

ith webs

WILEY

Audio Source Separation and Speech Enl	nancement	

Audio Source Separation and Speech Enhancement

Edited by

Emmanuel Vincent

Inria France

Tuomas Virtanen

Tampere University of Technology Finland

Sharon Gannot

Bar-Ilan University Israel

This edition first published 2018 © 2018 John Wiley & Sons Ltd

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.

The right of Emmanuel Vincent, Tuomas Virtanen & Sharon Gannot to be identified as authors of the editorial material in this work has been asserted in accordance with law.

Registered Offices

John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK

Editorial Office

The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SO, UK

For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wilev.com.

Wiley also publishes its books in a variety of electronic formats and by print-on-demand. Some content that appears in standard print versions of this book may not be available in other formats.

Limit of Liability/Disclaimer of Warranty

While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

Library of Congress Cataloging-in-Publication Data

Names: Vincent, Emmanuel (Research scientist), editor. | Virtanen, Tuomas, editor. | Gannot, Sharon, editor.

Title: Audio source separation and speech enhancement / edited by Emmanuel Vincent, Tuomas Virtanen, Sharon Gannot.

Description: Hoboken, NJ: John Wiley & Sons, 2018. | Includes

bibliographical references and index.

Identifiers: LCCN 2018013163 (print) | LCCN 2018021195 (ebook) | ISBN 9781119279884 (pdf) | ISBN 9781119279914 (epub) | ISBN 9781119279891 (cloth)

Subjects: LCSH: Speech processing systems. | Automatic speech recognition. Classification: LCC TK7882.S65 (ebook) | LCC TK7882.S65 .A945 2018 (print) | DDC 006.4/54-dc23

LC record available at https://lccn.loc.gov/2018013163

Cover Design: Wiley Cover Images: © 45RPM/iStockphoto; © franckreporter/iStockphoto

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

Contents

List of Authors xvii

Preface xxi

	Acknowledgment xxiii
	Notations xxv
	Acronyms xxix
	About the Companion Website xxxi
	Part I Prerequisites 1
1	Introduction 3
	Emmanuel Vincent, Sharon Gannot, and Tuomas Virtanen
1.1	Why are Source Separation and Speech Enhancement Needed? 3
1.2	What are the Goals of Source Separation and Speech Enhancement? 4
1.2.1	Single-Channel vs. Multichannel 4
1.2.2	Point vs. Diffuse Sources 4
1.2.3	Mixing Process 5
1.2.4	Separation vs. Enhancement 6
1.2.5	Typology of Scenarios 6
1.2.6	Evaluation 8
1.3	How can Source Separation and Speech Enhancement be Addressed? 9
1.3.1	General Processing Scheme 9
1.3.2	Converging Historical Trends 10
1.3.3	Typology of Approaches 10
1.4	Outline 11
	Bibliography 12
2	Time-Frequency Processing: Spectral Properties 15
	Tuomas Virtanen, Emmanuel Vincent, and Sharon Gannot
2.1	Time-Frequency Analysis and Synthesis 15
2.1.1	STFT Analysis 16
2.1.2	STFT Synthesis 17
2.1.3	Time and Frequency Resolution 19
2.1.4	Alternative Time-Frequency Representations 20

