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Preface

About 1.2 billion km away from our blue planet, frozen droplets of
water orbit Saturn in unison with its majestic rings. These drop-
lets are so abundant that they form a large ring around the planet.
Hundreds of thousands of km wide and 2,000 km deep, this ring
contains so many frozen water particles that Tethys and Dione,
two small moons that happen to lie within the ring, have both
developed a blue tint.

By analyzing this ring, the E ring, one of eleven other rings
of Saturn (see Chapter 8), we have discovered that the droplets
contain traces of sodium chloride (salt) and silicon dioxide (silica),
indicating that the body of water from which they originate must
be warm, salty, and in direct contact with rocks — very much like
our seawater here on Earth. Science tells us that these conditions
are favorable for life to develop and flourish, so it doesn’t require a
big stretch of the imagination to believe that, trapped inside these
tiny seawater droplets, we might find microorganisms in the deep
freeze — extraterrestrial life.

Scientists recently found the ocean from which these fro-
zen water particles originate, but this ocean is different from the
ones we see here on Earth. It is a subsurface ocean that lies many
kilometers beneath the surface of one of Saturn’s tiny moons,
Enceladus. Mighty geysers, powered by the little moon’s heating,
regularly spout large jets of ocean water into space, where they
join the E ring.

We now know that many worlds within our Solar System
contain vast subsurface oceans. We call them “ocean worlds,”
and they are one of the most exciting discoveries in the history of
space exploration.

It is remarkable that we live in an age where data collected
by robotic space probes allows us to have educated conversations
about the possibility of extraterrestrial life. In this book, we’ll
travel back in time, tracking the discovery of the ocean worlds.
Then we’ll move through space as we visit each of these worlds,
investigating the latest scientific evidence as we contemplate the
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viii  Preface

tricky yet thrilling concept of planetary habitability, the potential
to have environments hospitable for life.

The idea of this book germinated more than a year ago dur-
ing a public outreach event at the Sherwood Observatory in
the United Kingdom. It had been a busy yet satisfying event for
all of us involved, and as the evening drew to a close, a visitor
approached me, as he was eager to share a news article about the
newly discovered ocean of liquid water under the surface of Pluto
and the possibilities that life might be discovered there by future
NASA missions. When he asked for my opinion on this news
item, I didn’t have good news for him. The existence of a sub-
surface sea underneath Pluto was, and is still, only suggested by
theoretical models, not confirmed by solid evidence as seemed to
transpire from the article. In addition, there are much better places
for NASA to search for life in our Solar System than Pluto, a far off
distant world where, if liquid water existed, it would most likely
be rich in ammonia - a powerful antimicrobial agent.

Subsequently, as I gave further public talks at the observatory
and interacted with the people attending, I understood that the
public was sometimes misled by the press overhyping or grossly
distorting the science facts behind the ocean worlds’ concept. This
was no real surprise here, as anyone taking part in activities aimed
at communicating scientific ideas to the public quickly becomes
aware how easy it is for the public to misinterpret modern scien-
tific concepts and the intricacies that come with them.

It is in response to these inaccurate interpretations that the
book you hold in your hands was conceived, easily accessible by
any layperson wanting to know more on subsurface oceans. It
aims to guide the reader through the concept of the ocean worlds
and provide insights into the latest scientific discoveries, with all
the nuances that come along.

In a way, the field of planetary science has always been ripe
for misleading interpretations as it involves, more often than not,
cutting-edge science where technologies are pushed to their lim-
its, and theoretical models are continuously refined. Add to this
mix our never-ending obsession with alien life, and we have a per-
fect click bait. In this context, it can be difficult for non-experts
to separate the wheat from the chaff, and this is where this guide
can help.

The book is divided into four parts, each focusing on a spe-
cific aspect of the ocean worlds’ topic. Part I, consisting of three
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chapters, aims to cover some basic concepts in planetary science
and astrobiology to establish a good foundation upon which we
can explore the ocean worlds. Chapter 1 will reveal how the idea
of ocean worlds was first introduced through the remarkable jour-
neys taken by NASA’s Voyager spacecraft as they visited the outer
planets’ satellite systems in the last decades of the twentieth cen-
tury, revolutionizing planetary science in the process. Chapter 2
will cover the origins of water in the universe as well as the pro-
cesses behind its distribution throughout our Solar System. The
possibility of life arising within subsurface oceans and the current
approach that is taken in finding it will be described in Chapter 3.
In so doing, we will make a slight detour to the planet Mars, where
the first ever interplanetary mission to detect alien life was under-
taken in the 1970s.

