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Preface to the First Edition

The Springer Handbook of Condensed Matter and Materials Data is the realization
of a new concept in reference literature, which combines introductory and explana-
tory texts with a compilation of selected data and functional relationships from the
fields of solid-state physics and materials in a single volume. The data have been ex-
tracted from various specialized and more comprehensive data sources, in particular
the Landolt–Börnstein data collection, as well as more recent publications. This Hand-
book is designed to be used as a desktop reference book for fast and easy finding of
essential information and reliable key data. References to more extensive data sources
are provided in each section. The main users of this new Handbook are envisaged to
be students, scientists, engineers, and other knowledge-seeking persons interested and
engaged in the fields of solid-state sciences and materials technologies.

The editors have striven to find authors for the individual sections who were expe-
rienced in the full breadth of their subject field and ready to provide succinct accounts
in the form of both descriptive text and representative data. It goes without saying
that the sections represent the individual approaches of the authors to their subject and
their understanding of this task. Accordingly, the sections vary somewhat in character.
While some editorial influence was exercised, the flexibility that we have shown is
deliberate. The editors are grateful to all of the authors for their readiness to provide
a contribution, and to cooperate in delivering their manuscripts and by accepting es-
sentially all alterations which the editors requested to achieve a reasonably coherent
presentation.

An onerous task such as this could not have been completed without encourage-
ment and support from the publisher. Springer has entrusted us with this novel project,
and Dr. Hubertus von Riedesel has been a persistent but patient reminder and promoter
of our work throughout. Dr. Rainer Poerschke has accompanied and helped the editors
constantly with his professional attitude and very personable style during the process
of developing the concept, soliciting authors, and dealing with technical matters. In the
later stages, Dr. Werner Skolaut became a relentless and hard-working member of our
team with his painstaking contribution to technically editing the authors’ manuscripts
and linking the editors’ work with the copy editing and production of the book.

We should also like to thank our families for having graciously tolerated the many
hours we have spent in working on this publication.

We hope that the users of this Handbook, whose needs we have tried to anticipate,
will find it helpful and informative. In view of the novelty of the approach and any pos-
sible inadvertent deficiencies which this first edition may contain, we shall be grateful
for any criticisms and suggestions which could help to improve subsequent editions so
that they will serve the expectations of the users even better and more completely.

September 2004 Werner Martienssen,
Frankfurt am Main, Dresden Hans Warlimont
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PC polycarbonate
PCB printed circuit board
pcr partially crystalline
PCTFE polychlorotrifluoroethylene
PE polyethylene
PED photoelectron diffraction
PEEK polyether ether ketone
PEFC proton-exchange fuel cell
PEI poly(ether imide)
PEM polymer electrolyte membrane
PES poly(ether sulfone)
PET poly(ethylene terephthalate)
PF phenol formaldehyde
PGM platinum group metal
PI polyimide
PIB polyisobutylene
PILC paper insulated lead-sheathed cable
PIT powder-in-tube
PL photoluminescence
PLD pulsed laser deposition
PLE photoluminescence excitation
PLZT La-modified PZT

P/M powder metallurgy
PMMA poly(methyl methacrylate)
PMP poly(4-methyl-1-pentene)
POM poly(oxymethylene)
POM-R poly(oxymethylene-co-ethylene)
PP polypropylene
PPE poly(phenylene ether)
PPS poly(phenylene sulfide)
PS polystyrene
PSD particle size distribution
PSU polysulfone
PSZ partially stabilized zirconia
PTFE polytetrafluoroethylene
PUR polyurethane
PVC-P1 plastisized polyvinyl chloride (75/25)
PVC-P2 plastisized polyvinyl chloride (60/40)
PVC-U unplastisized polyvinyl chloride
PVK poly(vinyl carbazole)
PZT piezoelectric material

Q

QCSE quantum-confined Stark effect
QENS quasielastic neutron scattering
QW quantum well
QWR quantum wire

R

RABiTS rolling assisted bi-axially textured
substrate

RAS reflectance anisotropy spectroscopy
RBA Rutherford backscattering analysis
RD rolling direction
RE rare earth
RHEED reflection high-energy electron

diffraction
RHPC rapid-hardening Portland cement
RIE reactive ion etching
RRR residual resistivity ratio
RT room temperature
RTP room temperature and standard pressure
RW weighted sound reduction

