Springer Handbookof Materials Data

Warlimont Martienssen Editors

2nd Edition

Springer Handbook of Materials Data

Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physical and applied sciences. The world's leading experts in the fields of physics and engineering will be assigned by one or several renowned editors to write the chapters comprising each volume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of scientific and technical information.

The volumes are designed to be useful as readable desk book to give a fast and comprehensive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibliographies. References to extensive sources are provided.

Springer of Materials Data

Hans Warlimont, Werner Martienssen (Eds.)

2nd Edition With 1110 Figures and 1007 Tables

Editors

Hans Warlimont Am Neuseser Weinberg 2 63579 Freigericht, Germany

Werner Martienssen † Frankfurt am Main, Germany

ISBN: 978-3-319-69741-3 e-ISBN: 978-3-319-69743-7 DOI https://doi.org/10.1007/978-3-319-69743-7 Library of Congress Control Number: 2018948196

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Production and typesetting: le-tex publishing services GmbH, Leipzig Typography and layout: schreiberVIS, Seeheim Illustrations: le-tex publishing services GmbH, Leipzig Cover design: eStudio Calamar Steinen, Barcelona Cover production: WMXDesign GmbH, Heidelberg

Printed on acid free paper

This Springer imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface to the First Edition

The Springer Handbook of Condensed Matter and Materials Data is the realization of a new concept in reference literature, which combines introductory and explanatory texts with a compilation of selected data and functional relationships from the fields of solid-state physics and materials in a single volume. The data have been extracted from various specialized and more comprehensive data sources, in particular the Landolt–Börnstein data collection, as well as more recent publications. This Handbook is designed to be used as a desktop reference book for fast and easy finding of essential information and reliable key data. References to more extensive data sources are provided in each section. The main users of this new Handbook are envisaged to be students, scientists, engineers, and other knowledge-seeking persons interested and engaged in the fields of solid-state sciences and materials technologies.

The editors have striven to find authors for the individual sections who were experienced in the full breadth of their subject field and ready to provide succinct accounts in the form of both descriptive text and representative data. It goes without saying that the sections represent the individual approaches of the authors to their subject and their understanding of this task. Accordingly, the sections vary somewhat in character. While some editorial influence was exercised, the flexibility that we have shown is deliberate. The editors are grateful to all of the authors for their readiness to provide a contribution, and to cooperate in delivering their manuscripts and by accepting essentially all alterations which the editors requested to achieve a reasonably coherent presentation.

An onerous task such as this could not have been completed without encouragement and support from the publisher. Springer has entrusted us with this novel project, and Dr. Hubertus von Riedesel has been a persistent but patient reminder and promoter of our work throughout. Dr. Rainer Poerschke has accompanied and helped the editors constantly with his professional attitude and very personable style during the process of developing the concept, soliciting authors, and dealing with technical matters. In the later stages, Dr. Werner Skolaut became a relentless and hard-working member of our team with his painstaking contribution to technically editing the authors' manuscripts and linking the editors' work with the copy editing and production of the book.

We should also like to thank our families for having graciously tolerated the many hours we have spent in working on this publication.

We hope that the users of this Handbook, whose needs we have tried to anticipate, will find it helpful and informative. In view of the novelty of the approach and any possible inadvertent deficiencies which this first edition may contain, we shall be grateful for any criticisms and suggestions which could help to improve subsequent editions so that they will serve the expectations of the users even better and more completely.

September 2004 Frankfurt am Main, Dresden Werner Martienssen, Hans Warlimont

About the Editors

Hans Warlimont studied Physical Metallurgy at the School of Mines in Clausthal, Germany, and received his Dr. rer. nat. Degree from the University of Stuttgart. From 1959 to 1962, he worked in the Fundamental Research Laboratory of U.S. Steel Cooperation, Monroeville, USA. From 1962 to 1974, he headed a research group at the Max-Planck-Institute for Metals Research in Stuttgart, Germany. From 1974 to 1977, he worked as Head of the Advanced Materials Division of Swiss Aluminum AG in Switzerland. From 1977 to 1991, he was Head of Research and Development of Vacuumschmelze Hanau, Germany. From 1991 to 1992, he was Authorized Representative for Corporate R & D of Metallgesellschaft Frankfurt/Main. From 1992 to 1998, he was Scientific Director of the Institute of Solid State and Materials Research Dresden and was Professor of Materials Science at the Dresden University of Technology. His main research areas were structural phase transformations and their effects on the physical and mechanical properties of metals.

List of Authors

Peter Albers

Evonik Technology & Infrastructure GmbH Hanau, Germany peter.albers@evonik.com

Wolf Assmus

Johann Wolfgang Goethe-University Department of Physics Max-von-Laue-Str. 1 60438 Frankfurt am Main, Germany assmus@physik.uni-frankfurt.de

Fabrice Charra

Commissariat à l'Énergie Atomique, Saclay Département de Recherche sur l'État Condensé, les Atomes et les Molécules DRECAM-SPCSI, Centre d'Études de Saclay 91191 Gif-sur-Yvette, France fabrice.charra@cea.fr

Gianfranco Chiarotti (deceased)

Hajo Dieringa

Helmholtz-Zentrum Geesthacht Magnesium Technology at MaglC Geesthacht, Germany hajo.dieringa@hzg.de

Claus Fischer

formerly Institute for Solid State and Materials Research (IFW) Georg-Schumann-Str. 20 01187 Dresden, Germany *a_c.fischerdd@t-online.de*

Jens Freudenberger

formely Leibniz-Institute for Solid State and Materials Research Dresden Dept. of Metal Physics Dresden, Germany j.freudenberger@ifw-dresden.de

Günter Fuchs

formely Leibniz-Institute for Solid State and Materials Research Dresden Dept. of Metal Physics Dresden, Germany fuchs@ifw-dresden.de

Frank E. Goodwin

International Zinc Association Dept. of Technology & Market Development Durham, NC, USA fgoodwin@zinc.org

Susana Gota-Goldmann

Commissariat à l'Energie Atomique (CEA) Direction de la Recherche Technologique (DRT) Centre de Fontenay aux Roses BP 6 92265 Fontenay aux Roses Cédex, France susana.gota-goldmann@cea.fr

Sivaraman Guruswamy

Salt Lake City, UT, USA s.guruswamy@utah.edu

Gagik G. Gurzadyan

Garching, Germany gurzadyan@dlut.edu.cn

Hideki Harada

Fukaya, Japan khb16457@nifty.com

Bernhard Holzapfel

Karlsruhe Institute for Technology (KIT) Institute for Technical Physics Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen, Germany bernhard.holzapfel@kit.edu

Karl Ulrich Kainer

Helmholtz-Zentrum Geesthacht Magnesium Technology at MaglC Geesthacht, Germany karl.kainer@hzq.de

Catrin Kammer

Goslar, Germany kammer@t-online.de

Wolfram Knabl

Plansee SE Dept. of Development Business Unit Industries Reutte, Austria wolfram.knabl@plansee.com

Alfred Koethe

formely Leibniz-Institute for Solid State and Materials Research Dresden Dept. of Metal Physics Dresden, Germany *alfred.koethe@web.de*

Dieter Krause

Mainz, Germany

Manfred Dieter Lechner

Universität Osnabrück Institut für Chemie – Physikalische Chemie Osnabrück, Germany Iechner@uni-osnabrueck.de

Gerhard Leichtfried

University of Innsbruck Innsbruck, Austria gerhard.leichtfried@uibk.ac.at

Werner Martienssen (deceased)

Toshio Mitsui

Takarazuka, Japan t-mitsui@jttk.zaq.ne.jp

Manfred Müller

formely Leibniz–Institute for Solid State and Materials Research Dresden Dept. of Metal Physics Dresden, Germany *m.mueller331@googlemail.com*

Sergei Pestov

Moscow Technological University Institute of Fine Chemical Technologies, Department of Physical Chemistry Moskau, Russian Federation *pestovsm@yandex.ru*

Udo W. Pohl

Technical University of Berlin Institute of Solid State Physics Berlin, Germany pohl@physik.tu-berlin.de

Karsten Ruth

Umicore AG & Co. KG Hanau, Germany karsten.ruth@eu.umicore.com

Günther Schlamp

Steinbach, Germany

Barbara Schüpp-Niewa

MINT-Kolleg Baden-Württemberg University of Stuttgart Stuttgart, Germany barbara.schuepp-niewa@mint-kolleg.de