With the essentials covered, our journey to the ocean worlds
will start as we move into the second part of the book. There, we
will explore in detail the five confirmed ocean worlds of our Solar
System, which are in fact moons of Saturn or Jupiter: Ganymede,
Callisto, Europa, Titan, and Enceladus. Each one will be covered
in a chapter to allow us to explore their history fully, their physi-
cal and geochemical properties, and ponder on the prospects of life
within their subsurface oceans.

Part IIT will take us to two moons and two dwarf planets
where tantalizing clues suggest that a subsurface ocean or smaller
bodies of liquid water could lie under the icy crust but for which
we still haven’t found definitive proof. Within this part, Ceres and
Dione will be covered in Chapter 9, while Triton and Pluto will be
explored in Chapter 10. In the following chapter, we will explore
numerous planetary objects that could theoretically have hosted
a subsurface ocean in the past or might still do so in the present,
but for which the limited observational data makes such cases
debatable. This category includes, among others, icy moons such
as Rhea, Ariel, Titania, and Oberon as well as trans-Neptunian
objects (objects lying further than the orbit of Neptune) such as
Makemake, Eris, Sedna, and 2007 OR10.

Finally, the last part will review the space missions planned
to visit the ocean worlds in the coming decades. In Chapter 12,
we will examine the confirmed missions such as ESA’s JUICE and
NASA'’s Europa Clipper as well as the proposed ones waiting to
be approved, such as the Europa Lander. Given the life-detecting
capabilities of these future missions, we will end the chapter, and
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the book, speculating on the scientific and societal impact if we
find evidence of alien life within a subsurface ocean. Ultimately,
looking for life forms in these remote and strange habitats is part
of a bigger quest, the one for our cosmic origins.

In the appendix section, we will cover Mimas, a small moon
of Saturn, which had been previously put forward by some scien-
tists as an ocean world candidate, only to be disproven recently.
As such, this moon provides a cautionary tale on the drawbacks
in interpreting from a limited set of data. In addition to Mimas, a
brief overview of the relic surface oceans of Mars and Venus will
complete our investigation of past and present liquid water envi-
ronments in our Solar System.

What'’s more, our journey will take us across the entire Solar
System to meet numerous objects. From the now-famous Comet
67P/Churyumov-Gerasimenko to the icy surface of Pluto’s moon
Charon; from Io, the most geologically active object in our Solar
System, to some of the remotest objects known, we will venture
far and wide, meeting in the process the robotic explorers that
unveiled these worlds to us — the spacecraft Pioneer 10 and 11,
Voyager 1 and 2, Galileo, Rosetta and Philae, Dawn, New Hori-
zons, and Cassini-Huygens — and the people that made all this
possible. We will also cover the geological and geochemical pro-
cesses involved in the alteration of planetary bodies such as how
water behaves in extreme conditions in Chapter 4 and the external
factors that alter a planetary surface exposed to space in Chapter
5. Further processes and concepts will be distilled here and there
throughout the chapters.

Key to the approach taken by this book is the fact that plan-
etary science is a comparative science, where we gain much from
comparing planetary objects with each other. As such, although it
might be tempting to skip chapters and quickly jump to specific
parts of the book (e.g., Europa), it is recommended to read in the
order the chapters appear, as knowledge on the ocean worlds and
the technology used to investigate them builds up progressively.
Of course, in the case chapters are read individually, there will
be pointers as to where a specific concept or technology has been
covered elsewhere in the book.

In keeping with the comparative theme, every ocean world
candidate mentioned in this book is presented in an overarching
table, located after this preface, where comparisons on fundamen-
tal physical properties (such as ratio or mass) and the known char-
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acteristics of the subsurface oceans can be made between each
candidate. This table should become handy when one wants to
quickly check the properties of these objects against what they
have read or heard. Furthermore, a schematic diagram establishes
where each ocean world candidate is located within the context of
the planets and structures of our Solar System, making it easier to
locate a given object.

