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Foreword by the Association for Robots
in Architecture

Since the beginning of the Association for Robots in Architecture, it has been our
goal to promote collaboration within the community, but also with partners from
industry and cross-disciplines. Robots in Architecture is proud to be associated with
leading research organizations within architecture, such as ACADIA, or eCAADe
but the scope of work that is being done by the community is starting to exceed the
field of architecture into many other new domains, and we feel that it is important to
accompany such steps. One measure to ensure the exchange across disciplines and
other domains is to open the community to disciplines such as engineering and
robotics by establishing common platforms where people can meet and exchange
their ideas and research. Together with Springer, the Association for Robots in
Architecture has therefore established a new Journal for Construction Robotics with
the first published issue at the end of 2017 to foster collaborative papers and
high-quality research in architecture.

Another goal for the Association was to join forces with associations in
Robotics. In 2016, Robots in Architecture joined euRobotics AISBL, the largest
public—private partnership involving robotics in Europe. Sigrid Brell-Cokcan
co-established a new Topic Group on Construction Robotics, acting alongside the
other established 30 topic groups within euRobotics, ranging from wearables,
bio-inspired robotics, health care, mining to infrastructure. In 2018, Sigrid has
joined the board of directors.

Through networks such as euRobotics, it is not only possible to promote a field
of research, but also to actively shape policy, so that the importance of Construction
Robotics is recognized, and appropriate research funding is allocated to relevant
topics. Through the Multi-Annual Roadmap in research for the EU and its Horizon
2020 programme, these initiatives not only reach a chosen few researchers in
academia, but also a wide range of commercial and non-commercial research
institutions, robotics developers and users alike in Europe and beyond.

This year, we recognize the importance of such public—private partnerships and
euRobotics by presenting euRobotics chairman Bernd Liepert with the Rob|Arch
Community Contribution award. It is our goal that more researchers within the
Robots in Architecture community will reach out to large-scale research and believe
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strongly that euRobotics AISBL is a prime example on how to combine economic
with academic and political interests, fostering the common goal of creating robotic
innovation.

Innovation is also one of the core qualities we are looking for when selecting
awardees. This year’s Pioneering Achievement and Pioneering Industry Award
goes to two very different architectural companies, who have greatly facilitated the
potential of robotic processes in their work.

The internationally highly reputed architectural office Snehetta was one of the
first architectural companies to invest in robotic arms, joining us for our first
KUKA|prc workshop in 2010 at the Advances in Architectural Geometry
Conference in Vienna. For them, the robot has been an important tool for proto-
typing new approaches and design, placed closely to the open office in Oslo.

The second awardee is Branch Technology from Tennessee in the USA, who
have gone even further by not just using robots as CNC machines, but by devel-
oping their own robotic processes for large-scale robotic 3D printing. What we feel
is special about Branch is that it is a company by architects who develop products
for architects. As such, they did not stem from academia but from practice and
therefore had to find investors to fund their ideas. Today they have a team with a
wide variety of backgrounds and have realized a number of large-scale projects,
collaborated with companies such as Foster + Partners and even won an award for
their joint vision of future construction on Mars by the NASA. We believe that this
drive embodies the true spirit of the community. We see in Branch a perfect role
model where robotics lies at the core to enable technology-driven creativity in new
business models.

By Yu Lei’s research at Tsinghua University in China and his own professional
workshop, we do not just honour a single person, who has made significant con-
tributions to architectural robotics in China, but also the entire Chinese community
of companies and researchers, where the past years have seen great developments
and a surge of new ideas and initiatives, as was demonstrated at this year’s
CAADRIA conference organized by Prof. Xu Weiguo and the DADA community.
While the potential for Construction Robotics in China is huge, there is also a great
need for education and research and thus educators like Yu Lei are important
trailblazers by sharing and starting new business models in architecture.

