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Preface

In June of 2016, a conference was held at the Max Planck Institute for Mathematics,
Bonn, to celebrate the 66th birthday of Joachim Schwermer. All such conferences
offer us the opportunity to look back at the career of the honoree, both mathematical
and otherwise. In the case of Joachim Schwermer, his career was very rich.

Schwermer received his Doctor rerum naturalium from the Rheinische–
Friedrich–Wilhelms Universität, Bonn, in 1977, under the supervision of G. Harder
and F. Hirzebruch, and his Habilitation there in 1982. After leaving Bonn in 1986,
Schwermer held Professorships in Eichstätt (1986–1998) and Düsseldorf (1998–
2000) before taking up residence as Professor at the University of Vienna in 2000.
Simultaneously with his move to Vienna, he became Deputy Director of the Erwin
Schrödinger Institute (ESI). He became Director in 2004 and in 2011 oversaw the
transition of the ESI from an independent research institute supported by the
Austrian Government to a research institute under the auspices of the University of
Vienna. He retired from the ESI in 2016 and the University of Vienna in 2017.

There have been three separate but related focuses of Schwermer’s career. The
first is his mathematical career. His research interest has always been the coho-
mology of arithmetic groups and its relation with the theory of automorphic forms.
This volume represents this side of his career, with many of the articles responses to
the interests of Schwermer. The article of Grbac, in particular, describes his col-
laboration with Schwermer. But there are two more sides that have produced value
in their scholarship and in the fostering of scholarship of others. The first of these is
represented by Schwermer’s interest in the history of mathematics, particularly that
of the nineteenth and early twentieth centuries. This interest can be seen in his
various articles and in particular in his books, one with Goldstein and Schappacher
on Gauss’ Disquisitiones and then with Dumbaugh on Emil Artin and Class Field
Theory. Equally important is Schwermer’s work in what might be termed the
administration of mathematics. We would like to mention two aspects of this. One
is the series of Oberwolfach meetings organized with S. Kudla, usually on coho-
mology of arithmetic groups, automorphic forms, representation theory, etc. These
were very influential and well attended, and we owe them both a debt of gratitude
for organizing these. More importantly is Schwermer’s stint as the Director of the
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ESI. Here too he hosted many workshops on similar topics, and many of us have
enjoyed his hospitality and owe a debt of gratitude for the mathematics we have
produced there. The ESI has been an important research center in Europe, and many
of us recall Schwermer’s heroic efforts to keep it open and move it under the
umbrella of the University of Vienna. For a period it was unclear that the ESI would
survive, and to a large part, its survival in its current form (which seems almost
indistinguishable from its former form) is due to his efforts.

When we came together in June of 2016 to celebrate the mathematics of Joachim
Schwermer, we did not forget his efforts in both history and administration.
Knowing of them made his contributions to mathematics that much richer, both for
the depth his historical interest provided and the appreciation of his work in light of
his other concomitant administrative achievements. Not all of the speakers at the
conference are represented in these proceedings, but we thank those that did con-
tribute. We would also like to thank all of our colleagues that contributed to the
volume by serving as anonymous referees for the contributions. We also thank
Springer for seeing this volume through to fruition in spite our missing of various
deadlines. And mostly, we thank Joachim himself for providing us with the
opportunity to thank him for all he has done.

Columbus, USA James W. Cogdell
Bonn, Germany Günter Harder
Toronto, Canada Stephen Kudla
West Lafayette, USA Freydoon Shahidi
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Globally Analytic p-adic
Representations of the Pro– p Iwahori
Subgroup of GL(2) and Base Change, II:
A Steinberg Tensor Product Theorem

Laurent Clozel

Abstract In this paper, which is a sequel to Clozel (Globally analytic p-adic rep-
resentations of the pro-p Iwahori subgroup of GL(2) and base change, I: Iwasawa
algebras and a base change map, to appear in Bull. Iran Math Soc, [4]), we exploit
the base change map for globally analytic distributions constructed there, relating
distributions on the pro-p Iwahori subgroup of GL(2) overQp and those on the pro-p
Iwahori subgroup of GL(2, L) where L is an unramified extension of Qp. This is
used to obtain a functor, the ‘Steinberg tensor product’, relating globally analytic
p-adic representations of these two groups. We are led to extend the theory, sketched
by Emerton (Locally analytic vectors in representations of locally p-adic analytic
groups, [6]), of these globally analytic representations. In the last section we show
that this functor exhibits, for principal series, Langlands’ base change (at least for
the restrictions of these representations to the pro-p Iwahori subgroups.)

Keywords 11R23 · 11F70 · 14G22

Introduction

This is part II of a paper, the first part of which is [4]. In that article we considered
the Iwasawa algebra of the pro–p Iwahori subgroup of GL(2, L) for an unramified
extension L of degree r ofQp and gave a presentation of it by generators and relations,
imitating [3]. A natural base change map then appears that, however, is well–defined
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2 L. Clozel

only for the globally analytic distributions on the groups, seen as rigid–analytic
spaces.

In Sect. 1.1 of [4], we stated that this should be related to a construction of base
change for representations of these groups, similar to Steinberg’s tensor product
theorem [13] for algebraic groups over finite fields.

In this paper we give such a construction, and we show that it is compatible with
the (p–adic) Langlands correspondence in the case of the principal series for GL(2).

By the previous remark, we have to limit ourselves to globally analytic represen-
tations. These representations have been considered by Emerton in his exhaustive
introduction (unfortunately unpublished) to p–adic representation theory [6]. See
in particular Sects. 3.3, 5.1 in his paper; the restriction of scalars, central to our
constructions, is considered in his Sect. 2.3.

The first section of this paper contains preliminaries about rigid–analytic groups.
The group associated to the pro–p Iwahori is (by Lazard’s description) very simple,
a product of copies of the rigid–analytic closed unit ball. In particular the algebras
of functions we consider are all Tate algebras. We must, however, systematically
consider restriction of scalars. Even for such simple spaces, this functor does not
behave trivially, as was pointed out to me by Gaëtan Chenevier. See [1, 14]. How-
ever, this is the case for unramified extensions (Sect. 1.1.) It is then an easy matter
to describe the natural functorial maps between Tate algebras (Defintion1.4) and,
dually, between (global) distribution algebras (Sect. 1.2). Nevertheless, the distribu-
tion algebra for a product is not a tensor product (even a completed tensor product.)
This causes problems in the representation theory, which will be mentioned below;
these “pathologies” are reviewed in the Appendix.

