic system, is quite different in physics and related to the resistance of
the equivalent circuit, the Joule loss, the current distribution, etc. The DC
current-carrying conductor is represented by two equations from Maxwell’s equa-
tions and one constitutive relation;

$ � J ¼ 0 ð1:4:23Þ

$� E ¼ 0 ð1:4:24Þ
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J ¼ rE ð1:4:25Þ

where (1.4.23) is the continuity equation, which is implicit in (1.4.4) of Maxwell’s
equations. With the electric scalar potential / introduced, the governing partial
differential equation for the DC current-carrying conductor is obtained as Laplace
equation;

�$ � r$/ ¼ 0 ð1:4:26Þ

1.4.2 Characteristics of Electromagnetic Systems

The shape design sensitivity analysis has been well developed for optimal design of
mechanical structures, for which a large number of research results are found in
books and papers. Such a wealth of research results is very helpful for the sensi-
tivity analysis of the electromagnetic system. There are, however, some differences
between the electromagnetic system and the mechanical structure. Recognition of
them helps to develop the sensitivity analysis for the electromagnetic systems.

The electromagnetic field exists even in the vacuum, whereas the mechanical
fields such as stress, strain, fluidic velocity exist only where the media exist [8, 9].
In the electromagnetic system, the electric/magnetic field exists not only inside the
materials but also in the air near the materials. In electromagnetics, the vacuum and
the air have the material properties of dielectric constant e0 and magnetic perme-
ability l0. Thus, the design variable of the electromagnetic system is basically the
interface where two different materials meet. For example, the design problem of a
magnet, of which the design objective is to produce a uniform magnetic field, is to
optimize the interface shape between the ferromagnetic material, the air, and the
current coil [10].

The sources of the electromagnetic field can be charge, current, permanent
magnet, or electrolet, whereas the source of the mechanical field is only the force. In
addition, the sources of the electromagnetic system are usually supplied by the
voltage source or the current source through the circuit terminal. The permanent
magnet and the electrolet are, however, treated as materials with the source. The
electromagnetic system, which is connected to the external circuit, is driven or
controlled by the external circuit. Thus, it is important to extract its equivalent circuit
parameter. If the equivalent circuit parameter representing the electromagnetic
system is incorporated into the external circuit system, the operating characteristics
of the electromagnetic system can be easily obtained by analyzing the circuit system.

There are two kinds of nonlinearity in the structural system: the material non-
linearity and the geometrical nonlinearity. The geometrical nonlinearity comes from
deformation of the structure geometry. But there is only the material nonlinearity in
the electromagnetic system, which appears mainly in the magnetic saturation of the
ferromagnetic material [11].

1.4 Equations and Characteristics of Electromagnetic Systems 7



1.5 Design Sensitivity Analysis

The sensitivity calculation is the mathematical procedure of obtaining the deriva-
tives of the objective function with respect to the design variables. The sensitivity
calculation of state variables with respect to the design variables often costs the
major computational time for optimization process. It is, therefore, crucial to have
an efficient algorithm for calculating the sensitivity.

There are two approaches to obtain the design sensitivity. One is finite difference
method and the other is analytic differentiation method. The analytic differentiation
method is also divided into two methods: discrete one and continuum one [1, 12].

1.5.1 Finite Difference Method

The finite difference method is the simplest technique to obtain the sensitivity.
When the objective function is given as a function FðpÞ of a design variable p, its
sensitivity can be approximated by comparing FðpÞ with FðpþDpÞ perturbed by
Dp in the design variable;

dF
dp

’ FðpþDpÞ � FðpÞ
Dp

ð1:5:1Þ

This approximation method is so easy to implement that it is popular among
engineers. This approximate sensitivity is frequently compared with the sensitivity
obtained by the other methods for evaluating their efficiency and accuracy. When
design variables are numerous, the finite difference method is computationally
expensive. When the number of design variable is n, it requires nþ 1 times analyses
of the system matrix equation. In addition, it has a serious problem of accuracy
since its accuracy is strongly dependent on the perturbation size Dp. Too-small
perturbation causes numerical truncation errors, and too-large perturbation leads to
inaccurate results. Thus, this method is unsuitable for the shape design problem
with many design variables. The number of design variables for the shape design is
the number of all nodes on the design surface.