We also believe that it is important to recognize the researchers, without whose
work into robotics we would not have today’s sophisticated methods and machines
at hand, and who create tomorrow’s tools and processes today. Jonas Buchli,
director of the ETH Zurich Agile & Dexterous Robotics Lab, is one such pioneer
whose work spans across many disciplines—from neurobiology and human loco-
motion to service robotics and also architecture, where has been a Principal
Investigator of the NCCR Digital Fabrication, developing the In situ Fabricator (IF),
with the goal of enabling the machine to autonomously perform precise mobile
manipulation tasks in unstructured and unpredictable environments. We recognize
his work with a Pioneering Research Award.
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In 2018, the Rob|Arch conference is back in Europe for the first time since
Vienna in 2012 and is being hosted at ETH Zurich. ETH Zurich, in particular
through the work of Gramazio Kohler Research, has been a central part of the
research community and further solidified that status with the creation of the NCCR
Digital Fabrication, a multi-disciplinary research cluster with more than 14 pro-
fessors. We see ETH Zurich and the NCCR Digital Fabrication as a prime example
how research can happen on a very large scale, with highly interdisciplinary and
diverse research teams. At the same time, we believe that innovative research can
also be done at a smaller scale, as it is demonstrated by this year’s 15 Rob|Arch
conference workshops, involving tutors from more than 25 institutions, that are
hosted centrally in ETH Zurich’s Robotic Fabrication Laboratory.

An effort like Rob|Arch 2018 is only possible when many people work together
towards a common goal. We would like to thank our local hosts at ETH Zurich and
the NCCR Digital Fabrication, the Scientific Board led by Jan Willmann and all
minds and hands involved in setting up such a big event.

We are grateful to Matt Jezyk (Autodesk) and Alois Buchstab (KUKA) for their
continuing and enthusiastic support of the community through their respective
companies, and we would like to thank all sponsors of this conference — Arup,
BCQG, Sika, Erne, Moog, and Bachmann Engineering — for this year’s collaboration
in making Rob|Arch 2018 a success.

Sigrid Brell-Cokcan
Association for Robots in Architecture

Johannes Braumann
Association for Robots in Architecture
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New Scientific Frontiers

The emergence of robotics with the creative sectors has led to an entirely new
epistemology of collective making that is inextricably open and future-oriented.
Challenged by increasingly complex technological and environmental problems,
architects, designers, civil and process engineers, and roboticists are seeking novel
practices of collaboration and exchange that deliberately overcome and dissolve
traditional disciplinary boundaries. This collective approach to working with robots
is not only revolutionizing how things are designed and made, but is fundamentally
transforming the culture, politics and economics of the creative industries as a
whole.

What distinguishes contemporary industrial robots from their industrial prede-
cessors—and indeed from other contemporary computer-controlled devices—is
their versatility. Like computers, today’s robotic arms are suitable for a wide variety
of tasks: they are “generic”, open-ended, adaptable and not restricted to any par-
ticular application or disciplinary focus. This versatility allows them to be readily
customized and programmed to suit a wide range of specific intentions, both at the
material and conceptual levels. It has also allowed us to shift our perception of
robots as mechanistic, utilitarian devices suited to standardized serial production,
towards understanding them as creative tools for exploring, designing and realizing
physical objects and the built environment. If the first robotic age—the age of
industrial automation—vastly improved our physical productivity, the second
robotic age will surely come to distinguish itself as a driver of creative capacity.

The present moment is ripe for connecting robot technology with imagination
and materialization, inspiring new fundamental discoveries and opening new sci-
entific frontiers. In fact, we have within reach access to volumes of information and
centuries of knowledge about how to design and realize the material world. Aided
by global digital connectedness, open-source ideals and collective encounters,
robotics rejuvenates traditional disciplinary wisdom with entirely new practices of
scientific collaboration and knowledge transfer. Now, more than ever, we are

ix
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coming to understand that robotics research should not be bound by constricting
disciplinary standards, constraints or ideologies lest we limit its potential. Yet to
explore this unprecedented potential requires not only a technical grasp of robots’
capabilities and limitations, but also an in-depth understanding of the disciplinary
consequences of robotics research. With its theme of “Radical Cross-disciplinarity”,
Rob|Arch 2018 facilitates this understanding by encouraging novel scientific
approaches, applications and collaborations, not just in robotics, but beyond.