One of the most satisfying aspects of life is sharing with oth-
ers what you are most passionate about. I genuinely hope you
enjoy reading what follows as much as I relished researching and
writing it. If anything written herein inspires you to learn more
about space or science in general, then I've succeeded in my effort.

Nottingham, UK Bernard Henin
April 2018
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Part |
The Origin of Water and Life

“Equipped with his five senses, man explores the universe around him and calls
the adventure Science.”
— Edwin Powell Hubble

In Part I, we review the revolution that occurred in planetary
science when the Voyager space probes visited the outer planets
and their satellite systems, bringing back the first hints of ocean
worlds in our Solar System. The second chapter deals with the
origin of water in space and how it was distributed among the plan-
etary objects orbiting our Sun, while the third chapter deals with
the possibility of extraterrestrial life and our attempts to find it.
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|. The Voyagers’ Tale

Golden Amazons of Venus

The night sky has always been a source of fascination for human-
kind. Storytellers have turned to it to create fantastic myths and
legends for centuries. But it seems that, even within the realms
of science fiction, our imaginations are not powerful enough to
always uncover truth.

When astronomers first pointed their telescopes at our Moon
in the 17th century, they assumed that they were looking at a
world awash with liquid water. In fact, our modern lunar maps still
feature the watery names Maria (singular mare, Latin for “sea”),
Oceanus (singular oceanus, Latin for “ocean”), Lacus (singular
lacus, Latin for “lake”), Sinus (singular sinus, Latin for “bay”) and
Paludes (singular palus, Latin for “marsh”). We now know of course
that the Eagle that landed in the ‘Sea of Tranquility’ 50 years ago
landed on struts rather than floats.

Similarly, the discovery of an atmosphere around Venus in 1761
led to speculation that hidden beneath the thick Venusian cloud
cover was a lush and humid world. Venus as a ‘water world’ cap-
tured the imaginations of astronomers and science fiction writers
alike. A quick browse through some of the science fiction novels
written at the time reveals titles such as” Oceans of Venus” by Isaac
Asimov, “Swamp Girl of Venus” by H. H. Harmon, and the classic
“Golden Amazons of Venus” from J. M. Reynolds. Of course, the
last two titles are from the so-called pulp era of science fiction in the
1930s and 40s, when scientific facts were often sidelined by fantastic
adventure stories, now referred to as planetary romance.

Alas, the age of Venusian blondes waiting to be rescued by vir-
ile Earthlings ended abruptly in 1962 when NASA’s Mariner 2 space-
craft completed the first-ever flyby of the planet (or any planet for
that matter). Recording atmospheric temperatures of 500 degrees
Celsius (900 degrees Fahrenheit), there was no escaping the fact
that the surface of Venus is hot enough to melt lead and that,
sadly, there are no seas on Venus of liquid water and no Venusians.

© Springer International Publishing AG, part of Springer Nature 2018 3
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4 1. The Voyagers’ Tale

A similar story followed with Mars, the Red Planet, which
has long been a source of intrigue. Mars was first observed through
a telescope in 1610 by Galileo Galilei, the father of observational
astronomy. Unfortunately, his telescope wasn’t powerful enough
to reveal the planet’s distinct surface features. We had to wait until
1659 when Christian Huygens, a Dutch astronomer, using a tele-
scope he built himself, drew a rudimentary map of Mars, showing
darkened surface features.

Convinced that these were signs of vegetation, Huygens
published his belief in extraterrestrial life in his influential book
Cosmotheoros. He was also the first man to see the white south
polar cap of the planet, but he didn’t recognize it as such. More
than a century passed before it was correctly identified as water-
ice by Sir William Herschel, a German-born British astronomer
who nevertheless postulated that the dark areas on Mars were
oceans. Herschel’s work on Mars and the realization that the
planet showed many similarities to our own gave credibility to
the idea that there was liquid water, and therefore life, on the red
world. He speculated that Martian inhabitants “probably enjoy a
situation similar to our own.”

The belief that water was flowing on Mars reached its height
in the early 20th century. It was a result of the sloppy translation
(Italian to English) of channels that led to the belief that canals
built by Martians to irrigate the planet could be seen from Earth.
The excitement died down over the course of the century as astron-
omers gained the ability to see the planet in more detail. The idea
was finally laid to rest when the Mariner 9 spacecraft orbited Mars
in 1972 and returned images of a lifeless, utterly dry planet.

