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Preface

A large international conference on Advances in Engineering Technologies and
Physical Science was held in London, UK, July 5–7, 2017, under the World
Congress on Engineering 2017 (WCE 2017). The WCE 2017 is organized by the
International Association of Engineers (IAENG); the Congress details are available
at: http://www.iaeng.org/WCE2017. IAENG is a nonprofit international association
for engineers and computer scientists, which was founded originally in 1968. The
World Congress on Engineering serves as good platforms for the engineering
community to meet with each other and to exchange ideas. The conferences have
also struck a balance between theoretical and application development. The con-
ference committees have been formed with over three hundred committee members
who are mainly research center heads, faculty deans, department heads, professors,
and research scientists from over 30 countries. The congress is truly global inter-
national event with a high level of participation from many countries. The response
to the Congress has been excellent. There have been more than six hundred
manuscript submissions for the WCE 2017. All submitted papers have gone
through the peer review process, and the overall acceptance rate is 51%.

This volume contains thirty revised and extended research articles written by
prominent researchers participating in the conference. Topics covered include
mechanical engineering, engineering mathematics, computer science, knowledge
engineering, electrical engineering, wireless networks, and industrial applications.
The book offers the state of the art of tremendous advances in engineering tech-
nologies and physical science and applications, and also serves as an excellent
reference work for researchers and graduate students working on engineering
technologies and physical science and applications.

Hong Kong, Hong Kong Sio-Iong Ao
Queensgate, UK Len Gelman
DaeGu, Korea (Republic of) Haeng Kon Kim
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Homogenization of Electromagnetic
Fields Propagation in a Composite

Helene Canot and Emmanuel Frenod

Abstract In this paper we study the two-scale behavior of the electromagnetic field
in 3D in a composite material. It is the continuation of the paper (Canot and Frenod
Method of homogenization for the study of the propagation of electromagnetic waves
in a composite 2017) [7] in which we obtain existence and uniqueness results for
the problem, we performed an estimate that allows us to approach homogenization.
Techniques of asymptotic expansion and two-scale convergence are used to obtain
the homogenized problem. We justify the two-scale expansion numerically in the
second part of the paper.

Keywords Asymptotic Expansion · Electromagnetism · Finite element
Harmonic Maxwell Equations · Homogenization · Simulations · Two-scale
Convergence

1 Introduction

We are interested in the time-harmonic Maxwell equations in and near a compos-
ite material with boundary conditions modeling electromagnetic field radiated by
an electromagnetic pulse (EMP). We recall that composite material is composed
by carbon fibers periodically enclosed in an epoxy resin which is charged with
nanoparticles. In the first part, we have presented the model and proved the exis-
tence of a unique solution of the problem. Our mathematical context is periodic
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2 H. Canot and E. Frenod

homogenization. We consider a microscopic scale ε, which represents the ratio
between the diameter of the fiber and thickness of the composite material. So, we
are trying to understand how the microscopic structure affects the macroscopic elec-
tromagnetic field behavior. Homogenization of Maxwell equations with periodically
oscillating coefficients was studied in many papers. N. Wellander homogenized lin-
ear and non-linear Maxwell equations with perfect conducting boundary conditions
using two-scale convergence in [19, 20]. N. Wellander and B. Kristensson homoge-
nized the full time-harmonicMaxwell equation with penetrable boundary conditions
and at fixed frequency in Wellander and Kristensson [21]. The homogenized time-
harmonic Maxwell equation for the scattering problem was done in Guenneau et al.
[11]. Y. Amirat and V. Shelukhin perform two-scale homogenization time-harmonic
Maxwell equations for a periodical structure in Amirat and Shelukhin [4]. They cal-
culate the effective dielectric ε and effective electric conductivity σ . They proved
that homogenized Maxwell equations are different in low and high frequencies. In
our model, we use the Asymptotic expansion suggested by Bensoussan et al. [6] and
we justify rigorously mathematical problem by using the theory of two-scale conver-
gence introduced byNguetseng [15] and developed byAllaire [2]. The result obtained
by two-scale convergence approach takes into account the characteristic sizes of skin
thickness andwavelength around thematerial. Thenwe compare numerically the the-
oretical result with the homogenized model. The goal is to validate the homogenized
procedure for epsilon = 0.01. The paper was presented at the World Congress on
Engineering in London [13].

2 Homogenization

We recall that our problem is:

∇×∇×Eε − ω2ε5k(ε)Eε + iω[(1ε
C(

x
ε
) + ε41ε

R(
x
ε
))]Eε = 0, in Ω. (1)

where for a given set A , 1A stands for the characteristic function of A and where
1ε
A (x) = 1A ( x

ε
), hence 1ε

C and 1ε
R are the characteristic functions of the sets filled

by carbon fibers and by resin. And where k(ε) = (εc1ε
C(x) + εr1ε

R(x)).