S

SAN poly(styrene-co-acrylonitrile)
SAW surface acoustic wave
SB poly(styrene-co-butadiene)
SBW semi borosilicate Wertheim
SBZ surface Brillouin zone
SCB small-angle colony boundary
SCL shaped charge liner
SCLS surface core level shift
SCR selective catalytic reduction
SDD silicon drift detector
SDR surface differential reflectivity
SE secondary electron
SEM scanning electron microscopy



XX List of Abbreviations

SERS surface-enhanced Raman scattering
SFG sum frequency generation
SG spheroidal graphite
SH second harmonic
SHG second-harmonic generation
SI International System of Units
SIMS secondary-ion mass spectrometry
SNMS secondary neutral mass spectrometry
SNR signal-to-noise ratio
SPARPES spin-polarized angle-resolved

photoemission spectroscopy
SPLEED spin-polarized low-energy electron

diffraction
SQUID superconducting quantum interference

device
SRI sound reduction index
SRPC sulfate-resisting Portland cement
SSMP semi-solid metal processing
SS-XPS small-spot x-ray photoelectron

spectroscopy
STA simultaneous thermal analysis
STC sound transmission classification
STEM scanning transmission electron

microscopy
STM scanning tunneling microscopy
STN supertwisted nematic
STP standard temperature and pressure
syn syndiotactic

T

TA transverse acoustic
TAFF thermally activated flux flow
TAS thallium arsenic selenide
TC temperature coefficient
TCR temperature coefficient of resistivity
TE transverse-electric
TEC thermal expansion coefficient
TEM transmission electron microscopy
TFT thin-film transistor
TG thermogravimetry
THF tetrahydrofuran
TM transverse-magnetic
TMR tunnel magnetoresistance
TMT thermomechanical treatment
TN twisted nematic

TO transverse optical branch
TOW time of wetness
TPD thermally programmed desorption
TPO thermally programmed oxidation
TPR thermally programmed reduction
TPU thermoplastic polyurethane elastomer
TrFE trifluoroethylene
TTT time-temperature-transformation

U

UF urea formaldehyde
UHMWPE ultrahigh molecular weight polyethylene
ULE ultralow expansion
UNS unified numbering system for metals and

alloys
UP unsaturated polyester
UTS ultimate tensile strength
UV ultraviolet radiation

V

VAC vacuum-arc casting
VCSEL vertical-cavity surface-emitting laser
VDF vinylidene fluoride
VEC valence electron concentration
VF vulcanized fiber
VFT Vogel, Fulcher, and Tammann
VIP viewing independent panel
VLS vapor–liquid–solid

W

WDX wavelength-dispersive analysis of X-ray

X

XAFS x-ray absorption spectroscopy
XANES x-ray absorption near-edge structure
XPS x-ray photoelectron spectroscopy
XRD x-ray diffraction
XRF x-ray fluorescence

Y

YS yield stress
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1. The Fundamental Constants

Werner Martienssen†

In the quantitative description of physical phe-
nomena and physical relationships, we find
constant parameters which appear to be indepen-
dent of the scale of the phenomena, independent
of the place where the phenomena happen, and
independent of the time when the phenomena
are observed. These parameters are called funda-
mental constants. In Sect. 1.1, we give a qualitative
description of these basic parameters and explain
how recommended values for the numerical val-
ues of the fundamental constants are found. In
Sect. 1.2, we present tables of the most recently
determined recommended numerical values for
a large number of those fundamental constants
which play a role in solid-state physics and chem-
istry and in materials science.

1.1 What are the Fundamental Constants
and Who Takes Care of Them? ............... 3

1.2 The CODATA Recommended Values
of the Fundamental Constants . ............. 5

1.2.1 The Most Frequently Used Fundamental
Constants ............................................. 5

1.2.2 Detailed Lists
of the Fundamental Constants
in Different Fields of Application . ........... 5

1.2.3 Constants from Atomic Physics
and Particle Physics .............................. 7

References ..................................................... 9

1.1 What are the Fundamental Constants and Who Takes Care of Them?

The fundamental constants are constant parameters in
the laws of nature. They determine the size and strength
of the phenomena in the natural and technological
worlds. We conclude from observation that the numeri-
cal values of the fundamental constants are independent
of space and time; at least, we can say that if there is any
dependence of the fundamental constants on space and
time, then this dependence must be an extremely weak
one. Also, we observe that the numerical values are
independent of the scale of the phenomena observed;
for example, they seem to be the same in astrophysics
and in atomic physics. In addition, the numerical values
are quite independent of the environmental conditions.
So we have confidence in the idea that the numeri-
cal values of the fundamental constants form a set of
numbers which are the same everywhere in the world,
and which have been the same in the past and will be
the same in the future. Whereas the properties of all
material objects in nature are more or less subject to
continuous change, the fundamental constants seem to
represent a constituent of the world which is absolutely
permanent.