vi	Contents		
	2.1.4.1 2.1.4.2	Nonlinear Frequency Scales 20 Computation of Power Spectrum via the STFT 21	
	2.1.4.3	Computation via a Filterbank 22	
	2.2	Source Properties in the Time-Frequency Domain 23	
	2.2.1	Sparsity 23	
	2.2.2	Structure 23	
	2.3	Filtering in the Time-Frequency Domain 25	
	2.3.1	Time-Domain Convolution as Interframe and Interband Convolution	26
	2.3.2	Practical Approximations 27	
	2.4	Summary 28	
		Bibliography 28	
	3	Acoustics: Spatial Properties 31	
		Emmanuel Vincent, Sharon Gannot, and Tuomas Virtanen	
	3.1	Formalization of the Mixing Process 31	
	3.1.1	General Mixing Model 31	
	3.1.2	Microphone Recordings vs. Artificial Mixtures 32	
	3.2	Microphone Recordings 32	
	3.2.1	Acoustic Impulse Responses 32	
	3.2.2	Main Properties of Acoustic Impulse Responses 33	
	3.3	Artificial Mixtures 36	
	3.4	Impulse Response Models 37	
	3.4.1	Narrowband Approximation 38	
		Definition 38 Stanzing Victory Near Field vs. For Field 38	
	3.4.1.2	Steering Vector – Near Field vs. Far Field 38 Relative Transfer Function and Interchannel Cues 39	
	3.4.2	Definition 39	
		Relative Steering Vector 40	
	3.4.2.2	Full-Rank Covariance Model 42	
		Definition 42	
		Parametric Covariance Models 42	
	3.5	Summary 43	
	0.0	Bibliography 43	
	4	Multichannel Source Activity Detection, Localization,	
		and Tracking 47	
		Pasi Pertilä, Alessio Brutti, Piergiorgio Svaizer, and Maurizio Omologo	
	4.1	Basic Notions in Multichannel Spatial Audio 47	
	4.1.1	TDOA Estimation 48	
	4.1.2	GCC-PHAT 49	
	4.1.3	Beamforming and Acoustic Maps 49	
	4.2	Multi-Microphone Source Activity Detection 52	
	4.2.1	Single-Channel Methods and Acoustic Features 52	
	4.2.2	Multichannel Methods 53	
	4.2.3	Deep Learning based Approaches 54 Source Localization 54	
	4.3 4.3.1	Single-Frame Localization of a Static Source 55	

4.3.2	Effect of Microphone Array Geometry 56
4.3.3	Localization of Moving and Intermittent Sources 56
4.3.4	Towards Localization of Multiple Active Sources 59
4.4	Summary 60
	Bibliography 60
	Part II Single-Channel Separation and Enhancement 65
5	Spectral Masking and Filtering 67
	Timo Gerkmann and Emmanuel Vincent
5.1	Time-Frequency Masking 67
5.1.1	Definition and Types of Masks 67
5.1.2	Oracle Mask 68
5.2	Mask Estimation Given the Signal Statistics 70
5.2.1	Spectral Subtraction 70
5.2.2	Wiener Filtering 71
5.2.3	Bayesian Estimation of Gaussian Spectral Coefficients 72
5.2.4	Estimation of Magnitude Spectral Coefficients 76
5.2.5	Heavy-Tailed Priors 78
5.2.6	Masks Based on Source Presence Statistics 80
5.3	Perceptual Improvements 81
5.4	Summary 82 Bibliography 83
	bibliography 85
6	Single-Channel Speech Presence Probability Estimation and Noise
	Tracking 87
	Rainer Martin and Israel Cohen
6.1	Speech Presence Probability and its Estimation 87
6.1.1	Speech Presence Probability 88
6.1.2	Estimation of the a Posteriori SNR 90
6.1.3	Estimation of the a Priori SNR 90
6.1.4	Estimation of the Prior Speech Presence Probability 91
6.1.5	SPP Estimation with a Fixed SNR Prior 91
6.2	Noise Power Spectrum Tracking 93
6.2.1	Basic Approaches 93
6.2.2	The Minimum Statistics Approach 95
6.2.3	Minima Controlled Recursive Averaging 97
6.2.4	Harmonic Tunneling and Subspace Methods 99
6.2.5	MMSE Noise Power Estimation 100
6.3	Evaluation Measures 102
6.4	Summary 104
	Bibliography 104
7	Single-Channel Classification and Clustering Approaches 107
•	Felix Weninger, Jun Du, Erik Marchi, and Tian Gao
7.1	Source Separation by Computational Auditory Scene Analysis 10

