SPRINGER BRIEFS IN APPLIED SCIENCES AND TECHNOLOGY · COMPUTATIONAL MECHANICS

Sérgio M. O. Tavares Paulo M. S. T. de Castro

Damage Tolerance of Metallic Aircraft Structures Materials and

Numerical Modelling

SpringerBriefs in Applied Sciences and Technology

Computational Mechanics

Series editors

Holm Altenbach, Institute of Mechanics, Otto-von-Guericke-University Magdeburg, Magdeburg, Saxony-Anhalt, Germany Lucas F. M. da Silva, Department of Mechanical Engineering, University of Porto, Porto, Portugal Andreas Öchsner, Faculty of Mechanical Engineering, Esslingen University of Applied Sciences, Esslingen, Germany More information about this series at http://www.springer.com/series/8886

Sérgio M. O. Tavares · Paulo M. S. T. de Castro

Damage Tolerance of Metallic Aircraft Structures

Materials and Numerical Modelling

Sérgio M. O. Tavares Faculdade de Engenharia Universidade do Porto Porto, Portugal Paulo M. S. T. de Castro Faculdade de Engenharia Universidade do Porto Porto, Portugal

ISSN 2191-530XISSN 2191-5318 (electronic)SpringerBriefs in Applied Sciences and TechnologyISSN 2191-5342ISSN 2191-5342ISSN 2191-5350 (electronic)SpringerBriefs in Computational MechanicsISBN 978-3-319-70190-5 (eBook)https://doi.org/10.1007/978-3-319-70190-5ISBN 978-3-319-70190-5

Library of Congress Control Number: 2018950211

© The Author(s) 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

This publication traces its origin to the involvement of the authors in several European Union R&D aeronautical projects, as SMAAC, ADMIRE and DATON, among others. It aims at giving an up-to-date view of the technical aspects of the field in the context of the applicable regulatory environment. The references will guide the reader to details not included here, due to the conciseness expected from this series of books (aptly called the Springer brief collection).

The book is organized in two parts. Part I sets the scene, with a retrospective of the evolution of fatigue design approaches for aerostructures, up to current regulations, including introductory reference to materials and technical aspects to be solved.

From safe-life to fail-safe and damage tolerance approaches, the last one emerged as the main design philosophy for aerostructures, allowing weight savings and at the same time increasing reliability and structural integrity in the presence of damages which may have occurred during the manufacturing process or during service. The application of damage tolerance philosophy requires extensive know-how of the fatigue and fracture properties, corrosion strength, potential failure modes and nondestructive inspection (NDI) techniques, particularly minimum detectable defect and inspection intervals.

To face scatter in material properties, conservative approaches considering the worst scenario or statistical methods dealing with the variability of material have been employed in the fatigue assessment of structures. The fatigue life estimation can display substantial variability, illustrating the need for a probabilistic assessment in practical applications. The main focus of this work is on metallic structures; nevertheless, a concise reference is made to composite structures, namely, to highlight the specific different approaches involved.

The 2010 FAA rule establishing an LOV (limit of validity) puts a bound in the indefinite operational life allowed for by earlier regulations. This requirement, together with the diminishing role of aluminium in airframes, will certainly shape the directions of fatigue, fracture and damage mechanics research in years to come, expanding the knowledge based upon which substantiation of LOV values is made and ensuring safety under sustainable conditions.

Part II of the present book addresses the characterization of mechanical behaviour of materials and the numerical analyses for damage tolerance with a focus on integral structures, giving comprehensive worked examples that take into account residual stresses. Given the importance of welding in some applications, this topic is reviewed in some detail, when relevant including information from other industrial applications.

Aluminium alloys were for many decades the material of choice for aircraft structures. Although this prominence no longer exists, these alloys still represent a substantial part of the aircraft. This book briefly reviews the fatigue crack propagation behaviour of typical Al alloys, including Al–Li alloys of interest because of their low weight and high strength. The dominant joining technology for aircraft Al fuselage is riveting, but welding is occasionally also found.