1.5.2 Discrete Method

The discrete method of the analytical approach is based on the discretized system
equation, which is obtained by numerical analysis methods such as finite element
method, boundary element method. [1, 13–19]. The state equation of discretized
model is expressed as an algebraic matrix equation;

8 1 Introduction



½KðpÞ�½/� ¼ ½f ðpÞ� ð1:5:2Þ

where ½KðpÞ� is the n� n system matrix, ½/� the n� 1 state variable vector at
nodes, ½f ðpÞ� the n� 1 source vector, and n the number of nodes for unknown state
variables. The system matrix ½KðpÞ� is determined by the system geometry and the
passive material property. The source vector ½f ðpÞ� is determined by the system
geometry and the active material property of the source. The change in the system
geometry causes the changes of ½KðpÞ� and ½f ðpÞ�, which result in the change of the
state variable ½/�. Since the state variable ½/� depends on the design variable, it can
be written as ½/ðpÞ�, which is implicitly affected by the design variable in the
system Eq. (1.5.2).

The objective function is usually a function of the design variables and the state
variable;

F ¼ F ½p�; ½/ðpÞ�f g ð1:5:3Þ

where ½p� is the m� 1 design variable vector, ½/ðpÞ� the n� 1 state variable vector,
and m the number of design variables.

The derivative of the objective function is obtained by taking the derivative of
(1.5.3) with respect to the design variable vector;

dF
d½p� ¼

@F
@½p� þ

@F
@½/�

d½/�
d½p� ð1:5:4Þ

In this sensitivity expression, the two partial derivatives of F are easily obtained
since F is an explicit function of ½p� and ½/�. But the derivative of the state variable in
the second term needs some calculations since the state variable is implicitly related
to the design variable in (1.5.2). By taking the derivative of (1.5.2) with respect to the
design variable vector, the derivative of the state variable is obtained as

d½/�
d½p� ¼ ½K��1 @

@½p� ½f � � ½K�½~/�
h i

ð1:5:5Þ

where ½~/� is the solution of (1.5.2). By inserting (1.5.5) into (1.5.4), the sensitivity
is expressed as

dF
d½p� ¼

@F
@½p� þ

@F
@½/� ½K�

�1 @

@½p� ½f � � ½K�½~/�
h i

ð1:5:6Þ

After the derivative of the state variable is calculated in (1.5.5), its values can be
inserted into (1.5.5). But it requires m times analyses of the system Eq. (1.5.2). This
problem is solved by introduction of an adjoint variable technique, which requires
only one analysis. An adjoint variable equation is introduced;
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½K�T½k� ¼ @F

@½/�T ð1:5:7Þ

where ½k� is the n� 1 adjoint variable vector, which is the nodal values like the state
variable [20, 21]. By using the adjoint variable Eq. (1.5.7), the sensitivity is
obtained as

dF
d½p� ¼

@F
@½p� þ ½k�T @

@½p� ½f � � ½K�½~/�
h i

ð1:5:8Þ

The adjoint variable vector, which is calculated in (1.5.7), is inserted into (1.5.8)
to provide the sensitivity.

On the other hand, this sensitivity can be also derived using the Lagrange
multiplier method. The system matrix (1.5.2), which is a kind of equality constraint,
is taken a constraint subject to the objective function (1.5.3). The augmented
objective function G with the Lagrange multiplier is written as

G ¼ F ½p�; ½/ðpÞ�f gþ ½f ðpÞ� � ½KðpÞ�½/�ð Þ½k�T ð1:5:9Þ

where ½k� is the n� 1 Lagrange multiplier vector. The derivative of objective
function is obtained by taking the derivative of (1.5.9) with respect to the design
variable vector;

dG
d½p� ¼

@F
@½p� þ

@F
@½/�

d½/�
d½p� þ

@

@½p� ½f � � ½K�½~/�
h i

� ½K� d½/�
d½p�

� �
½k�T þ ½f � � ½K�½/�ð Þ d½k�

T

d½p�
ð1:5:10Þ

The last term of this equation vanishes by the system state equation (1.5.2);

dG
d½p� ¼

@F
@½p� þ

@F
@½/�

d½/�
d½p� þ

@

@½p� ½f � � ½K�½~/�
h i

� ½K� d½/�
d½p�

� �
½k�T ð1:5:11Þ

In order to avoid the calculation of d½/�d½p� and explicitly express this equation with

the design variable, an adjoint equation is introduced:

½K�T½k� ¼ @F

@½/�T ð1:5:12Þ

where ½k� is the adjoint variable vector, which is the Lagrange multiplier in (1.5.9).
Inserting the relation (1.5.12) into (1.5.11) provides the sensitivity:
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dG
d½p� ¼

@F
@½p� þ ½k�T @

@½p� ½f � � ½K�½~/�
h i

ð1:5:13Þ

This sensitivity is the same as the (1.5.8).
The Lagrange multiplier method is also used for the continuum method in the

subsequent chapters. The discrete method is relatively simple to understand since
the implicit relation between the state variable and the design variable is clearly
shown. The analogy between the discrete method and the continuum method is
helpful in developing the continuum sensitivity for the electromagnetic system.

The above sensitivity calculation by the discrete method is summarized as

(a) solve the state variable Eq. (1.5.2) for ½/�.
(b) solve the adjoint variable Eq. (1.5.7) for ½k�.
(c) calculate the sensitivity (1.5.8) using the obtained ½/� and ½k�.

This sensitivity calculation requires only two analyses for the state and adjoint
variables. In the adjoint equation, its source term in the right-hand side is easily

obtained since the F is an explicit function of ½/�. But the computation of @½f �
@½p� and

@½K�
@½p� is dependent on discretization since ½K� and ½f �, which are assembled with the

element matrices, depend on the element such as the shape function and the mesh
data. Thus, their computation requires access to the source code of the analysis
program, which makes it difficult to implement the numerical program. It is
unfortunate that most of the commercial programs do not provide access to the
source code. It is desired to develop a sensitivity evaluation method that does not
depend on discretization nor requires access to the inside of the source code.

1.5.3 Continuum Method

In the continuum method, the shape sensitivity is derived using the material
derivative concept and the variational formulation for the governing equation of
electromagnetic system. The continuum method is the core subject of this book.
The material derivative concept of continuum mechanics is employed to relate the
shape variation of electromagnetic system to the objective function [22–27]. For
general application, the objective function is defined as arbitrary function of the
state variables. The electromagnetic system is represented with the variational
equation of the continuous model. This variational state equation for the electro-
magnetic system, which holds regardless of the shape variation, is taken as an
equality constraint. For a systematic derivation of the continuum sensitivity, the
Lagrange multiplier method is used for the equality constraint. The constraint of the
variational state equation is added to the objective function to provide an aug-
mented objective function. By taking the material derivative of this augmented
objective function and using the variational identities, the continuum sensitivity
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formula is obtained. This shape sensitivity formula is expressed in the simple
analytical form of surface integral on the design boundary. The integrand of the
surface integral is written in terms of the shape variation and physical quantities
such as the material properties, the state variable, and the adjoint variable.

If the exact solution for the state variable is given, the sensitivity, which is
derived as an analytical form, will be exact. But the exact solution for complex
electromagnetic system is not given; the sensitivity formulas are evaluated with the
approximate solution by the numerical methods such as finite element method,
boundary element method.

The major advantage of the continuum sensitivity is that since the variational
system equation is differentiated before discretized, it does not only depend on
discretization method but also provide more accurate sensitivity information than
the discrete method.

In Chaps. 3–6, for deriving the shape sensitivity formulas, this continuum
method is applied to the four electromagnetic systems: electrostatic system, mag-
netostatic system, eddy current system, and DC current-carrying conductor.

References

1. Choi, K.K., Kim, N.H.: Structural Sensitivity Analysis and Optimization 1: Linear Systems.
Springer, New York (2005)

2. Arora, J.S.: Introduction to Optimum Design. Mcgraw-Hill, New York (1989)
3. Zachmanoglou, E.C., Thoe, D.W.: Introduction to Partial Differential Equations with

Applications. Williams & Wilkins, Baltimore (1976)
4. Griffiths, D.J.: Introduction to Electrodynamics. Pearson, Boston (2013)
5. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)
6. Purcell, E.M.: Electricity and Magnetism. Education Development Center Inc., Newton

(1965)
7. Reitz, J.R., Milford, F.J., Christy, R.W.: Foundations of Electromagnetic Theory.