Roland Stickler

Vienna, Austria roland.stickler@univie.ac.at

Pancho Tzankov

Technical University of Berlin Institute of Solid State Physics Berlin, Germany tzankov@mbi-berlin.de

Volkmar Vill

Helmholtz-Zentrum Geesthacht Magnesium Technology at MagIC Geesthacht, Germany vill@chemie.uni-hamburg.de

Hans Warlimont

formely Leibniz-Institute for Solid State and Materials Research Dresden Dept. of Metal Physics Dresden, Germany warlimont.dsl@t-online.de

Contents

List of Abbreviations	XVII
-----------------------	------

Part A Fundamentals

1	The Wern	Fundamental Constants	3
	1.1	What are the Fundamental Constants and Who Takes Care of Them?	3
	1 2	The CODATA Recommended Values of the Fundamental Constants	5
	Refe	rences	9
2	The	International System of Units (SI), Physical Quantities,	
	More	Inell Dimensions	11
	2 1	The International System of Units (SI)	11
	2.1	Deviced Quantities	12
	2.2	The SL Pace Unite	12
	2.5	The SL Derived Units	16
	2.4	Desimal Multiples and Submultiples of St Units	10
	2.5	Units Outside the SI	10
	2.0	Some Energy Equivalents	19
	Z.I Dofe		20
	Refer		24
3	Rudi	ments of Crystallography	
-	Wolf	Assmus	25
	3.1	Crystalline Matter	26
	3.2	Disorder	35
	3.3	Amorphous Matter	36
	3.4	Methods for Investigating Crystallographic Structure	36
	3.5	Recent Novel Topics in Crystallography	38
	Refe	rences	39
4	The	Elements	
	Wern	er Martienssen	41
	4.1	How to Use this Chapter	42
	4.2	Description of Properties Tabulated	42
	4.3	Sources	45
	4.4	Tables of the Elements in Different Orders	46
	4.5	Data	51

References

Part B Metals

5	Mag	nesium and Magnesium Alloys	
	Најо	Dieringa, Karl Ulrich Kainer	147
	5.1	Magnesium	148
	5.2	Magnesium Alloys	150
	5.3	Melting and Casting Practices, Heat Treatment	153
	5.4	Joining	153
	5.5	Corrosion Behavior	154
	5.6	Recent Developments	154
	Refer	ences	155
6	Alum	ninum and Aluminum Alloys	
	Catriı	n Kammer	157
	6.1	Production of Aluminum	158
	6.2	Properties of Pure Al	158
	6.3	Aluminum Alloy Phase Diagrams	161
	6.4	Classification of Aluminum Alloys	166
	6.5	Structure and Basic Mechanical Properties	
		of Wrought Work-Hardenable Aluminum Alloys	167
	6.6	Structure and Basic Mechanical Properties	
		of Wrought Age-Hardenable Aluminum Alloys	168
	6.7	Structure and Basic Mechanical Properties	
		of Aluminum Casting Allovs	171
	6.8	Technical Properties of Aluminum Allovs	173
	6.9	Thermal and Mechanical Treatment	181
	6.10	Corrosion Behavior of Aluminum	191
	Refer	ences	192
7	Titar	nium and Titanium Allovs	
	Hans	Warlimont	195
	7.1	Titanium	195
	7.2	Ti-Based Alloys	199
	7.3	Intermetallic Ti-Al Materials	200
	7.4	TiNi Shape-Memory Alloys	205
	Refer	ences	206
8	ZIrco	nium and Zirconium Alloys	207
	Hans	Warnmont	207
	8.1		207
	8.2	lechnically-Pure and Low-Alloy Zirconium Materials	208
	8.3	Zirconium Alloys in Nuclear Applications	209
	8.4	Zirconium-Based Bulk Glassy Alloys	210
	Refer	ences	212
9	Iron	and Steels	
	Alfred	1 Koethe, Hans Warlimont	213
	9.1	Phase Relations and Phase Transformations	214
	9.2	Carbon and Low-Alloy Steels	220
	9.3	High-Strength Low-Alloy Steels	231
	9.4	Stainless Steels	237

	9.5	Heat-Resistant Steels	250
	9.6	Tool Steels	254
	9.7	Cast Irons	260
	Refere	nces	265
10	Cobal	t and Cobalt Alloys	
	Hans I	Varlimont	267
	10.1	Co-Based Alloys	268
	10.2	Co-Based Hard-Facing Alloys and Related Materials	269
	10.3	Co-Based Heat-Resistant Alloys, Superalloys	270
	10.4	Co-Based Corrosion-Resistant Alloys	271
	10.5	Co-Based Surgical Implant Alloys	272
	10.6	Cemented Carbides	272
	Refere	nces	274
11	Nickel	and Nickel Alloys	
	Hans I	Varlimont	275
	11.1	Commercially Pure and Low-Alloy Nickels	275
	11.2	Highly Alloyed Ni-Based Materials	277
	11.3	Ni-Based Superalloys	280
	11.4	Ni Plating	292
	Refere	nces	292
12	Сорре	r and Copper Alloys	
	Jens Fi	eudenberger, Hans Warlimont	293
	12.1	Unalloyed Coppers	294
	12.2	High-Copper Alloys	295
	12.3	Brasses	296
	12.4	Bronzes	298
	12.5	Copper-Nickel Alloys	300
	Refere	nces	301
13	Refrac	tory Metals and Refractory Metal Alloys	
	Wolfra	m Knabl, Gerhard Leichtfried, Roland Stickler	303
	13.1	Physical Properties	306
	13.2	Chemical Properties	308
	13.3	Recrystallization Behavior	311
	13.4	Mechanical Properties	314
	Refere	nces	329
14	Noble	Metals and Noble Metal Alloys	
	Günth	er Schlamp	335
	14.1	Silver and Silver Alloys	337
	14.2	Gold and Gold Alloys	352
	14.3	Platinum Group Metals and Their Alloys	367
	Refere	nces	407
15	Lead a	and Lead Alloys	
	Frank	E. Goodwin, Sivaraman Guruswamy, Hans Warlimont	409
	15.1	Pure Grades of Lead	410
	15.2	Pb-Sb Alloys	414
	15.3	Pb-Sn Alloys	416

15.4	Pb-Ca Alloys	418
15.5	Pb-Bi Alloys	420
15.6	Pb-Ag Alloys	422
15.7	Pb-Cu, Pb-Te, and Pb-Cu-Te Alloys	422
15.8	Pb-As Alloys	422
15.9	Lead Cable-Sheathing Alloys	422
15.10	Other Lead Alloys	423
15.11	Composite Lead-Battery Grids	423
Refere	nces	425

16 Zinc and Zinc Alloys

Frank	Frank E. Goodwin		
16.1	Naturally Occurring Zinc	428	
16.2	Zinc Metal Grades And Standards	428	
16.3	Properties of Zinc	429	
16.4	Uses of Zinc	432	
References		438	

Part C Nonmetallic Materials

17 Ceramics

Hans V	Narlimont	441
17.1	Traditional Ceramics and Cements	441
17.2	Silicate Ceramics	443
17.3	Refractory Ceramics	446
17.4	Oxide Ceramics	446
17.5	Nonoxide Ceramics	457
Refere	nces	484

18 Polymers

Manfre	ed Dieter Lechner	485
18.1	Definitions and Selected Polymers	485
18.2	Structural Units of Polymers	488
18.3	Abbreviations	491
18.4	Tables and Figures	492
Refere	References	

19 Glasses

Dieter Krause		
19.1	Properties of Glasses – General Comments	540
19.2	Composition and Properties of Glasses	541
19.3	Flat Glass and Hollowware	542
19.4	Technical Specialty Glasses	544
19.5	Optical Glasses	556
19.6	Vitreous Silica	570
19.7	Glass-Ceramics	571
19.8	Glasses for Miscellaneous Applications	572
References		

Part D Functional Materials

	<u> </u>			
20	Sem	icond	lucto	ors
20				

Werner Martienssen		587
20.1	Group IV Semiconductors and IV-IV Compounds	590
20.2	III-V Compounds	615
20.3	II–VI Compounds	661
References		697

21 Superconductors

Günter Fuchs, Claus Fischer, Bernhard Holzapfel, Barbara Schüpp-	
Niewa, Hans Warlimont	
21.1 Metallic Superconductors	702
21.2 Non-Metallic Superconductors	715
References	