Remark 1 We recall that εc and εr are respectively the relative permittivity of the
carbon fibers and the resin. You should not confused with the microscopic scale ε.
Equation (1) is provided with the following boundary conditions:

∇×Eε × e2 = −iωHd(x, z) × e2 on R × �d , (2)

and
∇×Eε × e2 = 0 on R × �L . (3)
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We start homogenization approach with the two-scale asymptotic expansion. The
rigourous mathematical justification of the homogenized problem was made using
two-scale convergence. This conceptwas introduced byNguetseng [16] and specified
by Allaire [3] which studied properties of the two-scale convergence. Neuss-Radu
in [14] presented an extension of two-scale convergence method to the periodic
surfaces. Many authors applied two-scale convergence approach Cionarescu and
Donato [9], Crouseilles et al. [10], Amirat et al. [1] and also Back and Frénod [5].
This mathematical concept were applied to homogenize the time-harmonic Maxwell
equations Ouchetto et al. [17], Pak [18].

In our model, the parallel carbon cylinders are periodically distributed in direction
x and z, as the material is homogenous in the y direction, we can consider that
the material is periodic with a three directional cell of periodicity. In other words,
introducingZ = [− 1

2 ,
1
2 ] × [−1, 0]2, function �ε given in Canot and Frenod [8] is

naturally periodic with respect to (ξ, ζ ) with period [− 1
2 ,

1
2 ] × [−1, 0] but it is also

periodic with respect to y with period Z .
Now, we review some basis definitions and results about two-scale convergence.

2.1 Two-Scale Convergence

We first define the function spaces

H(curl,Ω) = {u ∈ L2(Ω) : ∇×u ∈ L2(Ω)},
H(div,Ω) = {u ∈ L2(Ω) : ∇· u ∈ L2(Ω)}, (4)

with the usual norms:

‖u‖2H(curl,Ω) = ‖u‖2
L2(Ω)

+ ‖∇×u‖2
L2(Ω)

,

‖u‖2H(div,Ω) = ‖u‖2
L2(Ω)

+ ‖∇· u‖2L2(Ω)
.

(5)

They are well known Hilbert spaces.

H#(curl,Z ) = {u ∈ H(curl, R3) : u is Z -periodic}
H#(div,Z ) = {u ∈ H(div, R3) : u is Z -periodic} (6)

We introduce

L2
#(Z ) = {u ∈ L2(R3), u is Z -periodic}, (7)

and
H1

#(Z ) = {u ∈ H1(R3), u is Z -periodic}, (8)

whereH1(R3) is the usual Sobolev space on R3. First, denoting byC0
#(Z ) the space

of functions in C0(R3) and Z -periodic, C0
0(R

3) the space of continuous functions
over R3 with compact support, we have the following definitions:
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Definition 1 A sequence uε(x) in L2(Ω) two-scale converges to u0(x, y) ∈ L2

(Ω,L2
#(Z )) if for every V (x, y) ∈ C0

0(Ω,C 0
# (Z ))

lim
ε→0

∫

Ω

uε(x) · V (x, x/ε) dx

= ∫

Ω

∫

Z

u0(x, y) · V (x, y) dxdy. (9)

Proposition 1 If uε(x) two-scale converges to u0(x, y) ∈ L2(Ω,L2
#(Z )), we have

for all v(x) ∈ C0(Ω) and all w(y) ∈ L2
#(Z )

lim
ε→0

∫

Ω

uε(x) · v(x)w( x
ε
) dx

= ∫

Ω

∫

Z

u0(x, y) · v(x)w(y) dxdy. (10)

Theorem 1 (Nguetseng). Let uε(x) ∈ L2(Ω). Suppose there exists a constant c > 0
such that for all ε

‖uε‖L2(Ω) ≤ c. (11)

Then there exists a subsequence of ε (still denoted ε) and u0(x, y) ∈ L2(Ω,L2
#(Z ))

such that:
uε(x) two-scale converges to u0(x, y). (12)

Proposition 2 Let uε(x) be a sequence of functions in L2(Ω), which two-scale con-
verges to a limit u0(x, y) ∈ L2(Ω,L2

#(Z )).

Then uε(x) converges also to u(x) =
∫

Z

u0(x, y)dy in L2(Ω) weakly.

Furthermore, we have

lim
ε→0

‖uε‖L2(Ω) ≥ ‖u0‖L2(Ω×Y ) ≥ ‖u‖L2(Ω). (13)

Proposition 3 Let uε(x) be bounded in L2(Ω). Up to a subsequence, uε(x) two-
scale converges to u0(x, y) ∈ L2(Ω,L2

#(Z )) such that:

u0(x, y) = u(x) + ũ0(x, y), (14)

where ũ0(x, y) ∈ L2(Ω,L2
#(Z )) satisfies

∫

Z

ũ0(x, y) dy = 0, (15)

and u(x) =
∫

Z

u0(x, y) dy is a weak limit in L2(Ω).
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Proof Due to the a priori estimates (32), uε(x) is bounded inL2(Ω), then by applica-
tion of Theorem 1, uε we get the first part of the proposition. Furthermore by defining
ũ0 as

ũ0(x, y) = u0(x, y) − ∫

Z

u0(x, y)dy, (16)

we obtain the decomposition (14) of u0.

Proposition 4 Let any two-scale limit u0(x, y), given by Proposition (3), can be
decomposed as

u0(x, y) = u(x) + ∇yΦ(x, y). (17)

where Φ ∈ L2(Ω,H1
#(Z )) is a scalar-valued function and where u ∈ L2(Ω).