In Sect. 2 of this paper, we review the properties of these representations, adding
some complements to Emerton’s results. In particular, we study tensor products of
representations (Theorem2.3).

In contrast with the category of locally analytic representations, we can work
here with (p–adic) Banach spaces rather than with Fréchet spaces, or spaces of
compact type [6, 12]. Indeed, the spaces A and D of globally analytic functions
(resp. distributions) are Banach spaces. The unfortunate consequence is that they are
not reflexive. In particular we cannot systematically use duality as in the admissible
Banach theory [11] or the locally analytic theory [12]. A related problem is that the
spaces D of distributions are not Nœtherian. See the remarks in Sect. 2.3, as well as
the Appendix.

In Sect. 3,we take up the construction of the base change functor, i.e., the Steinberg
tensor product. Once the requisite property of the tensor product has been established
in Sect. 2, this is totally natural. The main point is that a globally analytic represen-
tation will automatically extend, from the L–points of a rigid–analytic group G over
L (we consider only very special groups, cf. Sect. 2) to the F–points for any finite
extension F of L . Although this is not explicit in [6], it follows from his definitions.
The construction is given in Sect. 3.2.

Of course this is meaningful only if it is compatible with the expected Langlands
correspondence. The end of Sect. 3 is devoted to the proof of this fact for the prin-
cipal series. We start with the pro–p Iwahori G of GL(2, Qp). We must of course
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consider only the representationswhichhaveglobally analytic vectors. This condition
is specified in (3.4). In Proposition3.6, we show that (under the same assumption
as in [12]) the globally analytic representation of the pro–p Iwahori subgroup of
GL(2, Qp) is topologically irreducible.

In Sect. 3.4, we extend these results to the pro–p Iwahori subgroup of GL(2, L)

where L/Qp is unramified. Here the similar irreducibility result is suggested by
the work of of Orlik and Strauch [8]. We show that the formation of the Steinberg
tensor product is compatible with Langlands functoriality (cf. Definition 3.2); the
final result is Theorem3.11 which exhibits base change in this context.

These results concern only the pro–p Iwahori subgroups, not the full groups
GL(2, Qp), GL(2, L). In Sect. 3.5 we make some tentative remarks about the exten-
sion of base change to the full groups. Finally, the Appendix reviews some questions
concerning the tensor products of distributions and the non-Noetherian character of
these algebras.

While writing this paper I had the benefit of discussions or correspondence with
Berthelot, Breuil, Chenevier, Raynaud and Schneider. ArianeMézard corrected some
mistakes in an early version. I am very grateful to them, and especially to Peter
Schneider who explained to me the facts reviewed in the Appendix. I also thank the
referee for useful comments.

1 Restriction of Scalars and Base Change Maps for
Analytic Functions and Distributions on Rigid–Analytic
Unit Ball Groups

1.1 .

We consider an unramified extension L/L0, of degree r , of p–adic fields (finite
extensions of Qp). Let X = B1/L be the closed unit ball over L , a rigid–analytic
space whose affinoid algebra is

T 1
L = L < x >,

the algebra of power series in x with coefficients tending to zero.
There is a functor of restriction of scalars, which to X = X/L associates a rigid–

analytic space Y = ResL/L0 X/L0.

Lemma 1.1 (L/L0 unramified)- Y is isomorphic to the r–th power of B1/L0.

This is a special case of the more general results of Bertapelle [1]. Let (ei ) be a
basis ofOL overOL0 , and let B be an affinoid L0–algebra. Consider f ∈ HomL(L <

x >, B
⊗

L0

L), thus

f (x) =
∑

bi ei (bi ∈ B) .
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We want to define canonically

g ∈ HomL0(L0 < x1, . . . xr >, B), with g(xi ) = bi .

(Thus Y ∼= Br/L0 is canonical, given the choice of the basis (ei ).) This is possible
if, and only if, ‖bi‖Sup ≤ 1 assuming ‖b‖Sup ≤ 1 where the sup norms are relative to
the affinoid algebras B and B

⊗

L0

L .

Assume first that B is a finite field extension of L0. Then B
⊗

L0

L is a product

of finite, unramified extensions Bα of L , and the integers O(B
⊗

L0

L) = ∏

α
O(Bα)

satisfy, the extensions being unramified, O(B
⊗

L0

L) = OB
⊗

OL0

OL = ⊕
OBei . To

say that ‖b‖Sup ≤ 1 for b ∈ B ⊗ L is to say that bα ∈ O(Bα), or b ∈ O(B
⊗

L0

L).

This implies that ‖bi‖ ≤ 1.
Now let B be ageneral affinoid algebra over L0, and B ′ = B

⊗

L0

L . Ifb = ∑
bi ei ∈

B ′ (bi ∈ B), the computation in [1, p. 444] shows that

‖b‖Sup = Sup
y∈MaxB

Max
x∈MaxB′

x |y

∥
∥
∥
( ∑

bi ei

)
(x)

∥
∥
∥
Sup

.

However, y corresponds to a finite extension K0 of L0, x to a finite extension K
of L contained in L

⊗

K0

L0 so unramified over L . The previous result implies that

‖∑
bi ei (x)‖Sup = Sup‖bi (x)‖. Thus ‖bi‖Sup ≤ 1 if ‖b‖≤1. We note that we have in

fact:

Lemma 1.2 The isomorphism Y
�−→ (B1/L0)

r is canonically defined by the choice
of the basis (ei ).

In fact, the function g (for instance if B = K0 is a field extension of L0) is defined
by

g(x1, . . . xr ) = f (�ei xi ) . (1.1)

(|xi | ≤ 1). The ei being integral, it is easy to check that for f ∈ T 1
L , the infinite series

in the right is convergent.
Since restriction of scalars is compatible with direct products [1, Proposition1.8]

we have likewise
ResL/L0(B1/L)d = (B1/L0)

dr

the isomorphism being canonical once we have fixed the basis (ei ).
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1.2 .

We now consider a rigid–analytic group GL over L , isomorphic as a rigid–analytic
space to (B1/L)d . (In particular GL(L) is dense in GL for the Zariski topology.) Let
A(GL) ∼= Td(L) = L < x1, ..., xd > [2, 5.1] be the space of analytic functions on
GL . The multiplication in GL is associated to a (comultiplication) morphism

m∗ : A(GL) −→ A(GL)⊗̂A(GL)

(completed tensor product). In this case, the product is given, in co–ordinates, by
integral functions, [2, Corollary5.1.3.5] so

m∗ : A0(GL) −→ A0(GL)⊗̂A0(GL) .