Welding involves the creation of residual stresses and distortions. Thermal gradients introduce geometrical variations creating residual stress and distortion; their reliable prediction is required for economical and sound welding.

The prediction of welding behaviour is complex because of the many physicalchemical phenomena involved. With the finite element method, the integration of all the physical-chemical phenomena is feasible, and elaborated computational models exist for most welding cases. As with general-purpose FEM software as ABAQUS or ANSYS, commercial FEM packages as Sysweld address fusion welding; mesh sensitivity analysis is required in order to evaluate the minimum element size required for accurate results.

Examples discussed include aluminium plates welded by laser beam. Reinforced and stiffened shells involve the use of T-joints; other example concerns T-joint arc and laser beam welded. The capability of Sysweld is illustrated modelling arc-welded double-side T-joint with different procedures, particular attention being dedicated to the interaction of welding passes on residual stress distribution.

Residual stresses of welded metallic structures are discussed with an emphasis on numerical modelling using the finite element method and experimental measurement using the contour technique. Residual stresses affect the behaviour of the structure, in particular, crack propagation behaviour. Fatigue crack propagation behaviour on welded metallic structures, with emphasis on aeronautical applications, is reviewed in this book, and an aeronautical example is presented.

Different crack growth simulation models which were introduced for fatigue crack growth assessment in the context of the EU DATON project are compared. First, different simulation approaches were applied to determine a stress intensity factor (K) calibration as a function of the crack length for a two-stiffener panel with a central crack. Different manufacturing processes introduced residual stress fields, and their influence was included in the numerical models to determine K. K calibrations were applied in different crack growth models/laws (Paris, Walker, Forman and NASGRO) in order to determine the fatigue life under cyclic loading. R ratio variation and residual stresses were taken into account in all of them allowing to determine the influence of the residual stress field in the fatigue crack growth. The results were tested and compared with experimental results with the purpose of validation of the models.

Preface

These numerical models illustrate how to predict the fatigue life in stiffened welded panels and made clear that the residual stress field originated by welding processes can be detrimental or beneficial depending on the location where the crack starts.

The EU projects SMAAC, ADMIRE and DATON, the ESA project T401-02MC on Al–Li, QREN CCB360 and LAETA 'DALMAT' projects are acknowledged. DATON materials were provided by ALCAN. The theses at the University of Porto of Tiago Lima, Hugo Ramos, Maria Hermosilla (exchange student from Technical University of Cartagena, Spain) and Sérgio J. Moreira, and the 2016 internship at the University of Porto of Younès Rachid (from Polytech Lille, France) contributed to the development of some of the FEM analyses. EDAETECH and André X. F. da Silva provided the samples for Sysweld modelling of Al-alloy plates detailed in Chap. 7. ESI Madrid kindly provided technical advice on the use of Sysweld. The permission of Arconic Inc. (previously named ALCOA Inc.) and of Airbus to reproduce Figs. 1.2 and 4.2, respectively, is gratefully acknowledged.

Porto, Portugal

Sérgio M. O. Tavares Paulo M. S. T. de Castro

Contents

Part I Damage Tolerance of Aircraft Structures

1	Introduction 1.1 Evolution of Fatigue Design Approaches 1.2 Cracks and Damage References	3 3 9 14
2	Maintenance	17 21
3	Fatigue Crack Growth 3.1 Life Estimation and Scatter 3.2 Improvement of Fatigue Strength References	23 23 25 26
4	Materials4.1Introductory Remarks4.2Aluminium-Lithium4.3Titanium4.4Fibre Metal Laminates—FMLs4.5Polymeric CompositesReferencesReferences	29 29 31 31 32 33 39
5	Widespread Fatigue Damage and Limit of Validity 5.1 Evolution of Regulations. 5.2 A Glance into Technical Aspects. 5.2.1 Structural Analyses 5.2.2 Integral Structures; Crenellations 5.2.3 Morphing	43 43 48 48 51 52 52
		52