Suddenly our Solar System was inhospitable and barren. Gone
were the Selenites, Venusians and Martians. Earth, our blue oasis,
was the only place that could support life, and science fiction,
one of the most imaginative and thought-provoking genres, had
reached an impasse. As a result, swashbuckling spacemen moved
on to the more promising lands outside of our Solar System with
the help of warp engines and other faster-than-light travel meth-
ods, while our neighboring planets and moons were shunned.

The Jovian Revolution

As the title of this book gives it away, this would not last. Our
understanding of the Solar System changed once again as evidence
of liquid water was found in less obvious places — the moons of the
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outer planets. There, vast oceans of flowing water lie waiting to
be explored.

The discovery of these oceans started as the two Voyager
spacecraft, ironically conceived in the years when our Solar System
was thought to be barren, embarked on long journeys that had, as
their first stage, flybys of the Jovian moons. These close encoun-
ters would change everything.

In fact, despite their relatively small sizes, the satellites of
Jupiter had already been game changers in the past, as they had
played a remarkable role in the history of astronomy, science
and our understanding of humanity’s place within the universe.
Described by Galileo Galilei in January 1610 as “three fixed stars,
totally invisible by their smallness,” they were found to be very
close to the giant planet and even moved in a straight line across it.
This configuration, and the fact that the ‘stars’ disappeared behind
Jupiter only to reappear once again later, led the Italian astrono-
mer to deduce that these were, in fact, moons. This straightfor-
ward yet significant discovery made Galileo the first person to see
and understand that objects were orbiting another planet and this
led to the unraveling of the Tychonic system (from the ancient
Ptolemaic system that Earth was at the center of the universe).

The Italian astronomer, not imprudent, originally named
these four moons after his patron, the Medici, and his siblings.
Thankfully these names were lost in time, and today, we use
the ones chosen by Simon Marius, a German astronomer who
named them after Zeus’s lovers in Greek mythology: Io, Europa,
Ganymede, and Callisto.

Almost 400 years after their discovery, in 1979, Jupiter’s
moons would once again change our understanding of our Solar
System. This time, it wasn’t done with the help of Earth-based
telescopes similar to Galileo’s but with the most advanced tech-
nological tools of our modern age. We could now send robotic visi-
tors to the moons.

As such, only twenty years after the Soviets sent the very first
artificial object into space, the United States launched not one but
two spacecraft: Voyager 1 and Voyager 2. Taking advantage of a favor-
able alignment of the outer planets of our Solar System (next occur-
ring in the year 2153), these new emissaries embarked on a grand
tour, visiting not only Jupiter but Saturn, Uranus, and Neptune, too.

Before the Voyagers’ grand tour, the only moon we knew
relatively well was our own, whose official name is “Luna.”
Although magnificent to look at, our Moon is geologically inactive
and somewhat dull. This led humankind to make the mistake
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of assuming that other moons would be like ours — interesting
objects to study but much less attractive than a planet. Of course,
we had already gathered information about other moons through
Earth-based observations, mainly by analyzing their reflected light
known as spectra.

These observations revealed not only that specific moons
had icy surfaces but that they also displayed albedo and color
variations as they rotated (suggesting diverse geological terrains).
Because of this, scientists knew that they would encounter differ-
ent moons. Nevertheless, with only one moon available for close
observations — our own — the astronomers’ best guesses were just
that, guesses.

When the Voyager missions were being conceived, Jupiter’s
moon Europa (see Chapter 6 for a detailed review of this moon)
was thought to be of little importance compared to the other
Galilean satellites, as it was the smallest of the four. Io was a far
more intriguing subject, with its colorful surface features faintly
observed from ground telescopes. Ganymede and Callisto were so
big that their size alone was a key attraction. (Let us not forget
that Ganymede is bigger than Mercury and almost as big as Mars.)
When it came to planning the routes of the Voyagers through the
Jovian system, Europa was at the bottom of the list, not warrant-
ing a close flyby.

As we now know, scientists were in for a big surprise. When
Voyager 1 first reached the Jovian system in 1979 and flew past
Europa, at the intended distance of 2 million km, the low-resolu-
tion images returned by the spacecraft were bewildering (Figs. 1.1
and 1.2).