Then m∗ defines naturally a map

Res m∗ : A0(Res GL) −→ A0(Res GL)⊗̂A0(Res GL) ,

Res being the restriction of scalars of GL , a group over L0.
Assume now that the group GL is actually defined over L0, i.e., is obtained by

extension of scalars from L0. ThenA(GL) = A(GL0) ⊗ L . The map m∗ is obtained
by extension of scalars from

m∗
0 : A(GL0) −→ A(GL0)⊗̂A(GL0) .

The integrality property for GL and the property for GL0 are equivalent.
Now the previous construction associates to f ∈ A(GL) (with L–coefficients,

i.e. in Td(L)) a function g in A(Res GL) ⊗ L (the function g defined by (1.1) will
have coefficients in L). In particular we get a map A(GL0) → A(Res GL) ⊗ L by
composition with the previous “tautological” map A(GL0) → A(GL).

Definition 1.3 This map b1: A(GL0) → A(Res GL) ⊗ L is the holomorphic base
change map.

This map commutes with the comultiplications m∗
0 and Res m∗: it is obvious if

we consider m∗
0 and m∗, and for m∗ and Res m∗ it follows from the formal properties

of restriction of scalars. Furthermore b1 sends A0(GL0) to A0(Res GL ⊗ L).
The unramified extension L/L0 is Galois. Thus the Galois group� = Gal(L/L0)

acts naturally on GL (by σ–linear automorphisms of the Tate algebra) and acts on
Res GL by L0–automorphisms.

Definition 1.4 The map b : A(GLo) → A(Res GL) ⊗ L is defined by

b( f ) =
∏

σ∈�

b1( f )σ .
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Since b1 commutes with the comultiplication, the same is true for the product
� bσ

1 . We also note the following: Assume we extend scalars from L0 to L for the
L0–groups. Then

Res GL ⊗L0 L

is naturally isomorphic to
∏

σ
GL . Indeed, if B is an L–algebra (in particular an

affinoid algebra), B ⊗L0 L ∼= ⊕

σ
Bσ where Bσ = {β ∈ B ⊗ L : λ1β = λσ

2β where

λ ∈ L and λ1 is the action of λ on B ⊗ L by the first component, λ2 by the second
component. Now, A denoting a Tate algebra:

HomL (A(ResGL) ⊗L0 L , B) (B/L)

= HomL0(A(Res GL), B0)

(B0 being equal to B/L0)

= HomL(A(GL), B0 ⊗ L)

= ⊕

σ
HomL(A(GL), Bσ) .

In particular, after extension of scalars to L ,A(Res GL) ⊗ L ∼= ⊗̂

σ
A(GL). The map

b is then a tensor product: b1 sends A(GL0) to the functions on GL that are L–
holomorphic (given by power series �am xm , x = (x1, . . . , xd) being the variable)
while the component associated to σ sends a power series in A(G0) to �amσ(x)m .

We now agree to consider all Tate algebras as having coefficients in L , and we
denote them by AL .

Summarizing, we now have the following result:

Proposition 1.5 (i) There exists a natural map b1: AL(GL0)→AL(ResGL). It com-
mutes with the comultiplications.

(ii) There exists a natural map b = ∏

σ∈�

bσ
1 : AL(GL0) → AL(Res GL). It com-

mutes with the comultiplications.
(iii) In the isomorphism AL(Res GL) ∼= ⊗̂

σ
A(GL) (A(GL) = AL(GL)),

b = ⊗

σ
bσ
1 .

(iv) The maps b1 and b send the unit balls A0
L(GL0) to A0

L(Res GL). (The norm
being the sup norm of coefficients).

Wenowconsider the spaces of (L–valued) global distributions onGL0 andResGL .
We denote them byDL(GL0),DL(Res GL). These are the Banach spaces dual to the
Banach spaces of analytic functions (for the sup norms). We obtain, dually, a map

b∗
1 : DL(Res GL) → DL(GL0)
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and also
b∗ : DL(Res GL) → DL(GL0) .

These are homomorphisms, for the convolution of distributions. Using (iii) in the
Proposition, we can write

⊗

σ

DL(GL) ⊂ DL(Res GL)

and b∗ is then, on this subspace, given by

⊗

σ

Tσ �→ ∗
σ

Tσ

(where Tσ ∈ DL(GL0) is σ–holomorphic). However,
⊗̂

σ
DL(GL) is not equal to

DL(Res GL). Since, after extension of scalars, our groups become products, this
can be seen as follows.

We may forget for a moment the restriction of scalars, and consider two groups
G, H isomorphic (as rigid–analytic spaces) to (B1)d , (B1)d ′

over L . The spaces of
analytic functions are Td(L), Td ′(L), with the sup norm. The dualDL(G) of the space
of functions

f (x) =
∑

n

an xn , an → 0

(n ∈ Nd , x = (x1, . . . xd), |xi | ≤ 1) is the space of distributions

T =
∑

n

cn δn (|cn| ≤ C)

where δn( f ) = an = n ! ∂n f
∂xn (0). It is a Banach space, the norm being sup |cn|. The

same description applies to a distribution S on H , and a distribution on G × H .
However, these Banach spaces are �∞ spaces in the indexes, and for three (countable)
sets X , Y , X × Y , it is not true that

�∞(X) ⊗̂ �∞(Y ) = �∞(X × Y ) .

In order to form tensor products, wemust consider the unit balls inDL (G),DL(H)

(with their weak topology) and apply a result of Lazard. This was explained to me
by Peter Schneider; we will return to it at the end.
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2 Globally Analytic Representations

2.1 .

In this sectionwe review some basic properties of globally analytic representations of
a rigid–analytic group on a Banach space, mostly following Emerton [6]. We assume
given L and G/L as in Sect. 1.2. We denote by A ∼= Td(L) the space of globally
analytic functions on G. We will often write G for G(L) if this does not lead to
confusion ; G(L) is dense in G for the Zariski topology.

2.2 .

Let V be a Banach space over a field K containing L . We assume again K finite over
Qp. If g �→ π(g) is a continuous representation of G on V , we say that π (or V ) is a
globally analytic representation if the map

g �→ g · v = π(g)v

is (globally) analytic on G for all v ∈ V . Thus, in coordinates (x1, . . . xn) :

g · v =
∑

m

xmvm

where vm ∈ V and ‖vm‖ → 0.
Here m = (m1, . . . , md) and xm = xm1

1 · · · xmd
d , mi ∈ N. Such a representation is

automatically differentiable. We will simply use the term “analytic” for “globally
analytic”. Note that it is relative to the L–structure on V .

In this situation V is endowed with two natural norms, the given norm and

‖v‖ω = Sup
m

‖vm‖ .