22 Magnetic Materials

Manfred Müller, Hideki Harada, Hans Warlimont		753
22.1	Basic Magnetic Properties	753
22.2	Soft Magnetic Alloys	756
22.3	Hard Magnetic Alloys	788
22.4	Magnetic Oxides	803
Refere	References	

23 Dielectrics and Electrooptics

Gagik	G. Gurzadyan, Pancho Tzankov	809
23.1	Dielectric Materials: Low-Frequency Properties	813
23.2	Optical Materials: High-Frequency Properties	814
23.3	Guidelines for Use of Tables	816
23.4	Tables of Numerical Data for Dielectrics and Electrooptics	818
References		884

24 Ferroelectrics and Antiferroelectrics

Toshio	Mitsui	897
24.1	Definition of Ferroelectrics and Antiferroelectrics	898
24.2	Survey of Research on Ferroelectrics	898
24.3	Classification of Ferroelectrics	900
24.4	Physical Properties of 43 Representative Ferroelectrics	905
Refere	References	

25 Materials for Solid Catalysts

Karsten Ruth, Peter Albers		931
25.1	Catalysts as Functional Material	931
25.2	Catalytically Active Materials	938
25.3	Components of a Catalyst	943
25.4	Deactivation	945
25.5	Characterization	948
References		950

Part E Special Structures

26	Liquid	l Crystals	
	Sergei	Pestov, Volkmar Vill	955
	26.1	Liquid Crystalline State	955
	26.2	Physical Properties of the Most Common Liquid Crystalline	
		Substances	959
	26.3	Physical Properties of Some Liquid Crystalline Mixtures	985
	Refere	nces	987
27	The P	hysics of Solid Surfaces	
	Gianfr	anco Chiarotti	989
	27.1	The Structure of Ideal Surfaces	990
	27.2	Surface Reconstruction and Relaxation	996
	27.3	Electronic Structure of Surfaces	1005
	27.4	Surface Phonons	1020
	27.5	The Space Charge Laver at the Surface of a Semiconductor	1028
	Refere	nces	1033
20	Neres		
28	NdIIU:	Suuciuieu Maleiiais o Charra, Susana Gota-Goldmann, Hans Warlimont	1027
			1020
	20.1	Flastrania Structure and Spactraceony	1050
	20.2	Electromagnetic Confinement	1040
	28.5		1050
	28.4	Magnetic Nanostructures	1054
	28.5	Preparation lechniques	1068
	Refere	nces	1071
29	Low-	Dimensional Semiconductors	
	Udo W	. Pohl	1077
	29.1	Electronic Confinement	1077
	29.2	Optical Confinement	1090
	Refere	nces	1098
Δh	out th	e Authors	1101
De	tailed	Contents	1107
Su	biect I	ndex	1119
	-,		

List of Abbreviations

0-D	zero-dimensional	cp-Ti	commercially pure titanium
1-D	one-dimensional	CT	computed tomography
ID-LPS	one-dimensional long-period	CVD	chemical vapor deposition
2.D	superstructure		
2-D 2D I DS	two-dimensional lang pariod	D	
2D-LP5	two-unnensional long-period	DAD	1 11 1 1 4 1 4
2 D	three dimensional	DAP	diallyiphthalate
3-D	four dimensional	DAS	dimer-adatom-stacking fault
4-D 5 D	four-dimensional	DB	dangling bond
3-D		DBR	distributed Bragg reflector
0-D	six-dimensional	DBTT	ductile–brittle transition temperature
		DDT	dichloro diphenyl trichloroethane
A		DFB	distributed feedback
		DFG	difference frequency generation
ABS	poly(acrylonitrile-co-butadiene-co-	DFT	density functional theory
	styrene)	DLAP	deuterated L-arginine phosphate
AFM	atomic force microscopy	DMC	dough molding compound
ARUPS	angle-resolved ultraviolet photoemission	DOP	dioctyl phthalate
	spectroscopy	DOS	density of states
ASA	poly(acrylonitrile-co-styrene-co-	DP	depth profiling
	acrylester)	DSC	differential scanning calorimetry
ASW	acoustic surface wave	DTA	differential thermal analysis
A-TEM	analytical transmission electron		
	microscopy	E	
a.u.	atomic unit		
		EAA	poly(ethylene-co-acrylic acid)
В		EB	electron-beam melting
		EC	ethyl cellulose
BBO	beta barium borate	ECB	edge colony boundary
bcc	body-centered cubic	ECS	electron capture spectroscopy
BCS	Bardeen–Cooper–Schrieffer	ECTFE	poly(ethylene-co-
BET	Brunauer-Emmett-Teller		chlorotrifluoroethylene)
BGB	basal grain boundary	EDTA	ethylenediaminetetraacetic acid
BMC	bulk molding compound	EDX	energy-dispersive X-ray microanalysis
BP	band pass	EELS	electron-energy loss spectroscopy
		EFP	explosively formed penetrator
C		EGB	edge crystal grain boundary
		EIM	polyethylene ionomer
CA	cellulose acetate	ELC	extra low carbon
CAB	cellulose acetobutyrate	EP	epoxide, epoxy
CAS	chemically active species	EPDM	ethylene/propylene/diene-rubber
CBN	cubic boron nitride	ERD	elastic recoil detection
CBO	cesium borate	ESA	electrokinetic sonic amplitude
CCT	continuous-cooling-transformation	ESCA	electron spectroscopy for chemical
CE	carbon equivalent		analysis
CG	compacted graphite	ETFE	poly(ethylene-co-tetrafluoroethylene)
CGO	conventional grain-oriented	EVA	poly(ethylene-co-vinylacetate)
CIGS	copper indium gallium diselenide	EXAFS	extended x-ray absorption fine structure
CLBO	cesium lithium borate		- 1
CMOS	complementary	F	
	metal-oxide-semiconductor		
COC	cvcloolefine copolymer	fcc	face-centered cubic
СР	cellulose propionate	FEP	poly(tetrafluoroethylene-co-
CP	cross polarization		hexafluoropropylene)
	Poluineuron		

FE-SEM FF FG FL FOM G	field-emission scanning electron microscopy flux flow flake graphite fully lamellar figure of merit	IR-DRIFT iso ISS IT ITO i-XPS	infrared spectroscopy diffuse reflection isotactic ion scattering spectroscopy isothermal transformation indium tin oxide imaging x-ray photoelectron spectroscopy
GAR	grain aspect ratio		
GD-MS	glow discharge mass spectrometry	JDOS	joint density of state
GMC	granulated molding compound		
GMR	giant magnetoresistance	К	
GO	grain-oriented		
GP	Guinier–Preston	KE	kinetic energy
GSD	grain size distribution	KRIPES	K-resolved inverse photoelectron spectroscopy
Н		L	
HATOF	helium atom time-of-flight spectroscopy		
HB	Brinell hardness number	LA	longitudinal acoustic
HCN	hydrocyanic acid	LB	Langmuir–Blodgett
пер НОРЕ	high density polyethylene		liquid crystal
HEIS	high-energy ion scattering/high-energy	LCD	liquid crystal display
	ion scattering spectroscopy	LCM	LC materials
HGO	high permeability grain-oriented	LCP	liquid crystal polymer
hh	heavy hole	LDA	local-density approximation
HI	high impact (modifier)	LDPE	low density polyethylene
	Knoop nardness	LEED	low-energy electron diffraction
HMO	heavy-metal oxide	LEIS	ion scattering spectroscopy
HOPG	highly oriented pyrolytic graphite	lh	light hole
HP	high pressure	LHPC	low-heat Portland cement
HPDC	high-pressure die casting	LLDPE	linear low density polyethylene
HPO	hydroxylamine phosphate oxime process	LP	long pass filter
HRA	Rockwell hardness A scale	LPE	liquid phase epitaxy
HKIEM	mign-resolution transmission electron microscopy	LS	laser scattering
HSLA	high-strength low-alloy	Μ	
HT	high temperature		
HV	Vickers hardness	MAS	magic-angle spinning
11 V	viekers hardness	MBE	molecular-beam epitaxy
1		ME	medium-energy ion
		WIEIG	scattering/medium-energy ion scattering
IACS	International Annealed Copper Standard		spectroscopy
IBA	ion bombardment and annealing	MF	melamine formaldehyde
IBAD	ion-beam-assisted deposition	MF	multifilamentary
IC	ion chromatography	MFL	modified fully lamellar
ICP ICP MS	inductively coupled plasma	MITM	magnetic force microscopy methyleyclopentadienyl manganese
101-1010	spectroscopy-mass spectrometry	141141 1	tricarbonyl
ICP-OES	inductively coupled plasma	MNL	modified nearly lamellar
	spectroscopy-optical emission spectral	MOCVD	metal organic chemical vapor deposition
	analysis	MP	multiphase
IINS	inelastic incoherent neutron scattering	MPC	modified Portland cement
IPS	in-plane-switching	MQW	multiple quantum well
IK	infrared spectroscopy	MIJ	magnetic tunnel junction