Addison-Wesley, Reading (1979)
8. Timoshenko, S., Goodier, J.N.: Theory of Elasticity. McGraw-Hill, New York (1951)
9. Sokolnikoff, I.S.: Mathematical Theory of Elasticity. McGraw-Hill, New York (1956)

10. Pironneau, O.: Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York
(1984)

11. Cullity, B.D.: Introduction to Magnetic Materials. Addison Wesley, Reading (1972)
12. Haftka, R.T., Grandhi, R.V.: Structural shape optimization—a survey. Comp. Methods Appl.

Mech. Eng. 57, 91–106 (1986)
13. Adelman, H.M., Haftka, R.T.: Sensitivity analysis of discrete structural systems. AIAA J. 24,

823–832 (1986)
14. Gitosusastro, S., Coulomb, J.L., Sabonnadiere, J.C.: Performance derivative calculations and

optimization. IEEE Trans. Magn. 25, 2834–2839 (1989)
15. Park, I.H., Lee, B.T., Hahn, S.Y.: Pole shape optimization for reduction of cogging torque by

sensitivity analysis. COMPEL 9, Supplement A, 111–114 (1990)
16. Kwak, I.G., Ahn, Y.W., Hahn, S.Y., Park, I.H.: Shape optimization of electromagnetic

devices using high order derivatives. IEEE Trans. Magn. 35, 1726–1729 (1999)
17. Park, I.H., Kwak, I.G., Lee, H.B., Lee, K.S., Hahn, S.Y.: Optimal design of transient eddy

current systems driven by voltage source. IEEE Trans. Magn. 33, 1624–1629 (1997)

12 1 Introduction



18. Park, I.H., Kwak, I.G., Lee, H.B., Hahn, S.Y., Lee, K.S.: Design sensitivity analysis for
transient eddy current problems using finite element discretization and adjoint variable
method. IEEE Trans. Magn. 32, 1242–1245 (1996)

19. Park, I.H., Lee, B.T., Hahn, S.Y.: Design sensitivity analysis for nonlinear magnetostatic
problems using finite element method. IEEE Trans. Magn. 28, 1533–1536 (1992)

20. Dems, K., Mróz, Z.: Variational approach by means of adjoint systems to structural
optimization and sensitivity analysis—I: variation of material parameters within fixed domain.
Int. J. Solids Struct. 19, 677–692 (1983)

21. Dems, K., Mróz, Z.: Variational approach by means of adjoint systems to structural
optimization and sensitivity analysis—II: structure shape variation. Int. J. Solids Struct. 20,
527–552 (1984)

22. Choi, K.K., Haug, E.J., Hou, J.W., Sohoni, V.N.: Pshenichy’s linearization method for
mechanical system optimization. J. Mech. Transm. Autom. Des. 105, 97–103 (1983)

23. Choi, K.K., Haug, E.J.: Shape design sensitivity analysis of elastic structures. J. Struct. Mech.
11, 231–269 (1983)

24. Haug, E.J., Choi, K.K., Komkov, V.: Design Sensitivity Analysis of Structural Systems.
Academic Press, Orlando (1988)

25. Soares, C.A.M.: Computer Aided Optimal Design. Springer-Verlag, Berlin (1987)
26. Park, I.H.: Sensitivity analysis for shape optimization of electromagnetic devices. Ph.D.

thesis, Seoul National University (1990)
27. Park, I.H., Coulomb, J.L., Hahn, S.Y.: Implementation of continuum sensitivity analysis with

existing finite element code. IEEE Trans. Magn. 29, 1787–1790 (1993)

References 13



Chapter 2
Variational Formulation
of Electromagnetic Systems

In order to derive the continuum sensitivity for the electromagnetic system, the
variational state equation is differentiated with respect to the design variables by
using the material derivative concept in the subsequent Chaps. 3–6. In this chapter,
the variational state equations for electrostatic system, magnetostatic system, eddy
current system, and DC current-carrying conductor are formulated by the varia-
tional method of virtual work principle. Each variational equation is derived from
its corresponding differential equation with boundary conditions. Electromagnetic
systems are usually represented by a differential (point) form of Maxwell’s equa-
tions that holds at all points of the field domain. Introducing the potentials such as
the electric scalar potential and the magnetic vector potential, the governing dif-
ferential equations are obtained as the second-order partial differential equations.
Thus, the equations require continuous second-order derivatives of the potentials.
The variational state equations reduce the required order of the derivatives by one
so that the variational (weak) formulation provides a general solution that cannot be
obtained by the differential equations. It is also the mathematical basis for the finite
element method, which is widely applicable to the electromagnetic systems.
Furthermore, since the variational state equation is expressed in integral form that
contains the geometry information, it is more suitable to the shape design sensitivity
analysis than the differential equation [1–7].