Closing the Loop

The Rob|Arch conference series was first launched in Vienna, Austria, in 2012 by
Sigrid Brell-Cokcan and Johannes Braumann, the founders of the Association for
Robots in Architecture. Their purpose was to make industrial robots more acces-
sible to the creative industries—including art, design and architecture—by sharing
ideas, research results and technological developments. The series has since become
a biannual tradition in the international community (travelling to Michigan, US, in
2014 and to Sydney, Australia, in 2016) and has decisively boosted the exchange
and dynamics within.

In 2018, Rob|Arch lands at the Swiss Federal Institute of Technology in Zurich
(ETH Zurich), marking an important milestone for the digital fabrication commu-
nity: ETH Zurich is not only one of the leading international universities for
technology and science, it is also the institution where the first industrial robotic
fabrication laboratory for non-standard architectural fabrication processes was
installed in 2005. Closing this loop gives us the opportunity to foster novel
explorations and state-of-the-art knowledge, techniques and methods, while con-
solidating and advancing our collective understanding of the evolution and impact
of robotics in art, design and architecture.

It is no coincidence that Rob|Arch 2018 is also co-hosted by the Swiss National
Centre of Competence in Research (NCCR) in Digital Fabrication. Launched in
2014, the NCCR Digital Fabrication is itself a truly cross-disciplinary research
platform meant to foster the seamless combination of digital technologies and
physical building processes through cooperation and exchange beyond disciplinary
boundaries.

Content and Contributions

The Rob|Arch 2018 publication features the most important contributions to the
conference. Rather than featuring merely formalist or technicist robotic adventures,
this publication goes beyond pure built outcome to forward fresh approaches to
scientific innovation, knowledge exchange and cross-disciplinary collaboration.
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This includes designers, artists and architects, and also—and increasingly—com-
putation and robotics experts and builders, materials scientists and engineers,
process and systems specialists and manufacturers, to name just a few. As a con-
sequence, this book gathers exceptional, scientifically rigorous projects that not
only transform the way we design and make, but which also build collaborative
capacity in the field of robotic fabrication.

The structure of this publication addresses this “new territory” of collaborative
research. Stepping beyond theoretical observation, it outlines five distinct epicentres
of practical research, which range from design and simulation research to auto-
mated assembly and real-world applications. Robotics and material and structural
engineering play an integral role in each of these five areas.

Chapter 1 (“Design and Simulation) discusses new computational approaches
to image classification using neural networks, stochastic assembly and deep
learning for robotic construction; it also presents procedural fabrication workflows
and haptic programming techniques, automatic path planning methods, visual
feedback techniques, and function representation models.

Novel materials and material processes for robotic fabrication are introduced in
Chapter 2 (“Material and Processes”), including thermally tuned concrete panel
printing, time-based material deposition, and digitally controlled concrete injection
processes. This is complemented by research into the robotic manipulation of fil-
ament material and the automated control of material behaviour for spatial extrusion
processes.

In Chapter 3 (“Construction and Structure”), the emphasis is on new robotic
construction processes and structural applications, for example bespoke concrete
reinforcement, highly versatile wood processing, automated band-saw cutting for
complex timber structures, fabrication-aware methods for the realization of
non-standard timber shells, and an advanced hybrid subtractive-additive approach
to robotically construct double-curved concrete shells. Finally, the chapter presents
a novel approach to the construction of jammed architectural structures.

Robotic control, machinery, tooling and fabrication are discussed in Chapter 4
(“Control and Fabrication”), involving tubular composite fabrication with the aid of
robotic swarms, automated manufacturing of natural composites, 3D printing with
clay on freeform moulds, choreographic robotic wood manipulation, aerial con-
struction using a cyber-physical macro-material system, as well as adaptive robotic
carving. Also outlined in this chapter are approaches for multi-mode hybrid fab-
rication, robotic extrusion of functionally graded building components, as well as of
elements with non-standard topology, on-site robotic construction and additive
manufacturing techniques for non-woven textiles.