mu MVA-TFT	monomer unit multidomain vertical alignment thin film transistor	P/M PMMA PMP POM	powder metallurgy poly(methyl methacrylate) poly(4-methyl-1-pentene) poly(oxymethylene)
Ν		POM-R	poly(oxymethylene-co-ethylene)
n-D ND	<i>n</i> -dimensional neutron diffraction	PP PPE PPS	poly(only interference of configuration) poly(phenylene ether) poly(phenylene sulfide)
NG	near-gamma	PSD PSD	polystyrene
NL	nearly lamellar	PSD	particle size distribution
NMK	nuclear magnetic resonance	PSU	porysuitone nortially stabilized zincenia
NO	nonoriented	PSZ	partially stabilized zirconia
NOL	nano-oxide layer		polytetrailuoroetnylene
NPC	normal or ordinary Portland cement	PUK DVC D1	polyuremane plasticized polyurinyl oblarida (75/25)
NRA	nuclear reaction analysis	PVC-P1	plastisized polyvinyl chloride (73/25)
NRC	new RheoCast process	PVC-P2	plastisized polyvinyl chloride (60/40)
n.u.	natural unit	PVC-U	unplastisized polyvinyl chloride
0		PVK PZT	piezoelectric material
<u> </u>		0	
OD ODS	optical density oxide-dispersion-strengthened	Ý	
OPO	optical parametric oscillation	QCSE	quantum-confined Stark effect
		QENS	quasielastic neutron scattering
D		QW	quantum well
		QWR	quantum wire
PA	polyamide	D	
PAII	polyamide 11	<u>n</u>	
PA12	polyamide 12	RABITS	rolling assisted bi-axially textured
PA6	polyamide 6	ICIDITO	substrate
PA610	polyamide 610	RAS	reflectance anisotrony spectroscony
PAGO	polyamide 66	RBA	Rutherford backscattering analysis
PAI	poly(amide imide)	RD	rolling direction
PB DDT	polybulene	RE	rare earth
PBI DDT CE	poly(butylene tereprinalate)	RHEED	reflection high-energy electron
PB1-GF	glashber reinforced poly(butylene terephthalate)	MILLD	diffraction
PC	polycarbonate	RHPC	rapid-hardening Portland cement
PCB	printed circuit board	RIE	reactive ion etching
per	partially crystalline	RRR	residual resistivity ratio
PCTFE	polychlorotrifluoroethylene	RT	room temperature
PE	polyethylene	RTP	room temperature and standard pressure
PED	photoelectron diffraction	RW	weighted sound reduction
PEEK	polvether ether ketone		
PEFC	proton-exchange fuel cell	S	
PEI	polv(ether imide)		
PEM	polymer electrolyte membrane	SAN	polv(styrene-co-acrylonitrile)
PES	poly(ether sulfone)	SAW	surface acoustic wave
PET	poly(ethylene terephthalate)	SB	polv(styrene-co-butadiene)
PF	phenol formaldehyde	SBW	semi borosilicate Wertheim
PGM	platinum group metal	SBZ	surface Brillouin zone
PI	polyimide	SCB	small-angle colony boundary
PIB	polvisobutylene	SCL	shaped charge liner
PILC	paper insulated lead-sheathed cable	SCLS	surface core level shift
PIT	powder-in-tube	SCR	selective catalytic reduction
PL	photoluminescence	SDD	silicon drift detector
PLD	pulsed laser deposition	SDR	surface differential reflectivity
PLF	photoluminescence excitation	SE	secondary electron
PLZT	La-modified PZT	SEM	scanning electron microscopy
		JUN	seaming election meroscopy

SERS	surface-enhanced Raman scattering	ТО	transverse optical branch
SFG	sum frequency generation	TOW	time of wetness
SG	spheroidal graphite	TPD	thermally programmed desorption
SH	second harmonic	TPO	thermally programmed oxidation
SHG	second-harmonic generation	TPR	thermally programmed reduction
SI	International System of Units		thermonlastic polyurathana elastomer
SIMS	secondary-ion mass spectrometry	TrEE	trifluoroethylene
SNMS	secondary neutral mass spectrometry		time temperature transformation
SNR	signal-to-noise ratio	111	time-temperature-transformation
SPARPES	spin-polarized angle-resolved		
STAR ES	nhotoemission spectroscopy	U	
SDI FED	spin-polarized low-energy electron		
SI LEED	diffraction	UF	urea formaldehyde
SOLID	unnaction	UHMWPE	ultrahigh molecular weight polyethylene
SQUID	superconducting quantum interference	ULE	ultralow expansion
CDI	device	UNS	unified numbering system for metals and
SKI	sound reduction index		alloys
SRPC	sulfate-resisting Portland cement	UP	unsaturated polyester
SSMP	semi-solid metal processing	UTS	ultimate tensile strength
SS-XPS	small-spot x-ray photoelectron	UV	ultraviolet radiation
	spectroscopy		
STA	simultaneous thermal analysis	V	
STC	sound transmission classification	-	
STEM	scanning transmission electron	VAC	vacuum-arc casting
	microscopy	VCSEI	vertical cavity surface emitting laser
STM	scanning tunneling microscopy	VCSEL	vinulidana fluorida
STN	supertwisted nematic	VDF	
STP	standard temperature and pressure	VEC	valence electron concentration
svn	syndiotactic	VF	vuicanized liber
Syn	synarouede	VFI	Vogel, Fulcher, and Tammann
		VIP	viewing independent panel
Т		VLS	vapor-liquid-solid
Τ۸	transvarsa accustia	W	
	thermally activated flux flow		
	thellium ersenie selenide	WDX	wavelength-dispersive analysis of X-ray
TAS			······g·····g·····g·····g·····g·····g····
TCD	temperature coefficient	V	
ICK	temperature coefficient of resistivity	Λ	
TE	transverse-electric	VAEC	
TEC	thermal expansion coefficient	XAFS	x-ray absorption spectroscopy
TEM	transmission electron microscopy	XANES	x-ray absorption near-edge structure
TFT	thin-film transistor	XPS	x-ray photoelectron spectroscopy
TG	thermogravimetry	XRD	x-ray diffraction
THF	tetrahydrofuran	XRF	x-ray fluorescence
ТМ	transverse-magnetic		
TMR	tunnel magnetoresistance	Y	
TMT	thermomechanical treatment		
TN	twisted nematic	YS	vield stress
			-

Fundant A

Part A Fundamentals

- 1 The Fundamental Constants Werner Martienssen, Frankfurt am Main, Germany
- 2 The International System of Units (SI), Physical Quantities, and Their Dimensions Werner Martienssen, Frankfurt am Main, Germany
- 3 Rudiments of Crystallography Wolf Assmus, Frankfurt am Main, Germany

4 The Elements

Werner Martienssen, Frankfurt am Main, Germany

1. The Fundamental Constants

Werner Martienssen[†]

In the quantitative description of physical phenomena and physical relationships, we find constant parameters which appear to be independent of the scale of the phenomena, independent of the place where the phenomena happen, and independent of the time when the phenomena are observed. These parameters are called fundamental constants. In Sect. 1.1, we give a qualitative description of these basic parameters and explain how recommended values for the numerical values of the fundamental constants are found. In Sect. 1.2, we present tables of the most recently determined recommended numerical values for a large number of those fundamental constants which play a role in solid-state physics and chemistry and in materials science.