On the basis of this expected invariance of the
fundamental constants in space and time, it appears rea-
sonable to relate the units of measurement for physical
quantities to fundamental constants as far as possible.
This would guarantee that also the units of measure-
ment become independent of space and time and of
environmental conditions. Within the frame work of the
International System of Units (Système International
d’Unités, abbreviated to SI), the International Commit-
tee for Weights and Measures (Comité International
des Poids et Mesures, CIPM) has succeeded in relating
a large number of units of measurement for physical
quantities to the numerical values of selected funda-
mental constants; however, several units for physical
quantities are still represented by prototypes. For ex-
ample, the unit of length 1m, is defined as the distance
light travels in vacuumduring a fixed time; so the unit of
length is related to the fundamental constant c, i. e., the
speed of light, and the unit of time, 1 s. The unit of mass,
1 kg, however, is still represented by a prototype, the
mass of a metal cylinder made of a platinum-iridium al-
loy, which is carefully stored at the International Office
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W. Martienssen, H. Warlimont (Eds.), Springer Handbook of Materials Data, https://doi.org/10.1007/978-3-319-69743-7_1

https://doi.org/10.1007/978-3-319-69743-7_1


Part
A
|1.1

4 Part A Fundamentals

for Weights and Measures (Bureau International des
Poids et Mesures, BIPM), at Sèvres near Paris. In a few
years, however, it might become possible also to relate
the unit of mass to one or more fundamental constants.

The fundamental constants play an important role in
basic physics as well as in applied physics and technol-
ogy; in fact, they have a key function in the development
of a system of reproducible and unchanging units for
physical quantities. Nevertheless, there is, at present,
no theory which would allow us to calculate the nu-
merical values of the fundamental constants. Therefore,
National Institutes for Metrology (NIM), together with
research institutes and university laboratories, are mak-
ing efforts worldwide to determine the fundamental
constants experimentally with the greatest possible ac-
curacy and reliability. This, of course, is a continuous
process, with hundreds of new publications every year.

The Committee on Data for Science and Technol-
ogy (CODATA), established in 1966 as an interdis-
ciplinary, international committee of the International
Council of the Scientific Unions (ICSU), has taken
the responsibility for improving the quality, reliability,
processing, management, and accessibility of data of
importance to science and technology. The CODATA
task group on fundamental constants, established in
1969, has taken on the job of periodically providing
the scientific and technological community with a self-
consistent set of internationally recommended values
of the fundamental constants based on all relevant data
available at given points in time.

What is the meaning of recommended values of the
fundamental constants?

Many fundamental constants are not independent of
one another; they are related to one another by equa-
tions which allow one to calculate a numerical value
for one particular constant from the numerical values
of other constants. In consequence, the numerical value
of a constant can be determined either by measuring
it directly or by calculating it from the measured val-
ues of other constants related to it. In addition, there
are usually several different experimental methods for
measuring the value of any particular fundamental con-
stant. This allows one to compute an adjustment on the
basis of a least-squares fit to the whole set of experi-
mental data in order to determine a set of best-fitting
fundamental constants from the large set of all exper-
imental data. Such an adjustment is done today about
every four years by the CODATA task group mentioned
above. The resulting set of best-fit values is then called
the CODATA recommended values of the fundamental
constants based on the adjustment of the appropriate
year.

The Tables in Sect. 1.2 show the CODATA recom-
mended values of the fundamental constants of science
and technology based on the 2014 adjustment. This
adjustment takes into account all data that became avail-
able before 31 December 2014. A detailed description
of the adjustment has been published by Mohr et al.
of the National Institute of Standards and Technology,
Gaithersburg, in [1.1, 2].
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1.2 The CODATA Recommended Values of the Fundamental Constants
1.2.1 The Most Frequently Used

Fundamental Constants
Tables 1.1–1.9 list the CODATA recommended values
of the fundamental constants based on the 2014 adjust-
ment.