viii	Contents

711	A., J. L.,, C.,, A.,, 100
7.1.1	Auditory Scene Analysis 108
7.1.2	CASA System for Source Separation 108
7.1.2.1	Segmentation 109
7.1.2.2	Grouping 110
7.1.3	Application: Spectral Clustering for Source Separation 110
7.2	Source Separation by Factorial HMMs 111
7.2.1	GMM-HMM and Factorial-Max Architecture 111
7.2.2	MAP Decoding for HMM State Sequence 112
	· ·
7.2.3	Mask Estimation given State Sequences 113
7.3	Separation Based Training 113
7.3.1	Prerequisites for Separation-Based Training 113
7.3.2	Deep Neural Networks 114
7.3.2.1	Recurrent Neural Networks 118
7.3.2.2	Bidirectional RNNs 120
7.3.2.3	Other Architectures 120
7.3.3	Learning Source Separation as Classification 120
7.3.4	Learning Source Separation as Regression 121
7.3.5	Generalization Capabilities 123
7.3.6	Benchmark Performances 123
7.4	Summary 125
	Bibliography 125
8	Nonnegative Matrix Factorization 131
-	
	-
Q 1	Roland Badeau and Tuomas Virtanen
8.1	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131
8.1.1	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132
8.1.1 8.1.2	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134
8.1.1 8.1.2 8.1.3	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134
8.1.1 8.1.2 8.1.3 8.1.4	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135
8.1.1 8.1.2 8.1.3	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134
8.1.1 8.1.2 8.1.3 8.1.4	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135
8.1.1 8.1.2 8.1.3 8.1.4 8.2	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2,1	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α -Stable NMF Models 141
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α -Stable NMF Models 141 Choosing a Particular NMF Model 142
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6 8.2.3	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α -Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6 8.2.3 8.2.3.1	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α -Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.3.6 8.2.3.1 8.2.3.2	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α-Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143 The EM Algorithm and its Variants 144
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6 8.2.3 8.2.3.1	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α-Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143 The EM Algorithm and its Variants 144 Application of the EM Algorithm to PLCA 144
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.3.6 8.2.3.1 8.2.3.2	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α-Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143 The EM Algorithm and its Variants 144
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6 8.2.3 8.2.3.1 8.2.3.2 8.2.3.3	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α-Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143 The EM Algorithm and its Variants 144 Application of the EM Algorithm to PLCA 144
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6 8.2.3 8.2.3.1 8.2.3.2 8.2.3.3	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 α-Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143 The EM Algorithm and its Variants 144 Application of the EM Algorithm to PLCA 144 Application of the Space-Alternating Generalized EM Algorithm to the Gaussian Composite Model 145
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6 8.2.3 8.2.3.1 8.2.3.2 8.2.3.3 8.2.3.4	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 a-Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143 The EM Algorithm and its Variants 144 Application of the EM Algorithm to PLCA 144 Application of the Space-Alternating Generalized EM Algorithm to the Gaussian Composite Model 145 NMF Dictionary Learning Methods 145
8.1.1 8.1.2 8.1.3 8.1.4 8.2 8.2.1 8.2.2 8.2.2.1 8.2.2.2 8.2.2.3 8.2.2.4 8.2.2.5 8.2.2.6 8.2.3 8.2.3.1 8.2.3.2 8.2.3.3 8.2.3.4	Roland Badeau and Tuomas Virtanen NMF and Source Separation 131 NMF Masking 132 Learning-Free Separation 134 Pretrained Basis Vectors 134 Combining Pretrained Basis Vectors and Learning-Free Separation 135 NMF Theory and Algorithms 137 Criteria for Computing the NMF Model Parameters 138 Probabilistic Frameworks for NMF 138 Gaussian Noise Model 139 Probabilistic Latent Component Analysis 139 Poisson NMF Model 140 Gaussian Composite Model 140 a-Stable NMF Models 141 Choosing a Particular NMF Model 142 Algorithms for NMF 142 Multiplicative Update Rules 143 The EM Algorithm and its Variants 144 Application of the EM Algorithm to PLCA 144 Application of the Space-Alternating Generalized EM Algorithm to the Gaussian Composite Model 145 NMF Dictionary Learning Methods 145