1.1	What are the Fundamental Constants and Who Takes Care of Them?	3
1.2	The CODATA Recommended Values of the Fundamental Constants	5
1.2.1	The Most Frequently Used Fundamental	
	Constants	5
1.2.2	Detailed Lists	
	of the Fundamental Constants	
	in Different Fields of Application	5
1.2.3	Constants from Atomic Physics	
	and Particle Physics	7
Refere	ences	9

1.1 What are the Fundamental Constants and Who Takes Care of Them?

The fundamental constants are constant parameters in the laws of nature. They determine the size and strength of the phenomena in the natural and technological worlds. We conclude from observation that the numerical values of the fundamental constants are independent of space and time; at least, we can say that if there is any dependence of the fundamental constants on space and time, then this dependence must be an extremely weak one. Also, we observe that the numerical values are independent of the scale of the phenomena observed; for example, they seem to be the same in astrophysics and in atomic physics. In addition, the numerical values are quite independent of the environmental conditions. So we have confidence in the idea that the numerical values of the fundamental constants form a set of numbers which are the same everywhere in the world, and which have been the same in the past and will be the same in the future. Whereas the properties of all material objects in nature are more or less subject to continuous change, the fundamental constants seem to represent a constituent of the world which is absolutely permanent.

On the basis of this expected invariance of the fundamental constants in space and time, it appears reasonable to relate the units of measurement for physical quantities to fundamental constants as far as possible. This would guarantee that also the units of measurement become independent of space and time and of environmental conditions. Within the frame work of the International System of Units (Système International d'Unités, abbreviated to SI), the International Committee for Weights and Measures (Comité International des Poids et Mesures, CIPM) has succeeded in relating a large number of units of measurement for physical quantities to the numerical values of selected fundamental constants; however, several units for physical quantities are still represented by prototypes. For example, the unit of length 1 m, is defined as the distance light travels in vacuum during a fixed time; so the unit of length is related to the fundamental constant c, i.e., the speed of light, and the unit of time, 1 s. The unit of mass, 1 kg, however, is still represented by a prototype, the mass of a metal cylinder made of a platinum-iridium alloy, which is carefully stored at the International Office

Part A | 1.1

for Weights and Measures (Bureau International des Poids et Mesures, BIPM), at Sèvres near Paris. In a few years, however, it might become possible also to relate the unit of mass to one or more fundamental constants.

The fundamental constants play an important role in basic physics as well as in applied physics and technology; in fact, they have a key function in the development of a system of reproducible and unchanging units for physical quantities. Nevertheless, there is, at present, no theory which would allow us to calculate the numerical values of the fundamental constants. Therefore, National Institutes for Metrology (NIM), together with research institutes and university laboratories, are making efforts worldwide to determine the fundamental constants experimentally with the greatest possible accuracy and reliability. This, of course, is a continuous process, with hundreds of new publications every year.

The Committee on Data for Science and Technology (CODATA), established in 1966 as an interdisciplinary, international committee of the International Council of the Scientific Unions (ICSU), has taken the responsibility for improving the quality, reliability, processing, management, and accessibility of data of importance to science and technology. The CODATA task group on fundamental constants, established in 1969, has taken on the job of periodically providing the scientific and technological community with a selfconsistent set of internationally recommended values of the fundamental constants based on all relevant data available at given points in time. What is the meaning of *recommended values* of the fundamental constants?

Many fundamental constants are not independent of one another; they are related to one another by equations which allow one to calculate a numerical value for one particular constant from the numerical values of other constants. In consequence, the numerical value of a constant can be determined either by measuring it directly or by calculating it from the measured values of other constants related to it. In addition, there are usually several different experimental methods for measuring the value of any particular fundamental constant. This allows one to compute an adjustment on the basis of a least-squares fit to the whole set of experimental data in order to determine a set of best-fitting fundamental constants from the large set of all experimental data. Such an adjustment is done today about every four years by the CODATA task group mentioned above. The resulting set of best-fit values is then called the CODATA recommended values of the fundamental constants based on the adjustment of the appropriate year.

The Tables in Sect. 1.2 show the CODATA recommended values of the fundamental constants of science and technology based on the 2014 adjustment. This adjustment takes into account all data that became available before 31 December 2014. A detailed description of the adjustment has been published by *Mohr* et al. of the National Institute of Standards and Technology, Gaithersburg, in [1.1, 2].

1.2 The CODATA Recommended Values of the Fundamental Constants

1.2.1 The Most Frequently Used Fundamental Constants

Tables 1.1–1.9 list the CODATA recommended values of the fundamental constants based on the 2014 adjustment.

Quantity	Symbol and relation	Numerical value	Units	Relative standard	
				uncertainty	
Speed of light in vacuum	С	299 792 458	m/s	Exact	
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7}$	$12.566370614 \times 10^{-7}$	N/A^2	Exact	
Electric constant	$\varepsilon_0 = 1/(\mu_0 c^2)$	$8.854187817 \times 10^{-12}$	F/m	Exact	
Newtonian constant of gravitation	G	$6.67408(31) \times 10^{-11}$	$m^3/(kg s^2)$	4.7×10^{-5}	
Planck constant	h	$6.626070040(81) \times 10^{-15}$	Js	1.2×10^{-8}	
Reduced Planck constant	$\hbar = h/(2\pi)$	$1.054571800(13) \times 10^{-16}$	Js	1.2×10^{-8}	
Elementary charge	е	$1.6021766208(98) \times 10^{-19}$	С	6.1×10^{-9}	
Fine-structure constant	$\alpha = (1/(4\pi\varepsilon_0))(e^2/(\hbar c))$	$7.2973525664(17) \times 10^{-3}$		2.3×10^{-10}	
Magnetic flux quantum	$\Phi_0 = h/(2e)$	$2.067833831(13) \times 10^{-15}$	Wb	6.1×10^{-9}	
Conductance quantum	$G_0 = 2e^2/h$	$7.7480917310(18) \times 10^{-5}$	S	2.3×10^{-10}	
Rydberg constant	$R_{\infty} = \alpha^2 m_{\rm e} c / (2h)$	10973731.568508(65)	1/m	6.6×10^{-12}	
Electron mass	me	$9.10938356(11) \times 10^{-31}$	kg	1.2×10^{-8}	
Proton mass	mp	$1.672621898(21) \times 10^{-27}$	kg	1.2×10^{-8}	
Proton-electron mass ratio	$m_{\rm p}/m_{\rm e}$	1836.15267389(17)		9.5×10^{-11}	
Avogadro number	$N_{\rm A}, L$	$6.022140857(74) \times 10^{23}$	1/mol	1.2×10^{-8}	
Faraday constant	$F = N_{\rm A} e$	96485.33289(59)	C/mol	6.2×10^{-9}	
Molar gas constant	R	8.3144598(48)	J/(mol K)	5.7×10^{-7}	
Boltzmann constant	$k = R/N_{\rm A}$	$1.38064852(79) \times 10^{-23}$	J/K	1.8×10^{-6}	
Stefan-Boltzmann constant	$\sigma = (\pi^2/60)[k^4/(\hbar^3 c^2)]$	$5.670367(13) \times 10^{-8}$	$W/(m^2 K^4)$	2.3×10^{-6}	