The transfer to larger scales of real-world applications and practices is addressed
in Chapter 5 (“Application and Practice”). Here we present automated slipforming
for facade elements, robotic brick printing and stacking, robotic sewing of wooden
shells, additive manufacturing of truss-shaped concrete pillars, and the realization
of topology-optimized concrete structures using abrasive techniques. Large-scale
bespoke timber frame construction and cooperative robotic brick assembly are also
discussed.
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Workshop Activities

Rob|Arch 2018 features a variety of formats and sessions to encourage creative
dabbling and encounters with different research topics, practices and field-wide
issues. Led by experts from academia, practice and industry, Rob|Arch 2018
workshops empower participants to learn and practise hands-on skills, and discuss
cutting-edge fabrication techniques and trends with their peers in a collaborative
environment.

This year’s workshops offer a broad range of topics, including multiple robotic
fabrication, industry-grade robotic programming using HAL, robotic real-time
control using Grasshopper, robotic fabrication through the COMPAS framework,
chainsawed wood joinery, cooperative robotic assembly of spatial timber structures,
large-scale robotic construction, hybrid robotic 3D printing of concrete shell
structures, autonomous robotic swarm systems, adaptive spatial 3D printing of
space frame structures, automated assembly in constrained sites, mixed reality
environments for complex steel structures, mixed reality simulation for collabora-
tive design exploration, as well as an introduction to KUKA|prc for Dynamo.

Beyond Boundaries

Rob|Arch 2018 aims to bring the community ground-breaking approaches to
robotic fabrication from the most innovative research laboratories in the world, all
while illuminating alternative pathways to boosting cross-disciplinary research and
exchange. This publication therefore highlights contributions that not only sub-
stantially advance the state-of-the-art in robotic fabrication, but also challenge the
reputedly clear division between research, practice and industry.

It is our belief that effective knowledge transfer and exchange between different
disciplines is crucial for the development of truly innovative and high-impact
research in robotics, a priori, rather than a posteriori. Specifically, Rob|Arch 2018
looks at new paradigms of scientific collaboration, along with the challenges, risks
and dynamics within this process. Given that our collective expertise includes
autonomous control systems, advanced construction, collaborative design tools,
computerized materials and structures, adaptive sensing and actuation, on-site and
cooperative robotics, machine-learning, human—machine interaction, large-scale
robotic fabrication and networked workflows (the list goes on), we can no longer
discuss cross-disciplinarity, cooperation and collaboration in abstract terms. Doing
so would be utterly inadequate to address the manifold cultures and practices of
robotics that have emerged to master the increasingly complex technological and
environmental challenges we face today.

While we have observed a growing capacity for knowledge transfer and
exchange in Rob|Arch submissions with each subsequent edition of the conference,
this year the blurring of disciplinary boundaries between creative-, scientific- and
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practice-based domains is particularly significant. We view this as a sign that
complex problems cannot be dealt with from a single disciplinary perspective alone.

Yet, while this blurring has yielded many new robotic explorations and
real-world applications, these have not taken place uniformly. For example, the
fields of intelligent computational design and simulation systems are particularly
benefiting from an expanded set of collaborations and exchange between
researchers and industry practitioners. Other areas that have especially benefitted
from collaborative exchange include: advanced robotic control systems, and feed-
back processes that enable robots to adapt to different material conditions and
changing environments. In all these cases, constant interaction and knowledge
transfer between architects, designers, engineers and roboticists are pivotal, both as
a result and as a catalysing instrument.