The second norm is the norm of the map g �→ gv in the Banach spaceA(G, V ) =
A(G)⊗̂V (for this isomorphism cf. e.g. [6, Sect. 2.1]). Themap (V, ‖ ‖ω) → (V, ‖ ‖)
is bijective and obviously continuous. Since V , with the norm ‖ ‖ω , is complete [6,
3.3.1, 3.3.3] it is bicontinuous by Banach’s isomorphism theorem [9, Corollary8.7].

We recall the proof of the completeness of (V, ‖ ‖ω), as we will require similar
arguments. Thus let (vα)α be a Cauchy sequence in V for ‖ ‖ω . For each α, (vα

m)m∈M

is an element of C0(M, V )where M = Nd is the set of exponents. Since this space is
complete, (vα

m)m �→ (vm) in C0(M, V ) for an element (vm) ∈ C0(M, V ). In partic-
ular vα = vα

0 → v := v0 ∈ V . Now gv = lim
α

gvα
0 (g ∈ G), so gv = lim

α
(
∑

m
xmvα

m).
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Since
∥
∥
∥

∑

m

xm(vα
m − vm)

∥
∥
∥ ≤ Sup

m

∥
∥
∥vα

m − vm

∥
∥
∥ −→ 0 (α → ∞)

we see that gv = ∑
xmvm , which implies that ‖v − vα‖ω → 0.

Corollary 2.1 There exists a constant CV (depending on V ) such that ‖v‖ω ≤
CV ‖v‖ (v ∈ V ).

In particular ‖gv‖ ≤ CV ‖v‖ (g ∈ G).

In fact the original norm can be replaced by an equivalent norm such that ‖gv‖ =
‖v‖ : see Emerton [6, Sect. 6.5].

Lemma 2.2 Let (V, ‖ ‖) be a continuous Banach representation of G, and let W ⊂
V be a subspace comprised of analytic vectors. Assume that ‖w‖ω ≤ C‖w‖ (C > 0)
for w ∈ W . Then any vector of W̄ ⊂ V (the closure for the topology of V ) is analytic.

Proof — Consider a sequence (wα)α of vectors in W , such that ‖wα − v‖ → 0
(v ∈ V ). Then wα is a Cauchy sequence for ‖ ‖, so also for ‖ ‖ω . If

g · wα =
∑

m

xmwα
m ,

the sequence (wα
m)m∈M has a limit (vm) in C0(M, V ). In particular v0 = v. Again

g wα =
∑

m

xmwα
m −→ gv (α → ∞)

and ‖∑

m
xm(wα

m − vm)‖ ≤ Sup
m

‖wα
m − vm‖ → 0 (α → ∞)which implies that gv =

∑

m
xmvm .

Consider now two rigid analytic groups G, H verifying our assumptions. Let
V , W be analytic representation of G, H on Banach spaces. We assume the norms
invariant, using Emerton’s result. Then G × H acts on the algebraic tensor product
V ⊗ W . By [9, Proposition2.1.7.5] this action extends to V ⊗̂W , with ‖(g, h)u‖ =
‖u‖ (u ∈ V ⊗̂W ).

Now V ⊗ W is dense in V ⊗̂W , and is comprised of analytic vectors : if v ∈ V ,
w ∈ W and

gv =
∑

m

xmvm , hw =
∑

p

y pwp

(g ∈ G, h ∈ H ) then

(g, h)(v ⊗ w) =
∑

m,p

xm y pvm ⊗ wp .
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Since ‖vm ⊗ wp‖ = ‖vm‖ ‖wp‖ (Schneider [9, Proposition17.4]), this yields an ana-
lytic expansion.

Now endow V ⊗ W with its analytic norm ‖ ‖ω , for the action of G × H . We
have

‖v ⊗ w‖ω = Max
m,p

‖vm ⊗ wp‖
= Max‖vm‖Max‖wp‖
= ‖v‖ω ‖w‖ω.

Now consider any vector u ∈ V ⊗ W . The tensor product norm is defined by

‖u‖ = inf Max
i

‖vi‖ ‖wi‖

over the decompositions u = ∑
vi ⊗ wi . Choose ε > 0, and a decomposition such

that
‖u‖ ≥ Max‖vi‖ ‖wi‖ − ε.

Then ‖u‖ω ≤ Max
i

‖vi ⊗ wi‖ω

≤ CV CWMax
i

‖vi ⊗ wi‖ ≤ CV CW (‖u‖ + ε).

Thus ‖u‖ω ≤ CV CW ‖u‖, and V ⊗ W ⊂ V ⊗̂W verifies the assumption of the
Lemma. This implies:

Theorem 2.3 If V , W are (globally) analytic representations of G, H, V ⊗̂W is a
globally analytic representation of G × H.

(For a similar result, but for locally analytic representations, see Emerton [6,
3.6.18]).

We also note the following property. Let g be the Lie algebra of G (over Qp).

Proposition 2.4 If V is a globally analytic representation of G and W ⊂ V is a
closed subspace, W is G–invariant if and only if W is invariant by the enveloping
algebra U (g).

(Recall from [12] that the Lie algebra, orU (g), acts on a space of analytic vectors).

If W is G–invariant, it contains the derivatives Xw = lim
t→0

(
et X −1

t

)
w of its vectors by

elements X ∈ g. Conversely, if

gw =
∑

m

xmvm

then vm = 1
m!

dm

dxm

∣
∣
∣
0
(gv), the derivative being computed with respect to the variables

x . However the enveloping algebra (acting via u f = (u ∗ f )(0) for u ∈ U (g), f an
analytic function on G) also spans the space of derivatives at 0. If W is invariant by
U (g), the coefficient vm belong to W and therefore gw ∈ W .
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By contrast with the case of complex unitary representations, we do not know if
V ⊗̂W is (topologically) irreducible if V , W are topologically irreducible. The only,
obvious, property is that V ⊗̂W is topologically cyclic (i.e., the closed subspace
generated by a suitable vector is equal to V ⊗̂W ) if V and W are - in particular if
they are irreducible. Indeed, if v spans V and w spans W , v ⊗ w spans V ⊗̂W .

2.3 .

Finally, we also recall from Emerton’s paper that there is a duality theory for glob-
ally analytic representations, similar to the duality for locally analytic (or Banach
admissible) representations. If V is a globally analytic representation, the distribution
algebra DK (G) acts on the dual V ′. There is a duality between closed submodules
of (A(G) ⊗ K )n and quotients of DK (G)n . See [6, Theorem5.1.15]. We will not
be able to use this, however. There are two obstacles: the algebra DK (G) is not
Nœtherian; furthermore, as noticed at the end of Sect. 1, it does not behave well with
respect to the product of groups.