The images returned a bright moon crisscrossed by myste-
rious intersecting linear features. Furthermore, most scientists
expected that small celestial bodies would show a heavily cra-
tered surface (like on our Moon) as they would lack sufficient
heat to support active geology that reshapes surfaces and erode
or erase craters. Where were the impact craters on Europa? Dark
patches could also be seen on the surface, but few scientists had
an idea of what these were. Through its density (derived from the
mass and volume of the moon) and spectrum, Europa was known
to be mainly a rocky moon with a relatively thin layer of water-
ice. At first, this led scientists to believe that the lines observed
on the surface were deep cracks within the ice crust, caused by
unknown tectonic processes. Could it be that Europa was geologi-
cally active now?
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Fig. 1.1. Europa, the icy moon of Saturn, viewed by Voyager 1 on March 4,
1979. This shot was the best resolution obtained by the spacecraft. We can
see bright areas contrasting with dark patches, crisscrossed by long linear
structures. (Image courtesy of NASA/JPL.)

Fig. 1.2. Taken by Voyager 2 on July 9, 1979. A closer look at Europa
revealed few impact craters and a complicated, fractured crust. The lack of
any mountains or craters is consistent with a thick ice crust. (Image cour-
tesy of NASA/JPL.)

Fortunately, Voyager 2 made a closer flyby four months later
and returned high-resolution images from the surface.

These images allowed scientists to count the impact craters
more precisely and revealed that Europa had very few of them
compared to our Moon or the other Jovian icy moons, Callisto
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and Ganymede. Contrary to most expectations, Europa’s icy crust
was young — very young — maybe less than 100 million years old,
which is a blink of an eye in planetary science. Also, the surface
was very smooth, displaying little height variation that can only
be explained if a surface is too elastic to keep tall features such as
crater rims or cryovolcanoes. Somehow the icy crust wasn'’t as
frozen solid as would be expected from an object lying so far away
from the warmth of our Sun. The images returned by Voyager 2
were unambiguous. Europa was an active moon capable of resur-
facing itself.

That Europa, a small icy moon, could retain enough heat
to stay active puzzled many scientists, and one hypothesis, tidal
heating, proposed a few months before the Voyagers’ flybys, soon
gained the attention of the scientific community. This process had
the potential to melt ices inside a moon, creating vast amounts
of liquid water upon which a thick icy crust would rest — in
other words, it would form a subsurface ocean. Ultimately heat
exchanges between the subsurface ocean and the icy crust could
deform and stress the ices, thus creating cracks within the surface.
Could this new theory be the cause of the moon’s unusual sur-
face features? The scientific community was abuzz.

A New Form of Energy

To understand tidal heating, we must go back to when the Voyagers
made close flybys of the moon Io, one of Europa’s neighbors, and
Jupiter’s closest moon. Io had been a priority for the Voyagers, as
a visit made five years earlier by another American spacecraft,
Pioneer 11, hinted at a brightly colored yet undetermined surface.
Astronomers were intrigued, and the Voyagers’ trajectories were
conceived in such a way that close flybys of Io could be performed.

When the high-resolution images from the Voyagers came
back (see Fig. 1.3), they also revealed an active world, but this time
not of ice but fire. Io was a dream world for volcanologists. The
moon was peppered with volcanic calderas and tall mountains,
upon which eruption plumes and lava flows, stained yellow and red
by oxides of sulfur, would emerge. Remarkably, the surface seemed
not to have a single impact crater, suggesting that the moon’s sur-
face was continually being renewed by volcanic activity. Io had a
lot of energy.
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Fig. 1.3. A fiery Io captured by Voyager 1 on March 4, 1979, the same day
that the spacecraft took its best resolution image of Europa. The distance to
To is about 490,000 km (304,000 m). A volcanic explosion can be seen in the
upper left ejecting solid material to an altitude of 160 km. (Image courtesy
of NASA/JPL.)

Finding such an active world lying far away from the Sun was
astonishing and led to a hunt for the source of Io’s energy. The
explanation came from a paper by Stanton Peale and his colleagues
published in the prestigious journal Science just a few days before
Voyager 1’s arrival in the Jovian system. The paper proposed that
Io could be experiencing warming as it orbits Jupiter in a non-
circular orbit (elliptical orbit), which produces variations in the
gravity pull from the giant planet. This process was named tidal
heating, and it didn’t take long for this new theory to be accepted
by the scientific community as the primary heat source driving
Io’s fiery temper.