Table 1.1 Brief list of the most frequently used fundamental constants

Quantity Symbol and relation Numerical value Units Relative standard
uncertainty

Speed of light in vacuum c 299 792 458 m=s Exact
Magnetic constant �0 D 4 � 10�7 12:566370614 : : :� 10�7 N=A2 Exact
Electric constant "0 D 1=.�0c2/ 8:854187817 : : :� 10�12 F=m Exact
Newtonian constant of gravitation G 6:67408.31/� 10�11 m3=.kg s2/ 4:7�10�5

Planck constant h 6:626070040.81/� 10�15 J s 1:2�10�8

Reduced Planck constant „ D h=.2 / 1:054571800.13/� 10�16 J s 1:2�10�8

Elementary charge e 1:6021766208.98/� 10�19 C 6:1�10�9

Fine-structure constant ˛ D .1=.4 "0//.e2=.„c// 7:2973525664.17/� 10�3 2:3�10�10

Magnetic flux quantum ˚0 D h=.2e/ 2:067833831.13/� 10�15 Wb 6:1�10�9

Conductance quantum G0 D 2e2=h 7:7480917310.18/� 10�5 S 2:3�10�10

Rydberg constant R
1

D ˛2mec=.2h/ 10973731:568508.65/ 1=m 6:6�10�12

Electron mass me 9:10938356.11/� 10�31 kg 1:2�10�8

Proton mass mp 1:672621898.21/� 10�27 kg 1:2�10�8

Proton–electron mass ratio mp=me 1836:15267389.17/ 9:5�10�11

Avogadro number NA; L 6:022140857.74/� 1023 1=mol 1:2�10�8

Faraday constant F D NAe 96485:33289.59/ C=mol 6:2�10�9

Molar gas constant R 8:3144598.48/ J=.molK/ 5:7�10�7

Boltzmann constant k D R=NA 1:38064852.79/� 10�23 J=K 1:8�10�6

Stefan–Boltzmann constant � D . 2=60/Œk4=.„3c2/� 5:670367.13/� 10�8 W=.m2 K4/ 2:3�10�6

1.2.2 Detailed Lists
of the Fundamental Constants
in Different Fields of Application

Table 1.2 Universal constants

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Speed of light in vacuum c 299 792 458 m=s Exact
Magnetic constant �0 D 4 � 10�7 12:566370614 : : :� 10�7 N=A2 Exact
Electric constant "0 D 1=.�0c2/ 8:854187817 : : :� 10�12 F=m Exact
Characteristic impedance of vacuum Z0 D .�0="0/

1=2 D �0c 376:730313461. . . � Exact
Newtonian constant of gravitation G 6:67408.31/� 10�11 m3=.kg s2/ 4:7�10�5

Reduced Planck constant „ D h=.2 / 1:054571800.13/� 10�34 J s 1:2�10�8

Planck constant h 6:626070040.81/� 10�34 J s 1:2�10�8

(Ratio) G=.„c/ 6:70861.31/� 10�39 .GeV=c2/2 4:7�10�5

(Product) „c 197:3269788.12/ MeV fm 6:1�10�9

(Product) c1 D 2 hc2 3:741771790.46/� 10�16 Wm2 1:2�10�8

(Product) .1= /c1 D 2hc2 1:191042953.15/� 10�16 Wm2=sr 1:2�10�8

(Product) c2 D h.c=k/ 1:43877736.83/� 10�2 mK 5:7�10�7

Stefan–Boltzmann constant � D . 2=60/Œk4=.„3c2/� 5:670367.13/� 10�8 W=.m2 K4/ 2:3�10�6

Wien displacement law constant b D �maxT D c2=4:965114231 2:8977729.17/� 10�3 mK 5:7�10�7

Planck mass mP D .„c=G/1=2 2:176470.51/� 10�8 kg 2:3�10�5

Planck temperature TP D .1=k/.„c5=G/1=2 1:416808.33/� 1032 K 2:3�10�5

Planck length lP D „=.mPc/D .„G=c3/1=2 1:616229.38/� 10�35 m 2:3�10�5

Planck time tP D lP=c D .„G=c5/1=2 5:39116.13/� 10�44 s 2:3�10�5
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Table 1.3 Electromagnetic constants

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Elementary charge e 1:6021766208.98/� 10�19 C 6:1�10�9