Let us define an admissible globally analytic representation as a globally analytic
Banach representation that is a closed submodule of (A(G) ⊗ K )n . Recall also from
[6, 10] that there is a category of admissible (continuous) Banach representations and
of admissible locally analytic Banach representations on spaces of compact type [11].
In general, an admissible globally analytic representation is not an admissible locally
analytic representation (an infinite–dimensionalBanach space is not of compact type)
and is not an admissible Banach representation. Indeed, if E is such a representation
and E0 is its unit ball (for a given G–invariant norm), and if � is a uniformising
parameter of K , it is known that E0/�E0 = Ē is a smooth admissible representation
of G over the finite residue field k of K [10], [6, 6.5.7]. However, A(G) does not
have that property.

For instance, if G is the additive unit ball, so V = A(G) ⊗ K = T1(K ), its unit
ball is translation–invariant and the subgroup �LOL of G(L) = OL acts trivially on
V̄ = k[x], so this representation is not admissible.

Assumehowever that E is an admissibleBanach representation. Then E is a closed
subspace of C(G, K )n for some n [10],[6, Sect. 6]. Let V = Ean be the space of glob-
ally analytic vectors. Emerton’s results (see the proof recalled before Corollary2.1)
show that V is complete for the norm ‖ ‖ω . It is an analytic Banach representation
[6, Corollary3.3.6].

Assume V = Ean is dense in E . Since C(G, K )an is equal to A(G) ⊗ K , V is
sent to (A(G) ⊗ K )n . Let j = ( ji )i=1,...n be the closed embedding E → C(G, K )n .
By Banach’s theorem ‖v‖ ≥ C Sup

i
‖ ji (v)‖ for v ∈ E , C being a > 0 constant. This

implies, the embedding being equivariant, that ‖v‖ω ≥ C Sup
i

‖ ji (v)‖ω for v ∈ V .

The canonical norm ‖ ‖ω onA(G) is the usual norm – the sup norm on coefficients.
(See Proposition2.7 below.) Thus V is a closed subspace of (A(G) ⊗ K )n . Con-
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versely, if V is such a subspace, we can consider its closure E ⊂ C(G, K )n . It is an
admissible Banach representation in which V is dense. Clearly V ⊂ Ean , but it does
not seem to follow that V is equal to Ean . To summarise:

Proposition 2.5 Any admissible globally analytic representation is a dense sub-
space of an admissible Banach representation. If E is an admissible Banach repre-
sentation, Ean is an admissible globally analytic representation.

The admissible analytic representations have further interesting properties. Recall
that in general, if V is an analytic representation, there is an action ofD(G) ⊗ K on
the continuous dual V ′ [6, 5.1.8]. If V is admissible, we can say more.

Assume T ∈ D(G) (we forget the extension of scalars for simplicity of notation.)
If f ∈ A(G), we can define a function T ∗ f by

T ∗ f (x) =
∫

T (z) f (z−1x)dz (2.1)

in functional notation, i.e. T applied to the function of z, z �→ z−1x . Since f (z−1x) is
in the Tate algebra of G × G, this is well–defined and, moreover, defines a function
in A(G). Thus D(G) acts by convolution on A(G), and this is compatible with the
convolution product.

Assume now that V ⊂ A(G) is a closed invariant subspace. Then V is invariant
by the differential operators 1

m!
dm

dxm . If f ∈ A(G) and

T =
∑

m

cm
1

m!
dm

dxm

∣
∣
∣
0

∈ D(G) (with cm bounded), T ∗ f is the limit in A(G) of TX f ,

TX f =
∑

|m|≤X

cm
1

m!
dm

dxm
f

as can be seen by expanding the function f (z−1x) in (2.1) in the Tate algebra of
G × G. Therefore V is invariant by D(G). The same extends to an embedding
V → A(G)n . Thus:

Proposition 2.6 If V is an admissible globally analytic representation, the distribu-
tion algebra D(G) acts naturally on V . The action is continuous if D(G) is equipped
with its weak dual topology.

The continuity follows from the previous argument. It implies in particular that
the action is intrinsic.

We recall that for locally analytic representations this construction is due to
Schneider and Teitelbaum [11, Sect. 3]. However their proof relies on an isomor-
phism
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L(Dloc(G), V ) ∼= Aloc(G, V )

([11, Theorem2.2]; here Aloc(G) is the space of locally analytic functions and
Dloc(G) its dual space, and V is a suitable topological space. The analogue is not
true in our context. Indeed

A(G, V ) = A(G)⊗̂V ∼= C0(M, V )

where M is our set of exponents, whileD(G) ∼= �∞(M, L). Since �∞(N)′ is distinct
from C0(N), we see a fortiori that these spaces are not isomorphic.

Because the comultiplication is given by integral series, we also have:

Proposition 2.7 Consider the admissible representation V = A(G) ⊗ K of G, with
its usual norm (sup of the coefficients.) Then

(i) V is a unitary representation.
(ii) On V , ‖ ‖ω = ‖ ‖.
(iii) For T ∈ D0 = (V ′)0 and f ∈ A0, the function g �→< T, g f > is in

A0(G, K ).

These facts easily follow from the property of the coproduct. Since an admissible
analytic representation embeds as a closed subspace of (A(G) ⊗ K )n , it follows that:

Corollary 2.8 Properties (i)–(iii) of Proposition2.7 are true for an admissible ana-
lytic representation.

3 Unramified Base Change : The Pro– p Iwahori for GL(2)

3.1 .

The content of this section is twofold: we first describe a functor producing, for
an unramified extension L/L0 and a globally analytic representation of G(L0) (the
assumptions are those of Sect. 1), a representation of G(L) of the same kind. In fact,
as in Sect. 1 for distribution algebras, there are two such functors. The first produces
a “holomorphic” extension to G(L). The second (“full base change”) is the one
that should be related to Langlands functoriality. It is the “Steinberg tensor product”
described at the end of Sect. 1.1 of [4].

We then show that for GL(2) and principal series representations of the pro–
p Iwahori subgroup, this is compatible with base change for the principal series
described by Schneider–Teitelbaum and Orlik–Strauch [8, 11]. In particular, we
show that certain globally analytic representations are irreducible.
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3.2 .

Let L/L0 denote an unramified extension of p–adic fields and G a rigid analytic
group over L0 verifying the conditions of Sect. 1. We fix a p–adic field K (finite
over Qp) and an injection ι : L ⊂ K . If σ ∈ Gal(L/L0), we then have the injection
ι ◦ σ : L → K .