Proof Proof of (17), integrating by parts, for any V (x, y) ∈ C1
0(Ω,C1

#(Z )), we have

ε
∫

Ω

∇×uε(x) · V (x, x
ε
) dx

= ε
∫

Ω

uε(x) · ∇×V (x, x
ε
) dx

= ∫

Ω

uε(x){ε∇x × V (x, x
ε
) + ∇y × V (x, x

ε
)} dx.

(18)

Taking the two-scale limit as ε → 0 we obtain

0 = ∫

Ω

∫

Z

u0(x, y) · ∇y × V (x, y) dxdy, (19)

which implies that ∇y × u0(x, y) = 0. To end the proof of the proposition we use
the following result.

Proposition 5 If u0 ∈ L2(Ω) satisfies

∇y × u0(x, y) = 0, (20)

then there exists u ∈ L2(Ω) and Φ ∈ L2(Ω,H1
#(Z )) such that u0(x, y) = u(x) +

∇yΦ(x, y).

Applying this proposition we obtain equality (17) ending the proof of Proposition
(4).

3 Homogenized Problem

We will explore in this section the behavior of electromagnetic field Eε using the
asymptotic expansion and the two-scale convergence to determine the homogenized
problem. We place in the context of the case 6 with δ > L and ω = 106rad.s−1, then
we have η = 5 and �ε

a = ε, �ε
r = ε4, �ε

c = 1 which gives the following equation:
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∇×∇×Eε − ω2ε5k(ε)Eε + iω[(1ε
C( x

ε
) + ε41ε

R( x
ε
))1{y<0} + ε1{y>0}]Eε = 0,

(21)
where for a given set A , 1A stands for the characteristic function of A and where
1ε
A (x) = 1A ( x

ε
), hence 1ε

C and 1ε
R are the characteristic functions of the sets filled by

carbon fibers and by resin. And where k(ε) = (εc1ε
C(x) + εr1ε

R(x))1{y<0} + 1{y>0}.
First, we will use the classical method of the asymptotic expansion.

3.1 Asymptotic Expansion

We assume that (Eε, H ε) satisfies the following asymptotic expansion, as ε → 0:

Eε(x) = E0(x,
x
ε
) + εE1(x,

x
ε
) + ε2E2(x,

x
ε
) + ...., (22)

where for any k ∈ N Ek = Ek(x, y) are considered as Z -periodic functions with
respect toy.Applied to functions Ek(x, x

ε
) the curl operator becomes∇x × Ek(x, x

ε
) +

1
ε
∇y × Ek(x, x

ε
). Plugging (22) in the formulations (21), gathering the coefficients

with the same power of ε, we get:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ε2

∇y × ∇y × E0(x, x
ε
)

+ 1
ε
[∇y × ∇y × E1(x, x

ε
) + ∇y × ∇x × E0(x, x

ε
) + ∇x × ∇y × E0(x, x

ε
)]

+ε0[∇x × ∇y × E1(x, x
ε
) + ∇x × ∇x × E0(x, x

ε
)

+∇y × ∇y × E2(x, x
ε
) + ∇y × ∇x × E1(x, x

ε
) + iω1ε

C(x)1{y<0}E0(x, x
ε
)]

+ε[∇x × ∇y × E2(x, x
ε
) + ∇x × ∇x × E1(x, x

ε
)) + ∇y × ∇x × E2(x, x

ε
)

+∇y × ∇y × E3(x, x
ε
) + iω(1ε

C (x)1{y<0}E1(x, x
ε
)

+1{y>0})E0(x, x
ε
)] + ...) = 0.

(23)
In order to write what is in factor of ε in the last equation we used that : 1{y<0} =

1{ y
ε
<0}. Since (23) is considered as true for any small ε it gives a cascade of equations,

from which we extract the four first equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇y × ∇y × E0(x, y) = 0
∇y × ∇y × E1(x, y) + ∇y × ∇x × E0(x, y) + ∇x × ∇y × E0(x, y) = 0
∇x × ∇y × E1(x, y) + ∇x × ∇x × E0(x, y) + ∇y × ∇y × E2(x, y)
+∇y × ∇x × E1(x, y) + iω1C (y)1{ν<0}E0(x, y) = 0
∇x × ∇y × E2(x, y) + ∇x × ∇x × E1(x, y)
+∇y × ∇x × E2(x, y) + ∇y × ∇y × E3(x, y)
+iω

(
1C(y)1{ν<0}E1(x, y) + 1{ν>0}

)
E0(x, y) = 0

(24)

Applying divy in the last two equations in (24), we obtain

∇y · (
iω1C(y)1{ν<0}E0(x, y)

) = 0, (25)
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and
∇y · (

iω(1C(y)1{ν<0}E1(x, y) + 1{ν>0})E0(x, y)
) = 0. (26)

The boundary condition in (2) write:

{
( 1

ε
∇y × E0(x, y) + ∇x × E0(x, y) + ∇y × E1(x, y + ...) × n

= −iωHd × n, x ∈ R3, y ∈ Z .
(27)

Now we take the first equation of (24) and the equation (25) to obtain:

{ ∇y × ∇y × E0(x, y) = 0,
∇y · {iω(1C(y)1{ν<0})E0(x, y)} = 0.