2.1 Variational Formulation of Electrostatic System

In this section, the differential state equation for electrostatic system is derived from
Maxwell’s equations by using the electric scalar potential /, and then, its varia-
tional state equation is obtained by applying the variational formulation of the
virtual work principle [8].
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2.1.1 Differential State Equation

The differential state equations for electrostatic field system are derived from
Maxwell’s equations with the electric scalar potential. The electrostatic system is
represented by two equations from Maxwell’s equations;

$ � D ¼ q ð2:1:1Þ

$� E ¼ 0 ð2:1:2Þ

where D is the electric flux density, q is the volume charge density, and E is the
electric field intensity. The electric flux density is written with the electric field
intensity and the permanent polarization by the constitutive relation;

D ¼ eEþP0 ð2:1:3Þ

where e is the electric permittivity and P0 is the permanent polarization, The electric
permittivity e is ere0 with the relative electric permittivity er and the vacuum per-
mittivity e0. er is assumed to be constant. The permanent polarization for electrolet
materials is included for general description of the electrostatic system. With the
electric scalar potential / introduced from (2.1.2), the electric field intensity is
written as

E ¼ �$/ ð2:1:4Þ

Inserting (2.1.3) and (2.1.4) into (2.1.1), we obtain the Poisson equation of the
electrostatic system, which is the governing equation for the state variable of the
electric scalar potential /;

�$ � e$/ ¼ q� $ � P0 ð2:1:5Þ

where �$ � P0 ¼ qP and qP is the bound charge density of permanent polarization.
The governing differential equation of the electrostatic system (2.1.5) has a unique
solution with boundary conditions. We employ most common boundary conditions;

/ ¼ CðxÞ on C0 ðDirichlet boundary condition) ð2:1:6Þ
@/
@n

¼ 0 onC1 ðhomogeneousNeumann boundary condition) ð2:1:7Þ
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2.1.2 Variational State Equation

The differential state equation (2.1.5) for the electrostatic system can be reduced to
a variational state equation by multiplying both sides by an arbitrary virtual
potential �/ as

Z
X

�$ � e$/� Poð Þ�/dX ¼
Z
X

q�/dX 8 �/ 2 U ð2:1:8Þ

The arbitrary virtual potential �/ belongs to the space of admissible potential,
defined as

U ¼ �/ 2 H1ðXÞ �/ ¼ 0 on x 2 C0
��� � ð2:1:9Þ

where C0 is the Dirichlet essential boundary and H1ðXÞ is the Sobolev space of
order one [3, 9]. HnðXÞ is the Sobolev space of the order n, whose functions are
continuously differentiable up to n� 1, and nth partial derivatives belong to L2ðXÞ,
which is the space of square integrable functions such that

L2ðXÞ ¼ f
Z
X

f ðxÞj j2dX\1
������

8<
:

9=
; ð2:1:10Þ

By the vector identity $ � $w�w
� � ¼ $ � $wð Þ�wþ$w � $�w, (2.1.8) is written as

Z
X

e$/� P0ð Þ � $�/� $ � e$/� P0ð Þ�/� �� �
dX ¼

Z
X

q�/dX 8�/ 2 U ð2:1:11Þ

By the divergence theorem
R
X $ � $w�w

� �
dX ¼ R

C $w � nð Þ�wdC, (2.1.11) is
rewritten as

Z
X

e$/ � $�/� q�/� P0 � $�/
� �

dX ¼
Z
C

e$/� P0ð Þ � n�/dC 8 �/ 2 U ð2:1:12Þ

Inserting the relation (2.1.3) into the right side of (2.1.12) provides the varia-
tional identity for the state equation of electrostatic system;

Z
X

e$/ � $�/� q�/� P0 � $�/
� �

dX ¼ �
ZZ

C
Dnð/Þ�/dC 8 �/ 2 U ð2:1:13Þ
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