The fast pace of creative and scientific research documented by Rob|Arch is no
doubt a result of the bringing-together of diverse disciplines, competences and
cultures. Perhaps the emerging cross-disciplinary culture of robotic fabrication
research will, through the collaboratively built future environment, one day yield a
generational change in how we view the collaborative creative process more
broadly. As Richard Sennett once described it: it stimulates a gathering of creative
explorations similar to collective encounters that in the pre-machinic age used to be
related with, and venerated for, all things man-made.
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Abstract. Inspecting robotically fabricated objects to detect and classify dis-
crepancies between virtual target models and as-built realities is one of the
challenges that faces robotic fabrication. Industrial-grade computer vision
methods have been widely used to detect manufacturing flaws in mass pro-
duction lines. However, in mass-customization, a versatile and robust method
should be flexible enough to ignore construction tolerances while detecting
specified flaws in varied parts. This study aims to leverage recent developments
in machine learning and convolutional neural networks to improve the resiliency
and accuracy of surface inspections in architectural robotics. Under a supervised
learning scenario, the authors compared two approaches: (1) transfer learning on
a general purpose Convolutional Neural Network (CNN) image classifier, and
(2) design and train a CNN from scratch to detect and categorize flaws in a
robotic plastering workflow. Both CNNs were combined with conventional
search methods to improve the accuracy and efficiency of the system. A web-
based graphical user interface and a real-time video projection method were also
developed to facilitate user interactions and control over the workflow.

Keywords: Architectural robotics + Machine learning
Convolutional neural networks - Image classification

1 Motivation

Surface finishing is an essential domain in the architectural construction practice, which
requires high-skilled workers and demand accurate quality control procedures. By way
of example, the authors have developed a robotic workflow to use industrial robots for
decorative plastering techniques (Bard et al. 2016a, b). One of the remaining challenges
in this workflow is to implement an automated, precise, and reliable quality control
pipeline to guarantee satisfying results through a touch-up scenario. The touch-up
procedure would let the user automatically inspect the surface and detect any unwanted
fabrication artifact and command the robot to correct it.

Researchers have developed a wide range of scanning systems using different
combination of sensory data, including, but not limited to, multiple RGB cameras/view
(Vasey et al. 2014), RGB cameras combined with pattern projection (Rocchini et al.
2001; Zhang et al. 2002), RGB-D sensory data (Amtsberg et al. 2015), and depth data
(Bard et al. 20164, b) to reconstruct a digital representation of the physical models that
can be used in the feedback loop.
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Construction tolerances standards may vary from rough to finish application
resulting in different level of accuracy in each of these phases (Bard et al. 2016a, b).
The achievable level of accuracy by the above-mentioned techniques with respect to
the construction tolerances might not be desirable for such a delicate task as surface
finishing and touch-up tasks.

Our approach requires a vision-based solution to detect texture flaws (i.e., scrat-
ches, bubbles, ...) and small-scale 3D finishing issues (i.e., holes, unfinished patches).
It proposes a single-camera solution without 3D reconstruction as the main input for the
quality check workflow. This will result in simpler hardware setup, faster workflow,
and lower costs. This approach can also be useful for other fabrication workflows, for
example subtractive and deforming manufacturing.

The proposed system takes advantage of a state-of-the-art computer vision method
based on Convolutional Neural Network (CNNs or ConvNets) for image classification
and object detection.

Recently CNNs have dominated the image processing field, outperforming other
image processing and computer vision methods by a large margin. Since 1990’s CNNs
have been used for different applications, including, but not limited to optical character
recognition, medical image processing, feature extraction, object recognition, image
understanding, and optimization (Egmont-Petersen et al. 2002; LeCun et al. 1989),
thanks to their robust and real-time performance even in noisy spaces (Pal and Pal 1993).

The breakthrough advancements in computational hardware (efficient GPU archi-
tectures, possibility of distributed/multi-core/cloud-based/parallel processing, and
dramatic cut in the hardware and service prices), alongside the open-source and widely
accessible software platforms for machine learning, simplified and enhanced the
implementation of CNNs in different contexts. CNNs can now be deployed with a
reasonable budget and fewer technical challenges. These factors render CNNs as the
method of choice for image classification and object detection in the past few years.

2 Methodology

The authors tested two approaches to implement CNN for this task, (1) transfer learning
on Google’s Inception v3 model and (2) design and training a CNN from scratch. The
resulting CNN were tested for accuracy and efficiency in a robotic plastering workflow
as a vision-based feedback loop for surface touch-ups.