Table 1.1 Brief list of the most frequently used fundamental constants

1.2.2 Detailed Lists of the Fundamental Constants in Different Fields of Application

Table 1.2 Universal constants

Quantity	Symbol and relation	Numerical value	Units	Relative standard uncertainty
Speed of light in vacuum	С	299 792 458	m/s	Exact
Magnetic constant	$\mu_0 = 4\pi \times 10^{-7}$	$12.566370614 \times 10^{-7}$	N/A^2	Exact
Electric constant	$\varepsilon_0 = 1/(\mu_0 c^2)$	$8.854187817\ldots \times 10^{-12}$	F/m	Exact
Characteristic impedance of vacuum	$Z_0 = (\mu_0 / \varepsilon_0)^{1/2} = \mu_0 c$	376.730313461	Ω	Exact
Newtonian constant of gravitation	G	$6.67408(31) \times 10^{-11}$	$m^3/(kg s^2)$	4.7×10^{-5}
Reduced Planck constant	$\hbar = h/(2\pi)$	$1.054571800(13) \times 10^{-34}$	J s	1.2×10^{-8}
Planck constant	h	$6.626070040(81) \times 10^{-34}$	Js	1.2×10^{-8}
(Ratio)	$G/(\hbar c)$	$6.70861(31) \times 10^{-39}$	$(\text{GeV}/c^2)^2$	4.7×10^{-5}
(Product)	$\hbar c$	197.3269788(12)	MeV fm	6.1×10^{-9}
(Product)	$c_1 = 2\pi h c^2$	$3.741771790(46) \times 10^{-16}$	$W m^2$	1.2×10^{-8}
(Product)	$(1/\pi)c_1 = 2hc^2$	$1.191042953(15) \times 10^{-16}$	W m ² /sr	1.2×10^{-8}
(Product)	$c_2 = h(c/k)$	$1.43877736(83) \times 10^{-2}$	m K	5.7×10^{-7}
Stefan–Boltzmann constant	$\sigma = (\pi^2/60)[k^4/(\hbar^3 c^2)]$	$5.670367(13) \times 10^{-8}$	$W/(m^2 K^4)$	2.3×10^{-6}
Wien displacement law constant	$b = \lambda_{\max} T = c_2 / 4.965114231$	$2.8977729(17) \times 10^{-3}$	m K	5.7×10^{-7}
Planck mass	$m_{\rm P} = (\hbar c/G)^{1/2}$	$2.176470(51) \times 10^{-8}$	kg	2.3×10^{-5}
Planck temperature	$T_{\rm P} = (1/k)(\hbar c^5/G)^{1/2}$	$1.416808(33) \times 10^{32}$	К	2.3×10^{-5}
Planck length	$l_{\rm P} = \hbar/(m_{\rm P}c) = (\hbar G/c^3)^{1/2}$	$1.616229(38) \times 10^{-35}$	m	2.3×10^{-5}
Planck time	$t_{\rm P} = l_{\rm P}/c = (\hbar G/c^5)^{1/2}$	$5.39116(13) \times 10^{-44}$	S	2.3×10^{-5}

Table 1.3 Electromagnetic constants

Quantity	Symbol and relation	Numerical value	Units	Relative standard uncertainty
Elementary charge	е	$1.6021766208(98) \times 10^{-19}$	С	6.1×10^{-9}
(Ratio)	e/h	$2.417989262(15) \times 10^{14}$	A/J	6.1×10^{-9}
Fine-structure constant	$\alpha = (1/(4\pi\varepsilon_0))(e^2/(\hbar c))$	$7.2973525664(17) \times 10^{-3}$		2.3×10^{-10}
Inverse fine-structure constant	1/α	137.035999139(31)		2.3×10^{-10}
Magnetic flux quantum	$\Phi_0 = h/(2e)$	$2.067833831(13) \times 10^{-15}$	Wb	6.1×10^{-9}
Conductance quantum	$G_0 = 2e^2/h$	$7.7480917310(18) \times 10^{-5}$	S	2.3×10^{-10}
Inverse of conductance quantum	$1/G_0$	12906.4037278(29)	Ω	2.3×10^{-10}
Josephson constant ^a	$K_{\rm J} = 2e/h$	$483597.8525(30) \times 10^9$	Hz/V	6.1×10^{-9}
Von Klitzing constant ^b	$R_{\rm K} = h/e^2 = \mu_0 c/(2\alpha)$	25812.8074555(59)	Ω	2.3×10^{-10}
Bohr magneton	$\mu_{\rm B} = e\hbar/(2m_{\rm e})$	927.4009994(57) $\times 10^{-26}$ 5.7883818012(26) $\times 10^{-5}$	J/T eV/T	6.2×10^{-9} 4.5×10^{-10}
(Ratio)	$\mu_{ m B}/h$	$13.996245042(86) \times 10^9$	Hz/T	6.2×10^{-9}
(Ratio)	$\mu_{\rm B}/(hc)$	46.68644814(29)	1/(mT)	6.2×10^{-9}
(Ratio)	$\mu_{ m B}/k$	0.67171405(39)	K/T	5.7×10^{-7}
Nuclear magneton	$\mu_{\rm N} = e\hbar/(2m_{\rm p})$	$5.050783699(31) \times 10^{-27}$ $3.1524512550(15) \times 10^{-8}$	J/T eV/T	6.2×10^{-9} 4.6×10^{-10}
(Ratio)	$\mu_{ m N}/h$	7.622593285(47)	MHz/T	6.2×10^{-9}
(Ratio)	$\mu_{\rm N}/(hc)$	$2.542623432(16) \times 10^{-2}$	1/(mT)	6.2×10^{-9}
(Ratio)	$\mu_{ m N}/k$	$3.6582690(21) \times 10^{-4}$	K/T	5.7×10^{-7}

^a See Table 2.16 for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect. ^b See Table 2.16 for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

Table 1.4 Thermodynamic constants

Quantity	Symbol and relation	Numerical value	Units	Relative standard uncertainty
Avogadro constant	$N_{\rm A}, L$	$6.022140857(74) \times 10^{23}$	1/mol	1.2×10^{-8}
Atomic mass constant	$m_u = (1/12)m(^{12}\text{C})$ = $(1/N_\text{A}) \times 10^{-3} \text{ kg}$	$1.660539040(20) \times 10^{-27}$	kg	1.2×10^{-8}
Energy equivalent	$m_{\mu}c^2$	$1.492418062(18) \times 10^{-10}$	J	1.2×10^{-8}
of atomic mass constant		931.4940954(57)	MeV	6.2×10^{-9}
Faraday constant	$F = N_{\rm A} e$	96485.33289(59)	C/mol	6.2×10^{-9}
Molar Planck constant	N _A h	$3.9903127110(18) \times 10^{-10}$	J s/mol	4.5×10^{-10}
(Product)	N _A hc	0.119626565582(54)	J m/mol	4.5×10^{-10}
Molar gas constant	R	8.3144598(48)	J/(K mol)	5.7×10^{-7}
Boltzmann constant	$k = R/N_{\rm A}$	$1.38064852(79) \times 10^{-23}$	J/K	5.7×10^{-7}
		$8.6173303(50) \times 10^{-5}$	eV/K	5.7×10^{-7}
(Ratio)	k/h	$2.0836612(12) \times 10^{10}$	Hz/K	5.7×10^{-7}
(Ratio)	k/hc	69.503457(40)	1/(m K)	5.7×10^{-7}
Molar volume of ideal gas	$V_m = RT/p$	$22.710947(13) \times 10^{-3}$	m ₃ /mol	5.7×10^{-7}
at STP	at $T = 273.15 \text{ K}$			
	and $p = 100 \mathrm{kPa}$			
Loschmidt constant	$n_0 = N_{\rm A}/V_{\rm m}$	$2.6516467(15) \times 10^{25}$	$1/m^{3}$	5.7×10^{-7}
Stefan-Boltzmann constant	$\sigma = (\pi^2/60)[k^4/(\hbar^3 c^2)]$	$5.670367(13) \times 10^{-8}$	$W/(m^2 K^4)$	2.3×10^{-6}
Wien displacement law constant	$b = \lambda_{\max} T = c_2 / 4.965114231$	$2.8977729(17) \times 10^{-3}$	mK	5.7×10^{-7}

1.2.3 Constants from Atomic Physics and Particle Physics

Quantity	Symbol and relation	Numerical value	Units	Relative standard uncertainty
Rydberg constant	$R_{\infty} = \alpha^2 m_{\rm e} c/2h$	10973731.568508(65)	1/m	5.9×10^{-12}
(Product)	$R_{\infty}c$	$3.289841960355(19) \times 10^{15}$	Hz	5.9×10^{-12}
(Product)	$R_{\infty}hc$	$2.179872325(27) \times 10^{-18}$ 13.605693009(84)	J eV	1.2×10^{-8} 6.1×10^{-9}
Bohr radius	$a_0 = \alpha/(4\pi R_\infty)$ = $4\pi\varepsilon_0\hbar^2/(m_e e^2)$	$0.52917721067(12) \times 10^{-10}$	m	2.3×10^{-10}
Hartree energy	$E_{\rm H} = e^2 / (4\pi\varepsilon_0 a_0)$ $= 2R_{\infty}hc = \alpha^2 m_0 c^2$	$4.359744650(54) \times 10^{-18}$ 27.21138602(17)	J eV	1.2×10^{-8} 6.1×10^{-9}
Quantum of circulation	$h/(2m_{\rm e})$	$3.6369475486(17) \times 10^{-4}$	m^2/s	4.5×10^{-10}
(Product)	$h/m_{\rm e}$	$7.2738950972(33) \times 10^{-4}$	m ² /s	4.5×10^{-10}