(Ratio) e=h 2:417989262.15/� 1014 A=J 6:1�10�9

Fine-structure constant ˛ D .1=.4 "0//.e2=.„c// 7:2973525664.17/� 10�3 2:3�10�10

Inverse fine-structure constant 1=˛ 137:035999139.31/ 2:3�10�10

Magnetic flux quantum ˚0 D h=.2e/ 2:067833831.13/� 10�15 Wb 6:1�10�9

Conductance quantum G0 D 2e2=h 7:7480917310.18/� 10�5 S 2:3�10�10

Inverse of conductance quantum 1=G0 12906:4037278.29/ � 2:3�10�10

Josephson constant a KJ D 2e=h 483597:8525.30/� 109 Hz=V 6:1�10�9

Von Klitzing constantb RK D h=e2 D �0c=.2˛/ 25812:8074555.59/ � 2:3�10�10

Bohr magneton �B D e„=.2me/ 927:4009994.57/� 10�26

5:7883818012.26/� 10�5
J=T
eV=T

6:2�10�9

4:5�10�10

(Ratio) �B=h 13:996245042.86/� 109 Hz=T 6:2�10�9

(Ratio) �B=.hc/ 46:68644814.29/ 1=.mT/ 6:2�10�9

(Ratio) �B=k 0:67171405.39/ K=T 5:7�10�7

Nuclear magneton �N D e„=.2mp/ 5:050783699.31/� 10�27

3:1524512550.15/� 10�8
J=T
eV=T

6:2�10�9

4:6�10�10

(Ratio) �N=h 7:622593285.47/ MHz=T 6:2�10�9

(Ratio) �N=.hc/ 2:542623432.16/� 10�2 1=.mT/ 6:2�10�9

(Ratio) �N=k 3:6582690.21/� 10�4 K=T 5:7�10�7

a See Table 2.16 for the conventional value adopted internationally for realizing representations of the volt using the Josephson effect.
b See Table 2.16 for the conventional value adopted internationally for realizing representations of the ohm using the quantum Hall effect.

Table 1.4 Thermodynamic constants

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Avogadro constant NA;L 6:022140857.74/� 1023 1=mol 1:2�10�8

Atomic mass constant mu D .1=12/m.12C/
D .1=NA/� 10�3 kg

1:660539040.20/� 10�27 kg 1:2�10�8

Energy equivalent
of atomic mass constant

muc2 1:492418062.18/� 10�10

931:4940954.57/
J
MeV

1:2�10�8

6:2�10�9

Faraday constant F D NAe 96485:33289.59/ C=mol 6:2�10�9

Molar Planck constant NAh 3:9903127110.18/� 10�10 J s=mol 4:5�10�10

(Product) NAhc 0:119626565582.54/ Jm=mol 4:5�10�10

Molar gas constant R 8:3144598.48/ J=.Kmol/ 5:7�10�7

Boltzmann constant k D R=NA 1:38064852.79/� 10�23

8:6173303.50/� 10�5
J=K
eV=K

5:7�10�7

5:7�10�7

(Ratio) k=h 2:0836612.12/� 1010 Hz=K 5:7�10�7

(Ratio) k=hc 69:503457.40/ 1=.mK/ 5:7�10�7

Molar volume of ideal gas
at STP

Vm D RT=p
at T D 273:15K
and p D 100 kPa

22:710947.13/� 10�3 m3=mol 5:7�10�7

Loschmidt constant n0 D NA=Vm 2:6516467.15/� 1025 1=m3 5:7�10�7

Stefan–Boltzmann constant � D . 2=60/Œk4=.„3c2/� 5:670367.13/� 10�8 W=.m2 K4/ 2:3�10�6

Wien displacement law constant b D �maxT D c2=4:965114231 2:8977729.17/� 10�3 mK 5:7�10�7



The Fundamental Constants 1.2 The CODATA Recommended Values 7
Part

A
|1.2

1.2.3 Constants from Atomic Physics
and Particle Physics

Table 1.5 Constants from atomic physics

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Rydberg constant R
1

D ˛2mec=2h 10973731:568508.65/ 1=m 5:9�10�12

(Product) R
1

c 3:289841960355.19/� 1015 Hz 5:9�10�12

(Product) R
1

hc 2:179872325.27/� 10�18

13:605693009.84/
J
eV

1:2�10�8

6:1�10�9

Bohr radius a0 D ˛=.4 R
1

/

D 4 "0„2=.mee2/
0:52917721067.12/� 10�10 m 2:3�10�10

Hartree energy EH D e2=.4 "0a0/
D 2R

1

hc D ˛2mec2
4:359744650.54/� 10�18

27:21138602.17/
J
eV

1:2�10�8

6:1�10�9

Quantum of circulation h=.2me/ 3:6369475486.17/� 10�4 m2=s 4:5�10�10

(Product) h=me 7:2738950972.33/� 10�4 m2=s 4:5�10�10

Table 1.6 Properties of the electron

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Electron mass me 9:10938356.11/� 10�31