Since its public release, Inception v3 has been used as an almost off-the-shelf image
classifier for different use-case scenario. Several research teams leveraged this archi-
tecture for scientific studies, possibly most notably, for example detecting skin cancer
classification (Esteva et al. 2017). In its purest form, it only requires users to organize
the training dataset in a folder structure and run the provided script for a desired
number of epochs. This doesn’t necessitate any substantial machine learning knowl-
edge or advanced programming skills. On the other hand, design and training a model
from scratch demands for both but may provide simple and optimized results.
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2.1 Apparatus Setup

Hardware. The hardware setup consists of two different end-of-arm-tool assembly
(EOAT) and the connected computer unit. The first EOAT was designed to apply
plaster and the second one was dedicated to the quality control and feedback loop. It
includes a camera and a video projector to capture images and project results on the
probing surface (see Fig. 1).

Despite the resiliency and scalability, CNN algorithms are computationally complex
and expensive. While embedding computing solutions from nVIDIA, i.e. Jetson series,
are capable of running such CNNs, authors decided to centralize all the computational
process on a connected computer, leveraging GPU acceleration.

Fig. 1. End-of-arm-tools, left: plastering tool, right: camera and projector

Software." A user interface was developed as a web-based application using Django
framework. This architecture makes it possible to use HTML/JavaScript interactions at
the front-end while leveraging Python scripts on the back-end. User can interact with
the robot for motion commands, triggering the image processing workflow, and
monitor the results.

To control the cameras, an in-house library was developed leveraging GoPro’s
built-in Wi-Fi protocol that provides full control over the camera functionalities.

The robotic control module was developed based on project Open-ABB (Dawson-
Haggerty, n.d.). It communicates with the IRC5 controller to transfer motion com-
mands and inquire robot’s status (see Fig. 2).

2.2 Data Set

The data set consists of images taken from a series of plaster finishes applied by a robot
on drywall test panels. To collect the training samples, the GoPro camera was used to
take 5 mega-pixel images of available plastered panels. Due to the GoPro camera
significant lens distortion an image calibration method was applied using OpenCV, and

! Code for this project are available on GitHub (https:/github.com/Ardibid/RoboticPlasteringCNN).
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System Architecture
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Fig. 2. System architecture
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| Socket communication over LAN

only the central 1024 px x 1024 px region of each image was used. Images were
manually cropped and labeled into smaller sections as one of the three main classes:
(1) pass, (2) fail, (3) markup (see Table 1). Then the same data set was categorized in
five classes; perfect or near-perfect plaster regions were labeled as (1) pass, while
images containing fabrication flaws including: (3) holes, (4) scratches, and (5) unfin-
ished surfaces were categorized as fail. The markup class was left intact (see Table 2).

The markup class was dedicated to hand drawn characters that users could sketch
on the work surface to communicate with the robot. Markup training samples were
taken from hand drawn marks on a white surface in the same lighting condition as the

plastered panels.

Table 1. Training data set for three classes

Class Training samples | Validation samples | Test samples
1 Pass 77 23 26
2 Fail 135 42 52
3 User markup | 91 28 36
Total = 510 303 (~%60) 93(~ %18) 114(~ %22)
Table 2. Training data set for five classes
Class Training samples | Validation samples | Test samples
1 Bad finish |26 9 10
2 Holes 29 8 11
3 Rough finish | 78 22 29
4 User markup | 87 29 36
5 Pass 68 23 27
Total: 492 288 (~ %59) 91(~ %18) 113(~ %23)
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2.3 Image Classification Methods

In addition to designing and training a CNN from scratch, it is a well-established
practice to repurpose currently available CNN architectures and their pre-trained
models for a new task. Shin et al. categorized three methods to repurpose CNNs for
image detection as: (1) training CNN from scratch, (2) using available CNNs without
training the network, and (3) using unsupervised pre-training and fine-tuning (Shin
et al. 2016).

Transfer learning on Inception v3. In 2014, Google’s entry for the Large-Scale
Visual Recognition Challenge (ILSVRC2014), titled GoogleNet demonstrated aston-
ishing performance (Russakovsky et al. 2015; Szegedy et al. 2015; Szegedy et al.
2016). The core model behind GoogleNet was called Inception (Szegedy et al. 2016)
(Fig. 3) which adopted a relatively simpler architecture compared with other com-
petitors and was computationally less expensive. Since then, the inception model has
been used in cutting-edge research for object classification in different contexts, notably
medical image processing (Esteva et al. 2017).