What goes on inside Io can be easily demonstrated by using
a simple metal wire. If you happen to have one to hand, flex one
part of the wire backward and forwards. It doesn’t take long for
heat to be felt in the bendy part. The explanation is simple. Some
of the kinetic energy was transformed into heat through internal
friction. A similar process also makes squash balls warm after a
match.

The reason behind Io’s energy output is its elliptic orbit
resulting from a phenomenon known as orbital resonance, which
locks each Galilean moon into a specific orbital ratio around
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Jupiter. For every two orbits that Io takes around the planet,
Europa takes precisely one orbit. Due to orbital mechanics, both
moons always come closest to each other at the same location
within their orbits, pulling Io closer to Europa, thus making it
elliptical instead of circular. (Similarly, for every two orbits that
Europa takes, Ganymede makes precisely one orbit. This 4-2-1
sequence dictates the orbital eccentricity of these three Jovian
moons, as we shall see in subsequent chapters.) Elliptical orbits
are measured by their eccentricity. The greater the eccentricity,
the more elliptical the orbit will be and vice versa.

Since Io’s orbit around its giant parent planet is not a circular
one but an elliptical one, the moon will feel Jupiter’s gravitational
pull differently along its orbit. This is referred to as tidal forces
and is similar to the gravitational effect our Moon has on the seas
and oceans of Earth. On Io, the tidal forces will be most influential
during the moon’s closest approach in orbit (periapsis) than during
its furthest point (apoapsis). As it moves from periapsis to apoapsis
and back, the tidal forces pull Io at varying intensities, thus creat-
ing friction and generating heat as the moon’s interior repeatedly
distorts and buckles.

Of course, many factors determine how much impact tidal
forces can have on an object. The size of the moon in relation to
its parent planet as well as the distance of the moon’s orbit will be
determining factors. As importantly, the composition of the moon
itself will dictate how strongly it responds to these distortions. If
the object is rocky, like our Moon, it will distort far less than if
it is made entirely of ice. The measurement of the rigidity of a
planetary body, and the ability of its shape to change in response
to a tidal potential, is called the Love number (introduced in the
early 20th century by the famous British mathematician Augustus
Edward Hough Love).

By analyzing its orbit around Jupiter, astronomers deduced
that Io has roughly the same density as silicate rock, which means
that the inside of the moon must consist mainly of rocky mate-
rial. This material is flexible enough to feel the effects of Jupiter’s
strong gravitational pull, but not so fragile as to be pulled apart by
it. Therefore, the rocky core and mantle get stretched and squashed
at every orbit, producing vast amounts of heat through friction,
which in turn fuels the volcanism observed on the surface.

With Io’s power source now well understood, Europa’s mys-
terious heat source was a mystery no more. Due to its resonance
with Ganymede and Io, it was also being pulled apart by tidal
forces, although not as intensely as Io. Could the heat generated
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by the tidal forces be capable of melting parts of Europa’s thin icy
crust and — gasp — create a subsurface ocean? No one could tell
for sure, but this was undoubtedly the central thesis proposed to
explain the moon’s deformed surface. Future investigations would
be required to test this idea.

After To and Europa, scientists turned their attention to
Ganymede and Callisto. Ganymede’s surface didn’t have Europa’s
pizzazz, but it did show two distinct terrains: one dark and cra-
tered (and therefore old), and the other grooved, with fewer cra-
ters (implying recent geological or tectonic activity). Was this a
result of tidal heating? Was the moon still generating heat, like Io
and Europa were? If so, was this activity sufficient to create and
maintain a subsurface body of water? Unfortunately, none of these
questions could be answered confidently with the images returned
by the Voyagers’ flybys. We would have to wait for future missions
to start providing some answers. (Chapter 4 reviews Ganymede in
more detail) (Figs. 1.4 and 1.5).

Fig. 1.4. This picture of Ganymede was taken on March 5, 1979, by Voyager
1 at a distance of 272,000 km. The bright areas contain grooves and
ridges indicating geological activity, while many older impact craters have
been eroded over time. (Image courtesy of NASA/JPL.)