5:48579909070.16/� 10�4
kg
u

1:2�10�8

2:9�10�11

Energy equivalent of electron mass mec2 8:18710565.10/� 10�14

0:5109989461.31/
J
MeV

1:2�10�8

6:2�10�9

Electron–proton mass ratio me=mp 5:44617021352.52/� 10�4 9:5�10�11

Electron–neutron mass ratio me=mn 5:4386734428.27/� 10�4 4:9�10�10

Electron–muon mass ratio me=m� 4:83633170.11/� 10�3 2:2�10�8

Electron molar mass M.e/D NAme 5:48579909070.16/� 10�7 kg=mol 2:9�10�11

Charge-to-mass ratio �e=me �1:758820024.11/� 1011 C=kg 6:2�10�9

Compton wavelength �C D h=.mec/ 2:4263102367.11/� 10�12 m 4:5�10�10

(Ratio) �C=.2 /D ˛a0 D ˛2=.4 R
1

/ 386:15926764.18/� 10�15 m 4:5�10�10

Classical electron radius re D ˛2a0 2:8179403227.19/� 10�15 m 6:8�10�10

Thomson cross section �e D .8 =3/r2e 0:66524587158.91/� 10�28 m2 1:4�10�9

Magnetic moment �e �928:4764620.57/� 10�26 J=T 6:2�10�9

Ratio of magnetic moment
to Bohr magneton

�e=�B �1:00115965218091.26/ 2:6�10�13

Ratio of magnetic moment
to nuclear magneton

�e=�N �1838:28197234.17/ 9:5�10�11

Ratio of magnetic moment
to proton magnetic moment

�e=�p �658:2106866.20/ 3:0�10�9

Ratio of magnetic moment
to neutron magnetic moment

�e=�n 960:92050.23/ 2:4�10�7

Electron magnetic moment anomaly ae D j�ej=.�B � 1/ 1:15965218091.26/� 10�3 2:3�10�10

g-factor ge D �2.1C ae/ �2:00231930436182.52/ 2:6�10�13

Gyromagnetic ratio �e D 2j�ej=„ 1:760859644.11/� 1011 1=.s T/ 6:2�10�9

(Ratio) �e=.2 / 28024:95164.17/ MHz=T 6:2�10�9
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Table 1.7 Properties of the proton

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Proton mass mp 1:672621898.21/� 10�27

1:007276466879.91/
kg
u

1:2�10�8

9:0�10�11

Energy equivalent of proton mass mpc2 1:503277593.18/� 10�10

938:2720813.58/
J
MeV

1:2�10�8

6:2�10�9

Proton–electron mass ratio mp=me 1836:15267389.17/ 9:5�10�11

Proton–neutron mass ratio mp=mn 0:99862347844.51/ 5:1�10�10

Proton molar mass M.p/D NAmp 1:007276466879.91/� 10�3 kg=mol 9:0�10�11

Charge-to-mass ratio e=mp 9:578833226.59/� 107 C=kg 6:2�10�9

Compton wavelength �C,p D h=.mpc/ 1:32140985396.61/� 10�15 m 4:6�10�10

(Ratio) .1=.2 //�C,p 0:210308910109.97/� 10�15 m 4:6�10�10

rms charge radius Rp 0:8751.61/� 10�15 m 7:0�10�3

Magnetic moment �p 1:4106067873.97/� 10�26 J=T 6:9�10�9

Ratio of magnetic moment
to Bohr magneton

�p=�B 1:5210322053.46/� 10�3 3:0�10�9

Ratio of magnetic moment
to nuclear magneton

�p=�N 2:7928473508.85/ 3:0�10�9

Ratio of magnetic moment
to neutron magnetic moment

�p=�n �1:45989805.34/ 2:4�10�7

g-factor gp D 2�p=�N 5:585694702.17/ 3:0�10�9

Gyromagnetic ratio �p D 2�p=„ 2:67522205.23/� 108 1=.s T/ 6:9�10�9

(Ratio) .1=.2 //�p 42:57747892.29/ MHz=T 6:9�10�9

Table 1.8 Properties of the neutron

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Neutron mass mn 1:674927471.21/� 10�27