(28)

Multiplying the first equation in (28) by E0 and integrating by parts overZ leads to

∫

Z

∇y × ∇y × E0(x, y)E0(x, y) dy

= ∫

Z

|∇y × E0(x, y)|2 dy

= 0.

(29)

We deduce that the equation is equivalent to

∇y × E0(x, y) = 0, (30)

for any y ∈ Z .
Hence from Proposition (5) we conclude that E0(x, y) can be decomposed as

E0(x, y) = E(x) + ∇yΦ0(x, y), (31)

where Φ0(x, y) ∈ L2(Ω;H1
#(Z )) and E(x) ∈ L2(Ω).

3.2 Mathematical Justification

Now we will show rigorously with two-scale convergence that the solution of prob-
lems (1)–(3) converge to the solution of the homogenized problem when ε tends to
0. We recall the following Theorem, we give a proof in Canot and Frenod [8]:

Theorem 2 For any ε > 0, for any η ≥ 0, there exists a positive constant ω0 which
does not depend on ε and such that for all ω ∈ (0, ω0), Eε ∈ X ε(Ω) solution of
(1)–(3) satisfies
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‖Eε‖Xε(Ω) ≤ C (32)

with C = Cγt CγT
C 0

‖Hd‖H(curl,Ω).

Theorem 3 Under assumptions of Theorem 2, sequence Eε solution of (1)–(3) con-
verges to E(x) ∈ L2(Ω) which is the unique solution of the homogenized problem:

⎧
⎪⎨

⎪⎩

θ1∇x × ∇x × E(x) + iωθ2E(x) = 0 in Ω,

θ1∇x × E(x) × e2 = −iωHd × e2 on �d ,

∇x × E(x) × e2 = 0 on �L .

(33)

with θ1 = ∫

Z

Id + ∇yχ(y) dy and θ2 = ∫

Z

1C(y)(Id + ∇yχ(y)) dy.

And where the scalar function χ is the unique solution, up to an additive constant
in the Hilbert space of Z periodic functions H 1

# (Z ), of the following boundary
value problem ⎧

⎪⎪⎨

⎪⎪⎩

�y(χ(y)) = 0 in Z \∂ΩC ,

[∂χ

∂n
] = −n j on ∂ΩC ,

[χ ] = 0 on ∂ΩC .

(34)

where [ f ] is the jump across the surface of ∂ΩC , n j , j = {1, 2, 3} is the projection
on the axis e j of the normal of ∂ΩC .

Proof Step 1: Two-scale convergence. Due to the estimate (32), Eε is bounded in
L2(Ω). Hence, up to a subsequence, Eε two-scale converges to E0(x, y) belonging
to L2(Ω,L2

#(Z )). That means for any V (x, y) ∈ C1
0(Ω,C1

#(Z )), we have:

lim
ε→0

∫

Ω

Eε(x) · V (x,
x
ε
) dx =

∫

Ω

∫

Z

E0(x, y) · V (x, y) dydx. (35)

Step 2: Deduction of the constraint equation. We multiply the equation (21) by
oscillating test function V ε(x) = V (x, x

ε
) where V (x, y) ∈ C1

0(Ω,C1
#(Z )):

∫

Ω

∇×Eε(x) · (∇x × V ε(x,
x
ε
) + 1

ε
∇y × V ε(x,

x
ε
)) + [−ω2ε5k(ε)

+ iω(
(
1ε
C(

x
ε
) + ε41ε

R(
x
ε
)
)
1{y<0} + ε1{y>0})]Eε · V ε(x,

x
ε
) dx

= −iω
∫

�d

Hd × e2 · (e2 × V (x, 1, z, ξ,
1

ε
, ζ )) × e2 dσ.

(36)
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Integrating by parts, we get:

∫

Ω

Eε(x) · (∇x × ∇x × V ε(x,
x
ε
) + 1

ε
∇y × ∇x × V ε(x,

x
ε
)

+ 1

ε
∇x × ∇y × V ε(x,

x
ε
) + 1

ε2
∇y × ∇y × V ε(x,

x
ε
)) + [−ω2ε5k(ε)

+ iω
(
1ε
C(

x
ε
) + ε41ε

R(
x
ε
)
)
1{y<0} + ε1{y>0}]Eε(x) · V ε(x,

x
ε
) dx

= −iω
∫

�d

Hd × e2 · (e2 × V (x, 1, z, ξ,
1

ε
, ζ )) × e2 dσ.

(37)

Now we multiply (37) by ε2 and we pass to the two-scale limit, applying
Theorem 1 we obtain:

∫

Ω

∫

Z

E0(x, y)
(∇y × ∇y × V (x, y)

)
dydx = 0. (38)

We deduce the constraint equation for the profile E0:

∇y × ∇y × E0(x, y) = 0. (39)

Step 3. Looking for the solutions to the constraint equation. Multiplying Equation
(39) by E0 and integrating by parts over Z leads to

∫

Z

∇y × ∇y × E0(x, y)E0(x, y) dy =
∫

Z

|∇y × E0(x, y)|2 dy = 0. (40)

We deduce that equation (29) is equivalent to

∇y × E0(x, y) = 0, (41)