Table 1.5 Constants from atomic physics

Table 1.6 Properties of the electron

Quantity	Symbol and relation	Numerical value	Units	Relative
				standard
				uncertainty
Electron mass	me	$9.10938356(11) \times 10^{-31}$	kg	1.2×10^{-8}
		$5.48579909070(16) \times 10^{-4}$	u	2.9×10^{-11}
Energy equivalent of electron mass	$m_{\rm e}c^2$	$8.18710565(10) \times 10^{-14}$	J	1.2×10^{-8}
		0.5109989461(31)	MeV	6.2×10^{-9}
Electron-proton mass ratio	$m_{\rm e}/m_{\rm p}$	$5.44617021352(52) \times 10^{-4}$		9.5×10^{-11}
Electron-neutron mass ratio	$m_{\rm e}/m_{\rm n}$	$5.4386734428(27) \times 10^{-4}$		4.9×10^{-10}
Electron-muon mass ratio	$m_{\rm e}/m_{\rm \mu}$	$4.83633170(11) \times 10^{-3}$		2.2×10^{-8}
Electron molar mass	$M(e) = N_A m_e$	$5.48579909070(16) \times 10^{-7}$	kg/mol	2.9×10^{-11}
Charge-to-mass ratio	$-e/m_{\rm e}$	$-1.758820024(11) \times 10^{11}$	C/kg	6.2×10^{-9}
Compton wavelength	$\lambda_{\rm C} = h/(m_{\rm e}c)$	$2.4263102367(11) \times 10^{-12}$	m	4.5×10^{-10}
(Ratio)	$\lambda_{\rm C}/(2\pi) = \alpha a_0 = \alpha^2/(4\pi R_\infty)$	$386.15926764(18) \times 10^{-15}$	m	4.5×10^{-10}
Classical electron radius	$r_{\rm e} = \alpha^2 a_0$	$2.8179403227(19) \times 10^{-15}$	m	6.8×10^{-10}
Thomson cross section	$\sigma_{\rm e} = (8\pi/3)r_{\rm e}^2$	$0.66524587158(91) \times 10^{-28}$	m ²	1.4×10^{-9}
Magnetic moment	μ_{e}	$-928.4764620(57) \times 10^{-26}$	J/T	6.2×10^{-9}
Ratio of magnetic moment	$\mu_{ m e}/\mu_{ m B}$	-1.00115965218091(26)		2.6×10^{-13}
to Bohr magneton				
Ratio of magnetic moment	$\mu_{ m e}/\mu_{ m N}$	-1838.28197234(17)		9.5×10^{-11}
to nuclear magneton				
Ratio of magnetic moment	$\mu_{ m e}/\mu_{ m p}$	-658.2106866(20)		3.0×10^{-9}
to proton magnetic moment				
Ratio of magnetic moment	$\mu_{\rm e}/\mu_{\rm n}$	960.92050(23)		2.4×10^{-7}
to neutron magnetic moment				
Electron magnetic moment anomaly	$a_{\rm e} = \mu_{\rm e} /(\mu_{\rm B} - 1)$	$1.15965218091(26) \times 10^{-3}$		2.3×10^{-10}
g-factor	$g_{\rm e} = -2(1+a_{\rm e})$	-2.00231930436182(52)		2.6×10^{-13}
Gyromagnetic ratio	$\gamma_{\rm e} = 2 \mu_{\rm e} /\hbar$	$1.760859644(11) \times 10^{11}$	1/(sT)	6.2×10^{-9}
(Ratio)	$\gamma_{\rm e}/(2\pi)$	28024.95164(17)	MHz/T	6.2×10^{-9}

Table 1.7	Properties	of the	proton
-----------	------------	--------	--------

Quantity	Symbol and relation	Numerical value	Units	Relative standard uncertainty
Proton mass	mp	$1.672621898(21) \times 10^{-27} 1.007276466879(91)$	kg u	1.2×10^{-8} 9.0×10^{-11}
Energy equivalent of proton mass	$m_{\rm p}c^2$	$1.503277593(18) \times 10^{-10}$ 938.2720813(58)	J MeV	1.2×10^{-8} 6.2×10^{-9}
Proton-electron mass ratio	$m_{\rm p}/m_{\rm e}$	1836.15267389(17)		9.5×10^{-11}
Proton-neutron mass ratio	$m_{\rm p}/m_{\rm n}$	0.99862347844(51)		5.1×10^{-10}
Proton molar mass	$M(\mathbf{p}) = N_{\mathrm{A}}m_{\mathrm{p}}$	$1.007276466879(91) \times 10^{-3}$	kg/mol	9.0×10^{-11}
Charge-to-mass ratio	e/mp	$9.578833226(59) \times 10^7$	C/kg	6.2×10^{-9}
Compton wavelength	$\lambda_{\rm C,p} = h/(m_{\rm p}c)$	$1.32140985396(61) \times 10^{-15}$	m	4.6×10^{-10}
(Ratio)	$(1/(2\pi))\lambda_{C,p}$	$0.210308910109(97) \times 10^{-15}$	m	4.6×10^{-10}
rms charge radius	R _p	$0.8751(61) \times 10^{-15}$	m	7.0×10^{-3}
Magnetic moment	$\mu_{\rm p}$	$1.4106067873(97) \times 10^{-26}$	J/T	6.9×10^{-9}
Ratio of magnetic moment to Bohr magneton	$\mu_{\rm p}/\mu_{\rm B}$	$1.5210322053(46) \times 10^{-3}$		3.0×10^{-9}
Ratio of magnetic moment to nuclear magneton	$\mu_{ m p}/\mu_{ m N}$	2.7928473508(85)		3.0×10^{-9}
Ratio of magnetic moment to neutron magnetic moment	$\mu_{\rm p}/\mu_{\rm n}$	-1.45989805(34)		2.4×10^{-7}
g-factor	$g_{\rm p} = 2\mu_{\rm p}/\mu_{\rm N}$	5.585694702(17)		3.0×10^{-9}
Gyromagnetic ratio	$\gamma_{\rm p} = 2\mu_{\rm p}/\hbar$	$2.67522205(23) \times 10^8$	1/(sT)	6.9×10^{-9}
(Ratio)	$(1/(2\pi))\gamma_p$	42.57747892(29)	MHz/T	6.9×10^{-9}

Table 1.8 Properties of the neutron

Quantity	Symbol and relation	Numerical value	Units	Relative standard uncertainty
Neutron mass	m _n	$\begin{array}{c} 1.674927471(21) \times 10^{-27} \\ 1.00866491588(49) \end{array}$	kg u	1.2×10^{-8} 4.9×10^{-10}
Energy equivalent	$m_{\rm n}c^2$	939.5654133(58)	MeV	6.2×10^{-9}
Neutron-electron mass ratio	$m_{\rm n}/m_{\rm e}$	1838.68366158(90)		4.9×10^{-10}
Neutron-proton mass ratio	$m_{\rm n}/m_{\rm p}$	1.00137841898(51)		5.1×10^{-10}
Molar mass	$M(\mathbf{n}) = N_{\mathrm{A}}m_{\mathrm{n}}$	$1.00866491588(49) \times 10^{-3}$	kg/mol	5.5×10^{-10}
Compton wavelength	$\lambda_{\rm C,n} = h/(m_{\rm n}c)$	$1.31959090481(88) \times 10^{-15}$	m	6.7×10^{-10}
(Ratio)	$(1/(2\pi))\lambda_{C,n}$	$0.21001941536(14) \times 10^{-15}$	m	6.7×10^{-10}
Magnetic moment	$\mu_{ m n}$	$-0.96623650(23) \times 10^{-26}$	J/T	2.4×10^{-7}
Ratio of magnetic moment to Bohr magneton	$\mu_{ m n}/\mu_{ m B}$	$-1.04187563(25) \times 10^{-3}$		2.4×10^{-7}
Ratio of magnetic moment to nuclear magneton	$\mu_{ m n}/\mu_{ m N}$	-1.91304273(45)		2.4×10^{-7}
Ratio of magnetic moment to electron magnetic moment	$\mu_{\rm n}/\mu_{\rm e}$	$1.04066882(25) \times 10^{-3}$		2.4×10^{-7}
Ratio of magnetic moment to proton magnetic moment	$\mu_{\rm n}/\mu_{\rm p}$	-0.68497934(16)		2.4×10^{-7}
g-factor	$g_{\rm n} = 2\mu_{\rm n}/\mu_{\rm N}$	-3.82608545(90)		2.4×10^{-7}
Gyromagnetic ratio	$\gamma_{\rm n} = 2 \mu_{\rm n} /\hbar$	$1.83247172(43) \times 10^8$	1/(sT)	2.4×10^{-7}
(Ratio)	$(1/(2\pi))\gamma_n$	29.1646933(69)	MHz/T	2.4×10^{-7}