Pa	rt II Design of Monolithic Aeronautical Structures			
6	Allo Refe	ys and Fatigue Crack Propagation	59 64	
7	Resi	idual Stress	67	
	7.1	Introduction and Experimental Measurement	67	
	7.2	Welding and Numerical Modelling	71	
		7.2.1 Introduction	71	
		7.2.2 Case Study: Laser Beam Welded Butt Joints		
		of Thin Al Alloy Plates	76	
		7.2.3 Case Study: T-Joint	81	
	Refe	erences	87	
8	Fatigue Crack Propagation of a Structural Detail			
	8.1	Introduction	91	
	8.2	Fatigue Crack Growth Laws	92	
		8.2.1 Parameters for the Crack Growth Laws	94	
		8.2.2 Consideration of Residual Stress Effects	96	
	8.3	Finite Element Modelling	99	
		8.3.1 Discussion and Conclusions	101	
	Refe	erences	101	
Inc	dex .		103	

Acronyms and Symbols

Acronyms

One dimensional
Two dimensional
Three dimensional
Three-point bending
Aluminium association
Airworthiness Assurance Working Group
Advisory circular (FAA)
Allowable damage limit
American Institute of Aeronautics and Astronautics
Additive manufacturing
Acceptable means of compliance (EASA)
Amendment
ANSYS parametric design language
Aviation Rulemaking Advisory Committee (USA)
Aramid reinforced aluminium laminate
Aircraft structural integrity program (USAF)
American Society of Mechanical Engineers
American Society for Testing and Materials
Applied vehicle technology
Barely visible impact damage
Compression after impact test
Civil Air Regulations (FAR after 1965)
Condition-based maintenance
Critical damage threshold
Code of Federal Regulations (USA)
Coordinate measuring machine
Continued operational safety
Certification specification (EASA)
Compact tension specimen

CVM	Comparative vacuum monitoring
CX	Cold expansion
DATON	Innovative fatigue and damage tolerance methods for the
	application of new structural concepts (EU R&D project)
DBEM	Dual boundary element method
DOD	Department of Defence (USA)
DoE	Design of experiments
EASA	European Aviation Safety Agency
EBSD	Electron backscatter diffraction analysis
EDM	Electrical discharge machining
EPFM	Elasto-plastic fracture mechanics
EPRI	Electric Power Research Institute (USA)
ESA	European Space Agency
EU	European Union
FAA	Federal Aviation Administration
FAR	Federal Aviation Regulations (prescribed by FAA, and part of
	Title 14 of the CFR)
FC	Flight cycle
FCG	Fatigue crack growth
FE	Finite elements
FEM	Finite elements method
FEUP	Faculdade de Engenharia da Universidade do Porto
FIB-SEM	Focused ion beam scanning electron microscopy
FML	Fibre metal laminate
FSW	Friction stir welding
GAG	Ground-air-ground
GARTEUR	Group for Aeronautical Research and Technology in Europe
GB	Grain boundary
GLARE	Glass-reinforced aluminium laminate
GMAW	Gas metal arc welding
GTAW	Gas tungsten arc welding
HAZ	Heat-affected zone
HCLL-TBM	Helium-cooled Lithium lead test blanket module
HE	Hydrogen embrittlement
HEWABI	High-energy, wide-area, blunt impacts
HMSO	Her Majesty's Stationery Office (UK)
HPDL	High-power diode laser
HSM	High speed machining
IDMEC	Instituto de Engenharia Mecânica
IIW	International Institute of Welding
ILA	Internationale Luft- und Raumfahrtausstellung (Berlin Air
DALLE	Snow)
IMechE	Institution of Mechanical Engineers
INEGI	Institute of Science and Innovation in Mechanical and Industrial
	Engineering (Portugal)