Moreover a solution of (41) is also solution of (39). So (39) and (41) are equivalent.
Hence, from Proposition (17) we conclude that E0(x, y) can be decomposed as

E0(x, y) = E(x) + ∇yΦ0(x, y). (42)

Step 4. Equations for E(x) and Φ0(x, y). divergence equation of (21) is multi-
plied with V (x, x

ε
) = εv(x)ψ( x

ε
), where v ∈ C1

0(Ω) and ψ ∈ H1
#(Z ). Theorem 1

and integration by parts yields for all ψ ∈ H1
#(Z ) and v ∈ C1

0(Ω)
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lim
ε→0

∫

Ω

∇· {−ω2ε5k(ε)Eε(x) + iω[(1ε
C(

x
ε
) + ε41ε

R(
x
ε
))1{y<0}

+ ε1{y>0}]Eε(x)}εv(x)ψ(
x
ε
) dx

= − lim
ε→0

∫

Ω

{−ω2ε5k(ε)Eε(x) + iω[1ε
C(

x
ε
) + ε41ε

R(
x
ε
))1{y<0}

+ ε1{y>0}]Eε} · (εv(x)ψ(
x
ε
) + v(x)∇yψ(

x
ε
)) dx

= −
∫

Ω

∫

Z

v(x)∇yψ(y) · [iω1C(y)E0(x, y)] dydx = 0.

(43)

from which it follows that

∇y · [iω1C (y)E0(x, y)] = 0. (44)

with E0 given by the decomposition (17). So we obtain the local equation

∇y · [iω1C(y){E(x) + ∇yΦ0(x, y)}] dy = 0. (45)

The potential Φ0 may be written on the form

Φ0(x, y) =
3∑

j=1

χ j (y)e j · E(x) = χ(y) · E(x), (46)

From (31) and (46), we get:

E0(x, y) = (Id + ∇yχ(y))E(x). (47)

Inserting E0 in (26) we obtain

∇y · [iω1C(y)(Id + ∇yχ(y)] = 0. (48)

Now, we build oscillating test functions satisfying constraint (31) and use them
in weak formulation (37). We define test function V (x, y) = α(x) + ∇yβ(x, y),
V (x, y) ∈ C1

0(Ω,C1
#(Z )) and we inject in (37) test function V ε = V (x, x

ε
), which

gives:
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∫

Ω

Eε(x) · (∇x × ∇x × V (x,
x
ε
) + 2

ε
∇x × ∇y × V (x,

x
ε
)

+ 1

ε2
∇y × ∇y × V (x,

x
ε
)
) + [−ω2ε5k(ε) + iω(

(
1ε
C(

x
ε
)

+ ε41ε
R(

x
ε
)
)
1{y<0} + ε1{y>0})]Eε(x) · V (x,

x
ε
) dx

= −iω
∫

�d

Hd × e2 · (e2 × V ‡(x, 1, z, ξ, ζ )) × e2 dσ,

(49)

with V (x, 1, z, ξ, ν, ζ ) = V ‡(x, 1, z, ξ, ζ ) the restriction on V which does not
depend on ν. The term containing the constraint, the third one, disappears. Passing
to the limit ε → 0 and replacing the expression of V by the term α(x) + ∇yβ(x, y),
we have

∇x × ∇y × V (x, y) = ∇x × ∇y × [α(x) + ∇yβ(x, y)]
= ∇x × ∇y × (α(x)) + ∇x × ∇y × (∇yβ(x, y))

= ∇x × ∇y × (∇yβ(x, y)).

(50)

Since ∇y × (∇y) = 0, the term 2
ε
∇x × ∇y × ∇yβ(x, y)) vanishes. Therefore, (49)

becomes:
∫

Ω

∫

Z

E0(x, y) · ∇x × ∇x × (α(x) + ∇yβ(x, y))

+ iω1C (y)E0(x, y) · (α(x) + ∇yβ(x, y) dydx

= −iω
∫

�d

Hd × e2 · (e2 × (α(x, 1, z) + ∇yβ(x, 1, z, ξ, ζ ))) × e2 dσ.

(51)

Now in (51) we replace expression E0 giving by (47). We obtain

∫

Ω

∫

Z

(Id + ∇yχ(y))E(x) · (∇x × ∇x × (α(x) + ∇yβ(x, y))

+ iω1C (y)(Id + ∇yχ(y))E(x)) · (α(x) + ∇yβ(x, y)) dydx

= −iω
∫

�d

Hd × e2 · (e2 × (α(x, 1, z) + ∇yβ(x, 1, z, ξ, ζ ))) × e2 dσ.

(52)

Taking α(x) = 0 in (52), we obtain
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∫

Ω

∫

Z

(Id+∇yχ(y))∇x × ∇x × E(x)∇yβ(x, y)

+ iω1C (y)(Id + ∇yχ(y))E(x) · ∇yβ(x, y)dydx = 0.

(53)

Integrating by parts

∫

Ω

∫

Z

−∇y · {(Id + ∇yχ(y))∇x × ∇x × E(x)}β(x, y)

− iω∇y · {1C(y)(Id + ∇yχ(y))E(x)}β(x, y) dydx = 0.