Table 1.9 Properties of the alpha particle

Quantity	Symbol and relation	Numerical value	Units	Relative standard uncertainty
Alpha particle mass ^a	m_{α}	$\begin{array}{l} 6.644657230(82) \times 10^{-27} \\ 4.001506179127(63) \end{array}$	kg u	1.2×10^{-8} 1.6×10^{-11}
Energy equivalent of alpha particle mass	$m_{\alpha}c^2$	$5.971920097(73) \times 10^{-10}$ 3727.379378(23)	J MeV	1.2×10^{-8} 6.2×10^{-9}
Ratio of alpha particle mass to electron mass	$m_{\alpha}/m_{\rm e}$	7294.29954136(24)		3.3×10^{-11}
Ratio of alpha particle mass to proton mass	$m_{\alpha}/m_{\rm p}$	3.97259968907(36)		9.2×10^{-11}
Alpha particle molar mass	$M(\alpha) = N_{\rm A} m_{\alpha}$	$4.001506179127(63) \times 10^{-3}$	kg/mol	1.6×10^{-11}

^a The mass of the alpha particle in units of the atomic mass unit u is given by $m_{\alpha} = A_r(\alpha)$ u; in words, the alpha particle mass is given by the relative atomic mass $A_r(\alpha)$ of the alpha particle, multiplied by the atomic mass unit u

References

- 1.1 P.J. Mohr, D.B. Newell, B.N. Taylor: CODATA recommended values of the fundamental physical constants, Rev. Mod. Phys. **88**, 35009 (2016)
- 1.2 NIST Physics Laboratory: Web pages of the Fundamental Constants Data Center National Institute of Standards and Technology, Gaithersburg, MD 20899– 8420, USA, http://physics.nist.gov/constants

2. The International System of Units (SI), Physical Quantities, and Their Dimensions

Werner Martienssen⁺

In this chapter, we introduce the International System of Units (SI) on the basis of the SI brochure Le Système International d'unités (SI) [2.1], supplemented by [2.2]. We give a short review of how the SI was worked out and who is responsible for the further development of the system. Following the above-mentioned publications, we explain the concepts of base physical quantities and derived physical quantities on which the SI is founded, and present a detailed description of the SI base units and of a large selection of SI derived units. The base units comprise the meter, the kilogram, the second, the ampere, the kelvin, the mole, and the candela. For derived units, we describe how they are defined by equations in terms of the base physical quantities as products or ratios of the units for the base quantities. We also discuss a number of non-SI units which still are in use, especially in some specialized fields. A table (Table 2.17) presenting the values of various energy equivalents closes the chapter.

2.1	The International System of Units (SI)	11
2.2 2.2.1	Physical Quantities How Are Physical Quantities Defined?	12 12
2.3 2.3.1 2.3.2 2.3.3 2.3.4 2.3.5 2.3.6 2.3.7	The SI Base Units Unit of Length: The Meter Unit of Mass: The Kilogram Unit of Time: The Second Unit of Electric Current: The Ampere Unit of (Thermodynamic) Temperature: The Kelvin Unit of Amount of Substance: The Mole Unit of Luminous Intensity: The Candela.	13 13 14 14 14 14 14 15
2.4	The SI Derived Units	16
2.5	Decimal Multiples and Submultiples of SI Units	18
2.6 2.6.1 2.6.2	Units Outside the SI Units Used with the SI Other Non-SI Units	19 19 20
2.7	Some Energy Equivalents	23
References		

2.1 The International System of Units (SI)

All data in this handbook are given in the International System of Units (Système International d'Unités), abbreviated internationally to SI, which is the modern metric system of measurement and is acknowledged worldwide. The system of SI units was introduced by the General Conference of Weights and Measures (Conférence Générale des Poids et Measures), abbreviated internationally to CGPM, in 1960. The system not only is used in science, but also is dominant in technology, industrial production, and international commerce and trade.

Who takes care of this system of SI units?

The Bureau International des Poids et Mesures (BIPM), which has its headquarters in Sèvres near Paris, has taken on a commitment to ensure worldwide unification of physical measurements. Its function is thus to:

- Establish fundamental standards and scales for the measurement of the principal physical quantities and maintain the international prototypes
- Carry out comparison of national and international standards
- Ensure the coordination of the corresponding measuring techniques
- Carry out and coordinate measurements of the fundamental physical constants relevant to those activities.

The BIPM operates under the exclusive supervision of the Comité International des Poids et Mesures (CIPM), which itself comes under the authority of the Conférence Générale des Poids et Mesures and reports to it on the work accomplished by the BIPM. The BIPM itself was set up by the convention du Mètre signed in Paris in 1875 by 17 states during the final session of the Conference on the Meter. The convention was amended in 1921.

Delegates from all member states of the Convention du Mètre attend the Conférence Générale, which, at present, meets every four years. The function of these meetings is to:

- Discuss and initiate the arrangements required to ensure the propagation and improvement of the International System of Units.
- Confirm the results of new fundamental metrological determinations and confirm various scientific resolutions with international scope.
- Take all major decisions concerning the finance, organization, and development of the BIPM.

The CIPM has 18 members, each from a different state; at present, it meets every year. The officers of this committee present an annual report on the administrative and financial position of the BIPM to the governments of the member states of the Convention du Mètre. The principal task of the CIPM is to ensure worldwide uniformity in units of measurement. It does this by direct action or by submitting proposals to the CGPM.

The BIPM publishes monographs on special metrological subjects and the brochure *Le Système international d'unités (SI)* [2.1,2], which is periodically updated and in which all decisions and recommendations concerning units are collected together.

The scientific work of the BIPM is published in the open scientific literature, and an annual list of publications appears in the *Procès-Verbaux* of the CIPM.

Since 1965, *Metrologica*, an international journal published under the auspices of the CIPM, has printed articles dealing with scientific metrology, improvements in methods of measurements, and work on standards and units, as well as reports concerning the activities, decisions, and recommendations of the various bodies created under the Convention du Mètre.

2.2 Physical Quantities

Physical quantities are tools which allow us to specify and quantify the properties of physical objects and to model the events, phenomena, and patterns of behavior of objects in nature and in technology. The system of physical quantities used with the SI units is dealt by Technical Committee 12 of the International organization for standardization (ISO/TC 12). Since 1955, ISO/TC 12 has published a series of international standards on quantities and their units, in which the use of SI units is strongly recommended.

2.2.1 How Are Physical Quantities Defined?

It turns out that it is possible to divide the system of all known physical quantities into two groups:

- A small number of *base quantities*
- A much larger number of other quantities, which are called *derived quantities*.x

The derived quantities are introduced into physics unambiguously by a defining equation in terms of the base quantities; the relationships between the derived quantities and the base quantities are expressed in a series of equations, which contain a good deal of our knowledge of physics but are used in this system as the defining equations for new physical quantities. One might say that, in this system, physics is described in the rather low-dimensional space of a small number of base quantities. Base quantities, on the other hand, cannot be introduced by a defining equation; they cannot be traced back to other quantities; this is what we mean by calling them *base*. How can base quantities then be introduced unambiguously into physics at all?

Base physical quantities are introduced into physics in three steps:

- We borrow the qualitative meaning of the word for a base quantity from the meaning of the corresponding word in everyday language.
- We specify this meaning by indicating an appropriate method for measuring the quantity. For example, length is measured by a measuring rule, and time is measured by a clock.
- We fix a unit for this quantity, which allows us to communicate the result of a measurement. Length, for example, is measured in meters; time is measured in seconds.

On the basis of these three steps, it is expected that everyone will understand what is meant when the name of a base quantity is mentioned.

In fact, the number of base quantities chosen and the selection of the quantities which are considered as base quantities are a matter of expediency; in different fields and applications of physics, it might well be expedient to use different numbers of base quantities and different selections of base quantities. It should be kept