Let V denote a (globally) analytic representation of G(L0) on a K–Banach space.

Proposition 3.1 (i) V extends naturally to an analytic representation of G(L).
(ii) If V is admissible, the corresponding representation of G(L) is admissible.

The group G(L0) acts on V by

g · v =
∑

m

xmvm (3.1)

with the notations of Sect. 2, and vm → 0. If g ∈ G(L), the same expansion (with
x = (x1, . . . , xd) ∈ Od

L) is convergent, and we define g · v by (3.1).We must check
that this defines a group representation of G(L). The map

(g, h) �→ gh.v = F(g, h)

G(L) × G(L) −→ V

is the composition of the map (g, h) �→ gh, analytic in the two variables, and of an
analytic map G(L) → V . It is analytic in the two variables.

On the other hand we have for g, h ∈ G(L0):

g(hv) = g F(1, h) . (3.2)

Write y for the coordinates of g and x for the co-ordinates of h. Then

F(1, h) = hv =
∑

m

xmvm .

On the other hand, for any vm ,

gvm =
∑

p

y pvm,p

with vm,p → 0 (|p| → ∞).
Since ‖vm‖ ≤ CV ‖v‖ for any m and v ∈ V ,
gF(1, h) = ∑

m,p
xm y pvmp,

the double sum being convergent: if |m| + |p| → ∞, either m → ∞ and ‖vm,p‖ ≤
CV ‖vm‖ → 0 orm is bounded and, again, ‖vm,p‖ → 0. Thus the function gF(1, h) :
G(L0) × G(L0) → V is aTate series (with coefficients inV ) in the twovariables, and
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extends to an analytic function G(L) × G(L) → V . Since F(g, h) = gF(1, h) for
g ∈ G(L0), these two analytic functions coincide: indeed G(L0) is Zariski–dense in
G, and the result follows (for instance, evaluate the two functions against a continuous
linear form λ ∈ V ′).

This proves (i). Assume now V is a closed subspace of A(GL0 , K ). Note that
the same argument applies to A(GL0 , K ), an analytic representation of G(L0). But
A(GL0 , K ) = A(GL , K ) and now V , as a representation of G(L), is a closed sub-
space of A(GL , K ).

We will call the extension of Proposition3.1 the holomorphic base change of V .
Its coefficients are L–analytic (for the given embedding L → K ): it is L–analytic in
the sense of Emerton [6].

If σ ∈ Gal(L/L0) we write V σ for the representation of G(L) associated to ι ◦ σ.
It is L–analytic for ι ◦ σ.

Definition 3.2 The full base change of V is the globally analytic representation of
ResL/L0G(L) on W = ⊗̂

σ
V σ .

It is analytic for ResL/L0G(L) by the results of Sect. 1. (Note that L/L0 being
unramified, ResL/L0G(L) is again a group of the same type.) The fact that the com-
pleted tensor product is globally analytic follows from Sect. 2.

When V is the restriction to G(L) — the L–points of a rigid–analytic group
deduced from a suitable integral structure on a reductive group G/L — of a repre-
sentation (still denoted by V ) of G(L), we conjecture that this will be compatible, in
some sense, with Langlands base change (still conjectural) for p–adic Banach rep-
resentations of G(L). Of course the relation between admissible Banach representa-
tions and globally analytic Banach representations (for G(L)) is not one–to–one, cf.
Proposition2.5. It would be interesting to determine which Banach spaces E give
rise to a given V , for instance if V is irreducible. Furthermore, even in the case of
irreducible principal series V for G(L), the restriction to G(L) is not irreducible.
The full base change of Definition 3.2 then describes only certain of its submodules.
This will be clear for the principal series.

3.3 .

Wenow consider the case of the principal series for GL(2). For simplicity we assume
L0 = Qp. We assume p > 2. Let G be the rigid-analytic group over Qp defined by
the pro-p Iwahori subgroup of GL(2, Qp). It is checked in [4] that G is naturally a
rigid-analytic group, with comultiplication given by integral series.1 As a spaceG is a

product of 1–dimensional balls. Thus G(Qp) =
{
g ∈ GL(2, Zp) : g ≡

(
1 0
∗ 1

)

[p]
}
.

1In that paper p is assumed greater than 5, in order to apply Lazard’s theory. However this particular
computation only requires p > 2.
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(Recall that wewriteG forG(Qp) if themeaning is clear.) The principal series is then
described by Schneider and Teitelbaum [11]. (They define the Iwahori subgroup by
matrices that are lower triangular mod p while in [4] we consider upper–triangular
matrices. We have followed their choice.) We fix K (and an embedding L ↪→ K ) as
in Sect. 3.2.

Let B =
{
g ∈ GL(2, Zp) : g ≡

(∗ 0
∗ ∗

)

[p]
}
, so our group G = G(Qp) is a sub-

group of B. Let P0 ⊃ T0 be the set of upper triangular (resp. diagonal) matrices in
B. Let χ : T0 → K × be a locally analytic character, such that

χ

(
t−1

t

)

= exp(c(χ) log(t))

for t ∈ T0 = (Z×
p )2 when t is sufficiently close to 1. Thus c(χ) ∈ K .

We consider first, as they do, the locally analytic induced representation of B

Jloc = indB
P0

(χ) = { f ∈ Aloc(B, K ) : f (gb) = χ(b−1) f (g)}

(b ∈ P0), where χ is naturally extended to P0. We have

B = U P0 , U =
{ (

1
z 1

)

, z ∈ Zp

}
. (3.3)

Note that sinceχ is fixed, the restriction of the functions of Jloc to G ⊂ B is injective.
With

Q0 = P0 ∩ G =
{ (

s x
t

)

: s, t ≡ 1 , x ≡ 0 [p]
}

we see that the space of Jloc is

Iloc = { f ∈ Aloc(G, K ) : f (gb) = χ(b−1) f (g)}

(b ∈ Q0). With (3.3) replaced by G = U Q0, we see that Iloc
∼= Aloc(Zp, K ) where

Zp is seen as the rigid analytic (additive) group B1(Zp). The group G acts by left
translations, thus by f (g) �→ f (h−1g). We now have [11, Lemma5.2]:

Lemma 3.3 For y ∈ Zp, x ∈ pZp, s, t ≡ 1 [p]:

(i)

(
1

y 1

)

f (z) = f (z − y)

(i i)

(
s

t

)

f (z) = f (st−1z)χ(s, t)

(i i i)

(
1 x

1

)

f (z) = f
(

z
1−xz

)
χ((1 − xz)−1, 1 − xz) .
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We now seek conditions such that A(B1, K ), where B1 is the unit ball in the
z–variable, is a globally analytic representation. We simply denote this space by A;
we will similarly drop the subscript K in this section.