(54)

And since ∇y · {1C(y)(Id + ∇yχ(y))E(x)} = 0 we obtain

∫

Ω

∫

Z

−∇y · {(Id + ∇yχ(y))∇x × ∇x × E(x)}β(x, y) dydx = 0. (55)

which gives the cell problem

∇y · [Id + ∇yχ(y)] = 0. (56)

From (48) and (56), the scalar function χ is the unique solution, thanks to Lax-
Milgram Lemma, up to an additive constant in the Hilbert space of Z periodic
function H 1

# (Z ) of the following boundary value problem

⎧
⎪⎪⎨

⎪⎪⎩

�y(χ(y)) = 0 in Z \∂ΩC ,

[∂χ

∂n
] = −n j on ∂ΩC ,

[χ ] = 0 on ∂ΩC .

(57)

where [ f ] is the jump across the surface of ∂ΩC , n j , j = {1, 2, 3} is the projection
on the axis e j of the normal of ∂ΩC .

Remark 2 (34) can be seen as an electrostatic problem. Solving (48) and (56) reduces
to look for a potential induced by surface density of charges. Then χ is this potential
induced by the charges on the interface of carbon fiber.

Setting β(x, y) = 0 in (52) and integrating by parts, we get

∫

Ω

∫

Z

(Id + ∇yχ(y))∇x × ∇x × E(x) · α(x)

+ iω1C(y)(Id + ∇yχ(y))E(x)α(x) dydx

= −iω
∫

�d

Hd × e2 · (e2 × α(x, 1, z)) × e2 dσ.

(58)
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which gives the following well posed problem for E(x)

⎧
⎪⎨

⎪⎩

θ1∇x × ∇x × E(x) + iωθ2E(x) = 0 in Ω,

θ1∇x × E(x) × e2 = −iωHd × e2 on �d ,

∇x × E(x) × e2 = 0 on �L .

(59)

with θ1 = ∫

Z

Id + ∇yχ(y) dy and θ2 = ∫

Z

1C(y)(Id + ∇yχ(y)) dy.

This concludes the proof of Theorem (33).

4 Numerical Results

Our goal is to validate the homogenization method by comparing the numerically
solution of exact problem (1) with the solution of the homogenized model (33). We
solve the problem (1) in Ω with cells of size ε = 10−2. We enter in the software
FreeFem ++ [12] the geometry of the problem, the bilinear form and the boundary
condition, we perform the computation with Lagrangian P2 Finite Elements. The
numerical results confirm the theoretical study. We start by giving computational
parameters that we need in this experiment, for ε = 0.01. The geometry corresponds
to the fibers surrounded by resin. The domain is the composite material represented
by a colon of carbon fibers in the resin with periodic conditions in the y direction.We
compare the direct solution of the adimensioned problem in ε with the homogenized
solution. The basic cells in ε periodicity contains a cylinder which the radius is equal
to 0.45 × 10−2m. We take periodic boundary conditions on the right and left sides.
In the rescaled system the conductivity began

�ε(y) = �ε(ξ, ν, ζ ) =
{

�ε
r = ε4 in Ωr ,

�ε
c = 1 in Ωc,

(60)

The values of the permittivity are εr = 5 in the resin part and εc = 2.5 in the car-
bon part. To simplify the calculations, we consider the composite illuminated by a
ProgressiveMonochromatic PlaneWave, propagating in the Oy direction electrically
polarized according to Oz, with a normal incidence. The electric field with the carbon
fibers in the composite are contained in the xOy plane. Then we use 2D system. On
the upper frontier, we consider the oscillating source Hd = − exp(−iky .y) with the
constant of propagation which depends on ε, ky = √

(−ω2ε3 + iωε4), and ω = 1.
The computations are performed in P2 Finite Elements and the direct and homoge-
nized solutions are projected on a regular meshes and the number of triangles is 600.
In the cell problem the number of triangles is 10368.
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Fig. 1 The z-component of the real part of the electric field Eε (left) and the homogenized solution
(right)

Table 1 The relative error according to the number of fibers

n Err

2 fibers 0.012

10 fibers 0.00026

26 fibers 0.00013

52 fibers 0.00005

4.1 Results of Simulation

In Figure 1, we plot the direct solution of (21), the solution of the homogenized
problem without fiber, the transmitted electric field is evaluated. We see that we
have no difference between the two approximations. The two solutions represent an
attenuated wave propagating along the y-axis. We note that fibers do affect the elec-
tromagnetic composite response and our homogenized approach is a good agreement
with the exact solution. The decay of the amplitude of the electric field is induced by
the imaginary part

√
iω in the carbon fiber and the imaginary part, which depends of

ε,
√
iωε4 in the resin. To obtain a numerical speed of convergence we compute the

relative errors, as εgoes to zero, by increasing the number of the cells and the fibers:

Err = ‖Eε−E(x)‖L2(Ω)

‖Eε‖L2(Ω)

(Table 1).
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Statistics of Critical Load in Arrays
of Nanopillars on Nonrigid Substrates

Tomasz Derda and Zbigniew Domański

Abstract Multicomponent systems are commonly used in nano-scale technol-
ogy. Specifically, arrays of nanopillars are encountered in electro-mechanical sense
devices. Under a growing load weak pillars crush. When the load exceeds a certain
critical value the system fails completely. In this work we explore distributions of
such a critical load in overloaded arrays of nanopillars with identically distributed
random strength-thresholds (σth). Applying a Fibre Bundle Model with so-called
local load transfer we analyse how statistics of critical load are related to statistics of
pillar-strength-thresholds. Based on extensive numerical experiments we show that
when the σth are distributed according to the Weibull distribution, with shape and
scale parameters k, and λ = 1, respectively, then the critical load can be approx-
imated by the same probability distribution. The corresponding, shape and scale,
parameters K and Λ are functions of k.