1:00866491588.49/
kg
u

1:2�10�8

4:9�10�10

Energy equivalent mnc2 939:5654133.58/ MeV 6:2�10�9

Neutron–electron mass ratio mn=me 1838:68366158.90/ 4:9�10�10

Neutron–proton mass ratio mn=mp 1:00137841898.51/ 5:1�10�10

Molar mass M.n/D NAmn 1:00866491588.49/� 10�3 kg=mol 5:5�10�10

Compton wavelength �C,n D h=.mnc/ 1:31959090481.88/� 10�15 m 6:7�10�10

(Ratio) .1=.2 //�C,n 0:21001941536.14/� 10�15 m 6:7�10�10

Magnetic moment �n �0:96623650.23/� 10�26 J=T 2:4�10�7

Ratio of magnetic moment
to Bohr magneton

�n=�B �1:04187563.25/� 10�3 2:4�10�7

Ratio of magnetic moment
to nuclear magneton

�n=�N �1:91304273.45/ 2:4�10�7

Ratio of magnetic moment
to electron magnetic moment

�n=�e 1:04066882.25/� 10�3 2:4�10�7

Ratio of magnetic moment
to proton magnetic moment

�n=�p �0:68497934.16/ 2:4�10�7

g-factor gn D 2�n=�N �3:82608545.90/ 2:4�10�7

Gyromagnetic ratio �n D 2j�nj=„ 1:83247172.43/� 108 1=.s T/ 2:4�10�7

(Ratio) .1=.2 //�n 29:1646933.69/ MHz=T 2:4�10�7
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Table 1.9 Properties of the alpha particle

Quantity Symbol and relation Numerical value Units Relative
standard
uncertainty

Alpha particle mass a m˛ 6:644657230.82/� 10�27

4:001506179127.63/
kg
u

1:2�10�8

1:6�10�11

Energy equivalent
of alpha particle mass

m˛c2 5:971920097.73/� 10�10

3727:379378.23/
J
MeV

1:2�10�8

6:2�10�9

Ratio of alpha particle mass
to electron mass

m˛=me 7294:29954136.24/ 3:3�10�11

Ratio of alpha particle mass
to proton mass

m˛=mp 3:97259968907.36/ 9:2�10�11

Alpha particle molar mass M.˛/D NAm˛ 4:001506179127.63/� 10�3 kg=mol 1:6�10�11

a The mass of the alpha particle in units of the atomic mass unit u is given by m˛ D Ar.˛/ u; in words, the alpha particle mass is
given by the relative atomic mass Ar.˛/ of the alpha particle, multiplied by the atomic mass unit u
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2. The International System of Units (SI), Physical
Quantities, and Their Dimensions

Werner Martienssen†

In this chapter, we introduce the International Sys-
tem of Units (SI) on the basis of the SI brochure Le
Système International d’unités (SI) [2.1], supple-
mented by [2.2]. We give a short review of how the
SI was worked out and who is responsible for the
further development of the system. Following the
above-mentioned publications, we explain the
concepts of base physical quantities and derived
physical quantities on which the SI is founded,
and present a detailed description of the SI base
units and of a large selection of SI derived units.
The base units comprise the meter, the kilogram,
the second, the ampere, the kelvin, the mole,
and the candela. For derived units, we describe
how they are defined by equations in terms of the
base physical quantities as products or ratios of
the units for the base quantities. We also discuss
a number of non-SI units which still are in use,
especially in some specialized fields. A table (Ta-
ble 2.17) presenting the values of various energy
equivalents closes the chapter.
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2.1 The International System of Units (SI)

All data in this handbook are given in the International
System of Units (Système International d’Unités), ab-
breviated internationally to SI, which is the modern
metric system of measurement and is acknowledged
worldwide. The system of SI units was introduced by
the General Conference ofWeights andMeasures (Con-
férence Générale des Poids et Measures), abbreviated
internationally to CGPM, in 1960. The system not only
is used in science, but also is dominant in technology,
industrial production, and international commerce and
trade.