Lemma 3.4 It suffices to check analyticity separately for the 1–parameter (rigid–
analytic) subgroups of which G is the product.

Changing notation, denote by x , y, u, w the variables in Zp deduced from the
natural variables. (So x is p−1x ′ where x ′ is the coordinate in (iii)). Assume for

instance y f =
∞∑
o

ym fm , ‖ fm‖ → 0 for any f , where ‖ ‖ is the natural norm on A.

Then, with obvious notation:

xy f = x
∞∑

o

ym fm

=
∞∑

m=0

ym
∞∑

p=0

x p fm,p

where, for each m, fm,p → 0 with p.
However, the norm onA is equivalent to the norm ‖ ‖ω,x deduced from the action

of the (rigid–analytic) x–group. Thus we can assume that ‖ fm,p‖ ≤ C‖ fm‖. Then
‖ fm,p‖ → 0 when |m| + |p| → ∞. The same argument applies to any number of
variables.

For f ∈ A and z ∈ Zp, f �→ f (z) is a continuous linear form. For s = t , (ii)
yields: (

s
s

)

f (z) = f (z)χ(s, s) .

If the action is analytic, we see that χ(s, s) must be an analytic function of s for
s ≡ 1 [p]. Now χ(s, t) = χ(t, t)χ(st−1, 1). We may then consider

(
s
1

)

f (z) = f (sz)χ(s, 1) .

Taking f = 1, we see that χ(s, 1) must be analytic. Moreover, if

f (z) =
∑

m≥0

am zm

and s = 1 + pu, then

f (sz) =
∑

n

(pu)n
∑

m≥n

am

(
m
n

)

zm =
∑

n

un fn(z)

yields an analytic expansion, in A, of f (sz).
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The condition on the analyticity of χ(s, t) is as follows. Write χ = (α,β) with

α(1 + pu) = ea log(1+pu), β(1 + pu) = eb log(1+pu)

(a, b ∈ K ) for u ∈ Zp close to 0. The exponential is analytic (in K ) in the domain
vp(z) > e

p−1 where e = e(K ); vp is always the normalized valuation, vp(p) = 1.
Now

vp(a log(1 + pu)) = vp(a) + 1 + vp(u)

since p > 2, so we must have vp(a) + 1 > e
p−1 , i.e.:

vp(a), vp(b) >
e

p − 1
− 1

= −p

p − 1
if K is unramified.

(3.4)

Henceforth we assume that α,β verify these conditions (“ α,β are analytic” for

short.) Now the action of

(
s

t

)

is a twist of the action associated to χ = 1 by an

analytic character. Thus (i), (ii) yield analytic actions.
Now α(1 + v) belongs to the Tate algebra on the ball |v| ≤ p−1, so α(1 − xz)

belongs to the Tate algebra of two variables on B1 = B(1) × B(p−1). In particular
it has a convergent expression

∑

m≥0

xm αm(z) , αm ∈ A

on this domain, convergent (for |x | ≤ p−1) as a series in A. Now for |v| < 1

(1 − v)−m =
∞∑

q=0

(
m + q − 1

q

)

vq

so, for f =
∞∑

0
am zm ,

f
( z

1 − xz

)
=

∞∑

0

am zm
∞∑

q=0

(
m + q − 1

q

)

xq zq

=
∞∑

q=0

xq
∞∑

m=0

(
m + q − 1

q

)

am zm+q .

We have to remember that x ∈ pZp, so the analyticity of the action (iii) must be seen
in the variable ξ = x

p ∈ B1. The expression now becomes
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∞∑

q=0

ξq pq
∞∑

m=0

(
m + q − 1

q

)

am zm+q

=
∞∑

q=0

ξq fq(z)

with obviously ‖ fq‖A ≤ p−q‖ f ‖A. Thus the action (iii) is analytic.
Let Aloc ⊃ A be the space of locally analytic functions. The representation of

G on Aloc is studied by Schneider and Teitelbaum in [11]. Let Dloc be the space of

distributions on U =
{ (

1
∗ 1

) }
in their sense, i.e. the topological dual of Aloc. We

recall that Aloc = lim−→
n

A(n) where A(n) is the space of functions globally analytic

on each ball of radius p−n . Thus A = A(0). The transition maps are injective and
compact, with dense image. Dually we have Dloc = lim←−D(n). This is a projective
limit of Banach spaces, the projection maps being compact with dense image; D =
D(0).

Similarly for the rigid–analytic group G, we have Aloc(G), Dloc(G) with similar
properties. Consider the maps

r : Dloc −→ D = A′ (continuous dual of A)

R : Dloc(G) −→ D(G) .

We have natural actions of Dloc(G) on Dloc and of D(G) on D (see 2.3), which we
denote by the convolution sign.

Lemma 3.5 For T ∈ Dloc(G), F ∈ Dloc, r(T ∗ F) = R(T ) ∗ r(F).

Themaps r and R are continuous. The map (t, f ) �→ t ∗ f (t ∈ D(G), f ∈ D) is
continuous in t ; similarly (T, F) �→ T ∗ F (T ∈ Dloc(G), F ∈ Dloc) is continuous
[11]. Furthermore the finite group algebra K [G] is dense inDloc(G). It suffices then
to check the formula for a single Dirac measure T = δg , where it is obvious. The
results of Schneider–Teitelbaum now easily imply:

Proposition 3.6 If b − a /∈ N = {0, 1, ...}, the globally analytic representation of
G on A is topologically cocyclic and admissible.

Here ‘topologically cocyclic’ means that its dual is topologically cyclic.
Consider the G–map r : Dloc → D, and let X ⊂ D be a closed submodule (for

the action of G). Then r−1X ⊂ Dloc is a closed submodule, invariant by Dloc(G).
In [11], Schneider and Teitelbaum consider in fact the action of Dloc(B). By [11,
Theorem5.4],Dloc is (algebraically) irreducible underDloc(B). However a glance at
their proof shows that it remains irreducible under Dloc(G): the proof involves only
the action of the Lie algebra, except for the argument at the bottom of p. 460. Here it
must be checked that a submodule V of Dloc, under the action of B, is generated by
distributions, the Amice transform of which has only zeroes in the set of elements
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of the form ζ − 1 where ζ is a root of unity (in Cp) of pn-order. The argument relies
on the action of T0; however it is easily seen that the action of the group of elements
congruent to 1 mod p (contained in G) is sufficient.