Keywords Array of pillars · Fracture · Load transfer · Scaling · Statistics
Weibull probablity distribution

1 Introduction

Creation and development of new sub-micron scale devices rise questions about
reliability of multicomponent systems. One such a question is how performances of
individual components combine into a resulting overall performance of the system
to which these components belong. This question is important because progressively
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loaded multicomponent systems break when an initial sequence of failures among
weakest components develops into an avalanche of failures that may involve all the
system components.

Nowadays nanopillar arrays play a crucial role in many areas of technology and
science. Photovoltaic devices or grid cells used in experimental biomedicine, to
name but a few examples, employ arrays of nanopillars. Fabrication processes of
these arrays request a robust transfer of nanopillars between substrates and thus
a controllable-fracturing procedure. This is because pillars are detached from the
substrate under a suitable-lateral load to ensure a smooth fracturing process.

An effective statistical approach, to study failures in multicomponent systems
related to technology, employs Fiber Bundle Models [1–6]. In this work we analyze
a set of pillars placed at nodes of a flat-square grid G , and oriented perpendicu-
larly to surface. Pillars imperfections influence strongly the behavior of arrays under
load. Due to the imperfections, pillar-strength-thresholds are nonuniform and thus
pillars are represented by random load-thresholds (σth). In our numerical experi-
ments

{
σ i
th

}
i∈G are quenched random variables distributed according to the Weibull

probability distribution function

pk,λ(σth) = (k/λ)(σth/λ)k−1 exp[−(σth/λ)k] (1)

Parameters k > 0 and λ > 0 define the shape and scale of this distribution. Shape
parameter k (so-called Weibull index) controls the amount of disorder in the system.
We use the Weibull distribution because this probability distribution is very suitable
and frequently employed distribution in the context of engineering systems [7, 8].

2 Loading Process and Statistical Modelling

In our approach we consider pillars located on a nonrigid surface that has a non-
vanishing compliance. Within this framework the load redistribution turns out to be
localized and thus we employ the local load sharing (LLS). Within a short interval
between consecutive fractures the load carried by the broken pillar is transferred
only to its nearest intact elements. Such a limited-load-range transfer yields non-
homogeneous distributions of load. As a consequence regions of stress accumulation
appear throughout the system. The growing load on the intact pillars leads to other
failures, after which each intact pillar undergoes increasing stress. If the load transfer
does not trigger further crushes, a stable configuration emerges meaning that this
initial value of F is not sufficient to provoke failure of the entire system, and its value
has to be increased by an amount δF . In the simulations we applied a quasi-static
loading procedure—if the system is in a stable state the external load is uniformly
increased on all the intact pillars just to destroy only the weakest intact pillar.

A sequence of increases in the value of the external load gives Fc which induces
an avalanche of failures among all still undestroyed pillars. Application of such a
quasi-static loading enable us to determine a minimal load Fc, that is necessary for
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destruction of all the pillars. In order to compare results for systems with different
numbers of pillars, we scale the critical loads Fc by the initial number of pillars in
the system, i.e. we introduce here an intensive quantity, namely σc = Fc/N .

As already mentioned, the pillar-strength-thresholds σth are drawn from the
Weibull distribution (1). Without loss of generality, we assume λ = 1 and thus the
corresponding probability density reads

pk,1(σth) = kσ k−1
th exp[−σ k

th] (2)

We address a question how these local critical loads distributed according to (2) com-
bine to create an effective-global critical load Fc. Based on our numerical simulations
for systems with N > 100, we have found that skewnesses of resulting distributions
are negative and they decrease with growing N . For this reason we employ two
distributions for fitting our skewed data, namely:

1. three-parameter skew normal distribution (SND) [9, 10] defined by

p(σc) =
exp[− (σc−ξ)2

2ω2 ]erfc[−α(σc−ξ)√
2ω

]
√
2πω

(3)

where ξ , ω, α are location, scale and shape parameters, respectively.
2. the Weibull distribution:

pK ,Λ(σc) = (K/Λ)(σc/Λ)K−1 exp[−(σc/Λ)K ] (4)

Studies related to distributions of system’s strength in the context of realizations
of Fiber Bundle Models are presented in [11–20]. It is worth mentioning that for the
GLS rule, σc approximately follows the normal distribution, for both theWeibull and
uniform distributions of σth .

3 Results and Discussion

Based on theFibreBundleModel and local load sharing rule,we developed a program
code for the simulation of the loading process in two-dimensional nanopillar arrays.
Intensive numerical simulations are conducted for systems involving N = L × L
pillars, with L ranging from 8 to 128. We have tuned the amount of pillar-strength-
threshold disorder by integer values of k ranging from 2 to 20. In order to get reliable
statistics, each simulation was repeated 105 times.