What makes the Inception model an ideal platform for object categorization in
different contexts is its flexibility to be retrained for relatively similar tasks. This
approach, called transfer learning, is a well-practiced method to fine-tune and repur-
pose CNN models for new tasks with very small training data set to train a deep CNN
(Donahue et al. 2014).2

By only modifying the second to last layer of the model, transfer learning on
inception v3 eliminates the need for training a whole new model from scratch for every
new set of classes. Transfer learning could be a proper choice for this use case scenario
since (1) it has already been trained to detect a wide range of features and there is no
need to train it from scratch, theoretically this will save substantial amount of time;
(2) it performs well when the size of training dataset is relatively small; (3) it requires a

Inception V3 { } 0 } { { oee
o
Proposed CNN gocos
Convolution Average Pooling Max Pooling ~ (77) Concat (1) Dropout (@0 Fully Connected (@l Softmax Flatten

Fig. 3. Inception v3 architecture compared with the proposed architecture (Inception architec-
ture diagram is reproduced from (“Inception v3,” 2018))

2 In the same year, at CVPR2014, Oquab et al. and Sharif et al. also addressed transfer learning and
representation. For further information please look at (Oquab et al. 2014; Sharif Razavian et al.
2014).
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simple workflow to repurpose the model. In light of these three advantages, we decided
to exploit transfer learning technique as a possible back-end methods for our feedback
loop system.

Proposed CNN. A significant trade-off of using transfer learning is the heavy model
that it entails. Trained to classify one thousand classes of objects, the CNN trained
model occupies hundreds of megabytes on the system storage and requires expensive
computation to process a single image.

However, in our case, most of the captured images are of low contrast with pri-
marily white backgrounds and subtle changes in color. This color space requires dif-
ferent feature layers for an efficient classification. Accordingly, the authors designed
and trained a sequential multi-layer CNN. This architecture has already been proved its
performance in several state-of-the-art models, including AlexNet (Krizhevsky et al.
2012) and later VGGNet (Simonyan and Zisserman 2014).” The proposed architecture
is significantly simpler than of the Inception, resulting in a speed boost.

The authors designed and tested a series of CNNs using Keras with Tensorflow
back-end to find an optimum architecture. Several combinations of convolutional,
dropouts, and fully connected layers have been tested. In each architecture, all models
have been trained for a fixed number of epochs and the model with the highest f1 score
were selected. The results from each architecture were then compared with each other
to select the optimum architecture. The selected architecture demonstrated the highest
f1 score on both 5 and 3-class classification, while the others failed to demonstrate
same f1 score or took longer epochs to converge to the same score.

The proposed architecture consists of four convolutional layers (3 x 3 kernel)
paired with Relu activation function, and maxPooling (2 x 2), followed by three fully
connected layers and softmax at the end. To reduce the effects of overfitting, it also
leverages dropout to prevent inter-dependencies between hidden layer nodes (see
Fig. 4 and Table 3).

64x64x3  62x62x64 31x31x64 29x29x128 14x14x128 12x12x256 6x6x256  4x4x256  2x2x256 1024 128 128 5
| /
i /
= — e - I
O O Ttk
\
\
c Max Pooling C i Max Pooling C i Max Pooling C i Max Pooling Flatten Dropout F.C. Dropout F.C. Soft Max
3x3 Kernel 2x2 3x3 Kernel 2x2 3x3 Kernel 2x2 3x3 Kernel 2x2 05 05
RelU RelU RelU RelU

Fig. 4. Our CNN architecture for 5-class model

3 AlexNet architecture might be confusing at the first sight since it has two parallel pipelines.
However, the reason behind this dual pipeline is to train the model on two separate GPU
simultaneously.
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Table 3. Proposed CNN layers

