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Preface

This publication traces its origin to the involvement of the authors in several
European Union R&D aeronautical projects, as SMAAC, ADMIRE and DATON,
among others. It aims at giving an up-to-date view of the technical aspects of the
field in the context of the applicable regulatory environment. The references will
guide the reader to details not included here, due to the conciseness expected from
this series of books (aptly called the Springer brief collection).

The book is organized in two parts. Part I sets the scene, with a retrospective
of the evolution of fatigue design approaches for aerostructures, up to current
regulations, including introductory reference to materials and technical aspects to be
solved.

From safe-life to fail-safe and damage tolerance approaches, the last one
emerged as the main design philosophy for aerostructures, allowing weight savings
and at the same time increasing reliability and structural integrity in the presence of
damages which may have occurred during the manufacturing process or during
service. The application of damage tolerance philosophy requires extensive
know-how of the fatigue and fracture properties, corrosion strength, potential
failure modes and nondestructive inspection (NDI) techniques, particularly mini-
mum detectable defect and inspection intervals.

To face scatter in material properties, conservative approaches considering the
worst scenario or statistical methods dealing with the variability of material have
been employed in the fatigue assessment of structures. The fatigue life estimation
can display substantial variability, illustrating the need for a probabilistic assess-
ment in practical applications. The main focus of this work is on metallic structures;
nevertheless, a concise reference is made to composite structures, namely, to
highlight the specific different approaches involved.

The 2010 FAA rule establishing an LOV (limit of validity) puts a bound in the
indefinite operational life allowed for by earlier regulations. This requirement,
together with the diminishing role of aluminium in airframes, will certainly shape
the directions of fatigue, fracture and damage mechanics research in years to come,
expanding the knowledge based upon which substantiation of LOV values is made
and ensuring safety under sustainable conditions.
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Part II of the present book addresses the characterization of mechanical beha-
viour of materials and the numerical analyses for damage tolerance with a focus on
integral structures, giving comprehensive worked examples that take into account
residual stresses. Given the importance of welding in some applications, this topic
is reviewed in some detail, when relevant including information from other
industrial applications.

Aluminium alloys were for many decades the material of choice for aircraft
structures. Although this prominence no longer exists, these alloys still represent a
substantial part of the aircraft. This book briefly reviews the fatigue crack propa-
gation behaviour of typical Al alloys, including Al–Li alloys of interest because
of their low weight and high strength. The dominant joining technology for aircraft
Al fuselage is riveting, but welding is occasionally also found.

Welding involves the creation of residual stresses and distortions. Thermal
gradients introduce geometrical variations creating residual stress and distortion;
their reliable prediction is required for economical and sound welding.

The prediction of welding behaviour is complex because of the many physical–
chemical phenomena involved. With the finite element method, the integration of
all the physical–chemical phenomena is feasible, and elaborated computational
models exist for most welding cases. As with general-purpose FEM software as
ABAQUS or ANSYS, commercial FEM packages as Sysweld address fusion
welding; mesh sensitivity analysis is required in order to evaluate the minimum
element size required for accurate results.

Examples discussed include aluminium plates welded by laser beam. Reinforced
and stiffened shells involve the use of T-joints; other example concerns T-joint arc
and laser beam welded. The capability of Sysweld is illustrated modelling
arc-welded double-side T-joint with different procedures, particular attention being
dedicated to the interaction of welding passes on residual stress distribution.

Residual stresses of welded metallic structures are discussed with an emphasis
on numerical modelling using the finite element method and experimental mea-
surement using the contour technique. Residual stresses affect the behaviour of the
structure, in particular, crack propagation behaviour. Fatigue crack propagation
behaviour on welded metallic structures, with emphasis on aeronautical applica-
tions, is reviewed in this book, and an aeronautical example is presented.

Different crack growth simulation models which were introduced for fatigue
crack growth assessment in the context of the EU DATON project are compared.
First, different simulation approaches were applied to determine a stress intensity
factor (K) calibration as a function of the crack length for a two-stiffener panel with
a central crack. Different manufacturing processes introduced residual stress fields,
and their influence was included in the numerical models to determine K. K cali-
brations were applied in different crack growth models/laws (Paris, Walker, Forman
and NASGRO) in order to determine the fatigue life under cyclic loading. R ratio
variation and residual stresses were taken into account in all of them allowing to
determine the influence of the residual stress field in the fatigue crack growth. The
results were tested and compared with experimental results with the purpose of
validation of the models.
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These numerical models illustrate how to predict the fatigue life in stiffened
welded panels and made clear that the residual stress field originated by welding
processes can be detrimental or beneficial depending on the location where the
crack starts.

The EU projects SMAAC, ADMIRE and DATON, the ESA project T401-02MC
on Al–Li, QREN CCB360 and LAETA ‘DALMAT’ projects are acknowledged.
DATON materials were provided by ALCAN. The theses at the University of Porto
of Tiago Lima, Hugo Ramos, Maria Hermosilla (exchange student from Technical
University of Cartagena, Spain) and Sérgio J. Moreira, and the 2016 internship at
the University of Porto of Younès Rachid (from Polytech Lille, France) contributed
to the development of some of the FEM analyses. EDAETECH and André X. F. da
Silva provided the samples for Sysweld modelling of Al-alloy plates detailed in
Chap. 7. ESI Madrid kindly provided technical advice on the use of Sysweld. The
permission of Arconic Inc. (previously named ALCOA Inc.) and of Airbus to
reproduce Figs. 1.2 and 4.2, respectively, is gratefully acknowledged.

Porto, Portugal Sérgio M. O. Tavares
Paulo M. S. T. de Castro
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