Figures 1 and 2 show empirical probability density functions of σc for chosen
systems. In these plots we have also added fitting lines of skew normal (Fig. 1) and
Weibull (Fig. 2) probability density functions with parameters computed from the
samples. It can be seen that both of these theoretical distributions are in good agree-
ment with empirical distributions of σc. Some more precise information concerning
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Fig. 1 Empirical probability density functions (pdf) of σc for arrays with L = 64 (circles), L = 96
(squares) and L = 128 (triangles). Weibull index k = 2 for all presented pdfs. The dashed lines
represent skew-normally distributed σc with the parameters computed from the simulations

Fig. 2 Empirical probability density functions (pdf) of σc for arrays with L = 128: k = 3 (circles),
k = 5 (squares) and k = 7 (triangles). The dashed lines represent two-parameterWeibull distributed
σc with the parameters computed from the simulations

the Fig. 2 is gained from a three parameterWeibull distribution, i.e. from an extension
of (4) which includes a so-called location parameter. The corresponding cumulative
distribution functions reads:

PK ,Λ,μ(σc) = 1 − exp

[

−
(

σc − μ

Λ

)K
]

(5)

In Fig. 3 we present distribution (5) for arrays with different number of pillars.
We clearly see the support of {σc}, with its onset given by the location parameter μ.
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Fig. 3 Empirical cumulative distribution functions (cdf) of σc for arrays with L = 128 (circles),
L = 64 (squares) and L = 32 (diamonds). Weibull index k = 4 for all presented cdfs. The dashed
lines represent three-parameter Weibull distributed σc with the parameters computed from the
simulations

We also present a quantile-quantile plot (Q-Q plot) of the quantiles of the col-
lected data set against the corresponding quantiles given by the SND and Weibull
probability distributions. From Figs. 4 and 5, it is seen that the results of fitting by
skew normal distribution is slightly better than the Weibull fitting. We also observed
that using skew normal distributions give better results than these resulting from
two-parameter Weibull fittings. This is true for all analysed systems, especially for
the smaller ones. However, it should be noted that the skew normal distribution
(3) has one parameter more than two-parameter Weibull distribution (4). Fitting by
Weibull distribution allows us to analyse the influence of system properties on the
microscopic level (Weibull distributed pillar-strength thresholds) on themacroscopic
response (distribution of crical loads) in the framework of one type of distribution.
Hence, we focus our attention on the fitting of σc distribution by two-parameter
Weibull distribution.

In the case ofWeibull distribution, values of the fitted parameters K andΛ depend
on system size and Weibull index k in the original distribution characterizing the
pillar’s strength. The plots of the parameters K and Λ are shown in Figs. 6 and 7,
respectively. For a fixed value of k, the parameter K is a strictly increasing function
of linear system size L . We have found that this relation can be approximated by the
following formula

Kk(L) = a1 + a2
√
L + a3 ln L (6)

where a1, a2, a3 are fitted parameters (see page 23). One can also see that fitted curves
are (increasingly) ordered according to Weibull index k.

Contrary to K , the parameter Λ is a strictly decreasing function of L , which can
be fitted by the formula (see Fig. 7)
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Fig. 4 The Q-Q plot of the quantiles of the set of computed σc versus the quantiles of the skew
normal distribution. System size N = 128 × 128 and k = 6

Fig. 5 The Q-Q plot of the quantiles of the set of computed σc versus the quantiles of the Weibull
distribution. System size N = 128 × 128 and k = 6
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Weibull index Fitted parameter
a1 a2 a3

k = 2 −3.272 −0.200 6.516
k = 4 −1.018 −0.454 7.264
k = 7 1.742 −0.330 7.446
k = 10 3.102 −0.416 8.086
k = 15 1.832 −0.927 10.751
k = 20 3.268 −0.251 10.218

Λk(L) = b1 + b2√
L

(7)

Weibull index Fitted parameter
b1 b2

k = 2 0.272 0.440
k = 4 0.369 0.470
k = 7 0.465 0.490
k = 10 0.528 0.492
k = 15 0.600 0.482
k = 20 0.646 0.484

where b1, b2 are matched parameters. The ordering of curves, reported for the pre-
vious plot, is preserved.

One of the components of the formula (6) is the natural logarithm of L . If the linear
system size is logarithmized, the parameter K can be approximated by the linear
function—it is reported in Fig. 8. In turn, Fig. 9 presents values of the parameter Λ

in the function of L−1/2 which is a part of the function (7). In this case we applied a
third degree polynomial as an approximative formula.

Taking assumption that Fc/N follows Weibull distribution with the parameters
K and Λ, the expected value of this distribution is given by

E[Fc/N ] =< Fc/N >= ΛΓ (1 + 1

K
) (8)

where Γ (1 + 1
K ) is the gamma function. From the fitting we have obtained K ∈

(9.76, 51.69). Substituting limits of this interval into the relation

Γ (1 + 1

K
)/Γ (1) (9)

we received two values 0.95 and 0.99. As it was previously mentioned, K is a
increasing function of the system size, therefore relation (9) tends to unity with the
increasing system size. Consequently, the parameter Λ is a key factor of the formula
(8) and the mean critical load can by roughly estimated by