Thus r−1X is null or equal toDloc. Since X is closed and r : Dloc → D has dense
image, we deduce that X is equal to D in the second case. If r−1X is null, X ∩
I m(Dloc) = {0}. Since I m(Dloc) is dense, choosing a suitable vector in D implies
that D is cyclic. However D is the Banach dual of A. Thus A is cocyclic.

Finally, the representation onA is admissible: indeed,A is the subspace ofA(G)

defined by the conditions f (gb) ≡ χ(b−1) f (g) ( f is then analytic on G since χ is
so) and this is a closed subspace.

This suggests the stronger result:

Theorem 3.7 If b − a /∈ N, the globally analytic representation of G on A is topo-
logically irreducible (and admissible).

Assume that X ⊂ A is a closed, G-invariant subspace. Then it is stable by the
action of the enveloping algebra of g. Let X, Y be the usual infinitesimal generators
of the upper and lower unipotent subgroups, and let H be an infinitesimal generator
of the diagonal subgroup T with entries (s, 1). Thus T is identifiedwith {s ∈ Z×

p , s ≡
1[p]}.We deduce from Lemma3.3 the action of these elements on a function f ∈ A.
For

f (z) =
∞∑

0

anzn

the image of f by s ∈ T is

α(s) f (sz) =
∞∑

0

α(s)snanzn.

Therefore, since d
dt |0(sn) = nH for s = exp(t H), H ∈ Zp (for instance H = 1),

∞∑

0

nanzn ∈ X . (3.5)

Moreover,

−Y f = f ′ =
∞∑

0

nanzn−1

X f = −(d/dx)|0( f
(

z
1+xz

)
α((1 + xz)−1)β(1 + xz))

= z2 f ′(z) + (a − b)z f (z).

Let τN be the natural truncationA → K [z]N (N ≥ 0)where K [z]N is the space of
polynomials of degree≤ N . Then τN is equivariant for the action of T . On the finite-
dimensional space K [z]N , the operators given by s ∈ T are simultaneously diago-
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nalizable, in the basis {zn}. The associated characters of T are linearly independent.
Thus τN (X ) is a direct sum of the monomials for the exponents m ∈ MN ⊂ [0, N ].
If N ≤ N ′, the surjectivity of K [z]N ′ → K [z]N implies that MN ⊂ MN ′ and in fact
MN = MN ′ ∩ [0, N ]

Taking M equal to the union of the MN for all N , we see that there exists M ⊂ N

such that
(a) f ∈ X ⇒ an = 0 (n /∈ M)

(b) n ∈ M ⇒ zn ∈ τN (X ) f or any N ≥ n

In particular, if n ∈ M , there exists

f = zn +
∑

m>N

am zm ∈ X (3.6)

for any N ≥ n. Furthermore, using the action of Y , we see that n − 1 ∈ M if n ∈ M ,
so M = [0, N ](N ≥ 0) or M = N.

Lemma 3.8 The constant function z0 belongs to X .

The proof will rely on an analogue of the operator of ‘ordinary projection’ in
Iwasawa theory. Start with

f = a0 +
∑

m>0

am zm ∈ X (a0 �= 0).

Then the function deduced from H p−1 f ,

∑

m>0

m p−1am zm ∈ X ,

so
A f := a0 +

∑

m>0

(1 − m p−1)am zm ∈ X .

If p|m, (1 − m p−1)n → 1 if vp(n) → ∞. If p does not dividem, this power tends
to 0. Thus we see, with E = lim An (for such values of n) that

E f := a0 +
∑

p|m
apm zm

=
∑

m≥0

apm z pm ∈ X .

Applying again the transformation given by formula (3.5), dividing by p, and
iterating, we see that

∑

m>0

mkapm z pm ∈ X . Therefore

A1 f := a0 +
∑

m>0

(1 − m p−1)apm z pm ∈ X .
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Defining E1 as the limit of An
1 for vp(n) → ∞, we see that a0 +

∑

m>0

ap2m z p2m ∈
X . Iterating again, we see finally that the constant a0z0 belongs to X .

We can now finish the proof of Theorem3.7. For f = zm , the formula for the
action of X yields X f = (m + a − b)zm+1. If b − a /∈ N, we see, starting with z0,
that all monomials are in X . Since X is closed, it is equal toA. On the other hand, if
b − a = N ∈ N, it is easy to see fromLemma3.3, or from the derived representation,
that the space of polynomials of degree ≤ N is stable by G: the corresponding
representation is the irreducible representation of G of degree N + 1 and central
character αβ.

3.4 .

Let now L be an unramified extension of Qp, of degree r . Denote by IQp (χ) the pre-
vious representation of G, on globally analytic functions. Let IL(χ) be its extension
to G(L) by holomorphic base change (Proposition3.1). It is an L-analytic represen-
tation , still given by the formulas of Lemma 3.3. Note that L/Qp being unramified,
the holomorphic extension of χ to (OL [1])2, where OL [1] = {x ∈ O×

L : x ≡ 1[p]},
verifies (3.4). The representation of G(L) is realised on the L-analytic functions on
B1 , seen as an L-analytic space. More generally, if χ = (α,β) is a pair of char-
acters of OL [1] verifying the condition extending (3.4) (see before Theorem3.11),
we can consider the globally Qp-analytic vectors in the induced representation of
G(L) = ResL/Qp G(Qp) on Aloc(ResL/Qp U (Qp), K ). This representation will be
denoted by I (χ).

Proposition 3.9 If b − a /∈ N, the holomorphic base change IL(χ) of IQp (χ) is
topologically irreducible.

(The irreducibility clearly follows from the irreducibility under G(Qp).)
We now compare the base change functor we have constructed with the natural

consequences of a (conjectural) Langlands functoriality for p–adic representations.
We refer the reader to the Introduction to [3] formoremotivation. The principal series
representation of G(Qp) is one of two summands (under G(Qp)) of an irreducible
representation π of G(Qp) = GL(2, Qp) [11, Sect. 5], the principal series associated
to the representation of the Galois group

σ �→ α(σ) ⊕ β(σ)

(σ ∈ Gal(Q̄p)). Here we have assumed α,β extended to Q×
p , thus giving characters

of the Weil group WQp , and α(p), β(p) units so the representation of WQp actually
extends to the Galois group.

In conformity with the general formalism, the base change πL of π should be
associated to the couple of characters (α ◦ NL/Qp , β ◦ NL/Qp ). Thus, instead of