Who takes care of this system of SI units?
The Bureau International des Poids et Mesures

(BIPM), which has its headquarters in Sèvres near
Paris, has taken on a commitment to ensure worldwide
unification of physical measurements. Its function is
thus to:

� Establish fundamental standards and scales for the
measurement of the principal physical quantities
and maintain the international prototypes� Carry out comparison of national and international
standards� Ensure the coordination of the corresponding mea-
suring techniques� Carry out and coordinate measurements of the fun-
damental physical constants relevant to those activ-
ities.

The BIPM operates under the exclusive supervi-
sion of the Comité International des Poids et Mesures
(CIPM), which itself comes under the authority of the
Conférence Générale des Poids et Mesures and reports
to it on the work accomplished by the BIPM. The BIPM
itself was set up by the convention du Mètre signed in

© Springer Nature Switzerland AG 2018
W. Martienssen, H. Warlimont (Eds.), Springer Handbook of Materials Data, https://doi.org/10.1007/978-3-319-69743-7_2
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Paris in 1875 by 17 states during the final session of the
Conference on the Meter. The convention was amended
in 1921.

Delegates from all member states of the Conven-
tion du Mètre attend the Conférence Générale, which,
at present, meets every four years. The function of these
meetings is to:

� Discuss and initiate the arrangements required to
ensure the propagation and improvement of the In-
ternational System of Units.� Confirm the results of new fundamental metrolog-
ical determinations and confirm various scientific
resolutions with international scope.� Take all major decisions concerning the finance, or-
ganization, and development of the BIPM.

The CIPM has 18 members, each from a differ-
ent state; at present, it meets every year. The officers
of this committee present an annual report on the ad-
ministrative and financial position of the BIPM to the

governments of the member states of the Convention
du Mètre. The principal task of the CIPM is to ensure
worldwide uniformity in units of measurement. It does
this by direct action or by submitting proposals to the
CGPM.

The BIPM publishes monographs on special met-
rological subjects and the brochure Le Système inter-
national d’unités (SI) [2.1, 2], which is periodically
updated and in which all decisions and recommenda-
tions concerning units are collected together.

The scientific work of the BIPM is published in the
open scientific literature, and an annual list of publica-
tions appears in the Procès-Verbaux of the CIPM.

Since 1965, Metrologica, an international jour-
nal published under the auspices of the CIPM, has
printed articles dealing with scientific metrology, im-
provements in methods of measurements, and work on
standards and units, as well as reports concerning the
activities, decisions, and recommendations of the vari-
ous bodies created under the Convention du Mètre.

2.2 Physical Quantities

Physical quantities are tools which allow us to specify
and quantify the properties of physical objects and to
model the events, phenomena, and patterns of behav-
ior of objects in nature and in technology. The system
of physical quantities used with the SI units is dealt
by Technical Committee 12 of the International orga-
nization for standardization (ISO/TC 12). Since 1955,
ISO/TC 12 has published a series of international stan-
dards on quantities and their units, in which the use of
SI units is strongly recommended.

2.2.1 How Are Physical Quantities Defined?

It turns out that it is possible to divide the system of all
known physical quantities into two groups:

� A small number of base quantities� Amuch larger number of other quantities, which are
called derived quantities.x

The derived quantities are introduced into physics
unambiguously by a defining equation in terms of the
base quantities; the relationships between the derived
quantities and the base quantities are expressed in a se-
ries of equations, which contain a good deal of our
knowledge of physics but are used in this system as
the defining equations for new physical quantities. One
might say that, in this system, physics is described in
the rather low-dimensional space of a small number of
base quantities.

Base quantities, on the other hand, cannot be in-
troduced by a defining equation; they cannot be traced
back to other quantities; this is what we mean by calling
them base. How can base quantities then be introduced
unambiguously into physics at all?

Base physical quantities are introduced into physics
in three steps:

� We borrow the qualitative meaning of the word for
a base quantity from the meaning of the correspond-
ing word in everyday language.� We specify this meaning by indicating an appropri-
ate method for measuring the quantity. For example,
length is measured by a measuring rule, and time is
measured by a clock.� We fix a unit for this quantity, which allows us to
communicate the result of a measurement. Length,
for example, is measured in meters; time is mea-
sured in seconds.

On the basis of these three steps, it is expected that
everyone will understand what is meant when the name
of a base quantity is mentioned.

In fact, the number of base quantities chosen and
the selection of the quantities which are considered as
base quantities are a matter of expediency; in different
fields and applications of physics, it might well be ex-
pedient to use different numbers of base quantities and
different selections of base quantities. It should be kept
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