Layer (type) Output shape Param #
conv2d_1 (Conv2D) (None, 62, 62, 64) | 1792
max_pooling2d_1 (MaxPooling2) | (None, 31, 31, 64) | 0
conv2d_2 (Conv2D) (None, 29, 29, 128) | 73856
max_pooling2d_2 (MaxPooling2) | (None, 14, 14, 128) | 0
conv2d_3 (Conv2D) (None, 12, 12, 256) | 295168
max_pooling2d_3 (MaxPooling2) | (None, 6, 6, 256) 0
conv2d_4 (Conv2D) (None, 4, 4, 256) | 590080
max_pooling2d_4 (MaxPooling2) | (None, 2, 2, 256) 0
flatten_1 (Flatten) (None, 1024) 0
dropout_1 (Dropout) (None, 1024) 0
dense_1 (Dense) (None, 128) 131200
dropout_2 (Dropout) (None, 128) 0
dense_2 (Dense) (None, 128) 16512
dropout_3 (Dropout) (None, 128) 0
dense_3 (Dense) (None, 5) 645

3 Training Results

3.1 Transfer Learning

We used the model from the Tensorflow GitHub repository and followed the steps
described in Tensorflow documentation (“Image retraining Tutorial,” n.d.). The result
after 4000 epochs are reported in Table 4.

Table 4. Training results, transfer learning (The training results in this chart directly result from
the script provided on TensorFlow’s GitHub repository after introducing new training samples.
No fine-tuning, modification, or custom loss function has been applied to the re-training process.
F1 score is measured on a test data set after the training phase.)

Three-class model Ave. time to process batch of
114 patches of 64 x 64
Train acc.: 1.000 | Val. acc.: 1.00 (N = 100) 10-11 s

Test. acc.: 0.964 (N = 112)
Test F1 score: 0.9469
Five-class model

Train acc.: 0.990 | Val. acc.: 0.79 (N = 100) 12-13 s
Test. acc.: 0.904 (N = 104)
Test F1 score: 0.8938

3.2 Our Model

In this model, the authors leveraged data augmentation to increase the data set size and
improve the model’s resiliency against small variations of the input data. Training and
test samples where reshaped to the same size (28 x 28 x 3) beforehand. The model
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Table 5. Training results, our model

Three-class model | F1 Score Ave. time to process batch of
114 patches of 64 x 64

Train: 0.9826 | Validation: 0.9892 | Test: 0.9736 19 ms

Five-class model | F1 Score

Train: 0.8559 | Validation: 0.9333 | Test: 0.9292 19 ms

was trained in two scenarios, one with (1) pass, (2) fail, and (3) markup labels* and the
second one trained to define different types of fail including (1) bad finish, (2) hole,
(3) rough finish (see Table 5 and Fig. 5).

3.3 Method Comparison

Comparing the speed and accuracy of the two approaches, signifies that the lighter and
less complex architecture of the proposed CNN is on par and even better than what we
could obtain using transfer learning. Transfer learning is significantly less complicated
method, from the user point of view, that doesn’t require significant understanding of
machine learning. However, it is not an efficient method for fast image classification
which is essential in this use-case-scenario.

On the other hand, designing, fine-tuning, and testing a CNN from scratch requires
additional skills and substantial amounts of time in advance. But it pays off with the
accuracy and efficiency it brings to the inspection process. Accordingly, we decided to
continue with this proposed CNN.

4 Testing Implementations Scenarios

The proposed CNN was used as the image-classification back-end for a robotic plas-
tering feedback loop, which consist of classification tool, user interface, and user
interactions.

4.1 TImage Surveying Methods

To survey each image, the algorithm divides it into a gird of 64 x 64 px patches that
could be fed into the classifier in batches.” With the hardware setup described above, it
took 50 ms on average to process a 256 x 64 x 64 batch of data, equivalent of a 1024 x
1024 image.

* Markups are simple user-defined drawings, i.e. circles and crosses, that can be used to communicate
with the system.

5 Although the authors first implemented Quad Tree search algorithm to compensate for the possible
slow classification pipeline, the final model performance was good enough to provide near real-time
experience. Accordingly, we opted for a grid search algorithm and avoided potential challenges that a
Quad Tree search would introduce. The biggest drawback being its tendency to ignore small features
in the initial steps of the search process when surveying large areas of the given image.