8.3.3 8.3.4 8.3.5 8.3.6 8.4 8.4.1 8.4.1.1 8.4.1.2	Clustering-Based Dictionary 147 Discriminative Dictionaries 147 Dictionary Adaptation 148 Regularization in Learning Source Models from a Mixture 148 Advanced NMF Models 148 Regularizations 149 Sparsity 149 Group Sparsity 150
8.4.1.3	Harmonicity and Spectral Smoothness 150
8.4.1.4	Inharmonicity 151
8.4.2	Nonstationarity 152
8.4.2.1	Time-Varying Fundamental Frequencies 152
8.4.2.2	Time-Varying Spectral Envelopes 152
8.4.2.3	Both Types of Variations 153
8.4.3 8.5	Coupled Factorizations 153 Summary 156
0.5	Bibliography 156
	Dibliography 150
9	Temporal Extensions of Nonnegative Matrix Factorization 161
9	Cédric Févotte, Paris Smaragdis, Nasser Mohammadiha, and Gautham J. Mysore
9.1	Convolutive NMF 161
9.1.1	1D Convolutive NMF 162
9.1.2	Convolutive NMF as a Meta-Model 164
9.1.3	N-D Model 165
9.1.4	Illustrative Examples 166
9.1.4.1	Time-Frequency Component Extraction 167
9.1.4.2	Time-Frequency Dictionaries 167
9.1.4.3	Shift-Invariant Transforms 168
9.2	Overview of Dynamical Models 169
9.3	Smooth NMF 170
9.3.1	Generalities 170
9.3.2	A Special Case 171
9.3.3	Illustrative Example 173
9.4	Nonnegative State-Space Models 174
9.4.1	Generalities 174
9.4.2	A Special Case 175
9.4.2.1	Statistical Model 175
9.4.2.2	Estimation Algorithm 176
9.5	Discrete Dynamical Models 178
9.5.1	Generalities 178
9.5.2	A Special Case 179
9.6	The Use of Dynamic Models in Source Separation 182
9.7	Which Model to Use? 183
9.8	Summary 184
9.9	Standard Distributions 184 Bibliography 185

Part III $$ Multichannel Separation and Enhancement $$ $$ $$ $$ $$ $$	189
---	-----

10	Spatial Filtering 191 Shmulik Markovich-Golan, Walter Kellermann, and Sharon Gannot
10.1	Fundamentals of Array Processing 192
10.1.1	Beampattern 193
10.1.2	Directivity 195
10.1.3	Sensitivity 196
10.2	Array Topologies 197
10.3	Data-Independent Beamforming 199
10.4	Data-Dependent Spatial Filters: Design Criteria 202
10.4.1	The Relative Transfer Function 202
10.4.2	General Criterion for the Narrowband Model 203
10.4.3	MWF and SDW-MWF 204
10.4.4	MVDR, Maximum SNR, and LCMV 205
10.4.5	Criteria for Full-Rank Covariance Models 207
10.4.6	Binary Masking and Beamforming 207
10.4.7	Blind Source Separation and Beamforming 208
10.5	Generalized Sidelobe Canceler Implementation 209
10.6	Postfilters 210
10.7	Summary 211
	Bibliography 212
11	Multichannel Parameter Estimation 219
	Shmulik Markovich-Golan, Walter Kellermann, and Sharon Gannot
11.1	Multichannel Speech Presence Probability Estimators 219
11.1.1	Multichannel Gaussian Model-Based SPP 221
11.1.2	Coherence-Based Prior SPP 224
11.1.3	Multichannel SPP Within GSC Structures 225
11.1.4	Multiple Speakers Position-Based SPP 226
11.2	Covariance Matrix Estimators Exploiting SPP 227
11.3	Methods for Weakly Guided and Strongly Guided RTF Estimation 228
11.3.1	Single-Speaker Case 228
11.3.2	The Multiple-Speaker Case 230
11.4	Summary 231
	Bibliography 231
12	Multichannel Clustering and Classification Approaches 235
	Michael I. Mandel, Shoko Araki, and Tomohiro Nakatani
12.1	Two-Channel Clustering 236
12.1.1	Wideband Clustering with Simple IPD to ITD Mapping 237
12.1.2	Wideband Clustering with Latent ITD Variable 238
12.1.3	Incorporating Pitch into Localization-Based Clustering 243
12.2	Multichannel Clustering 244
12.2.1	Generalization of Wideband Clustering to more than Two Channels 244
12.2.2	Narrowband Clustering Followed by Permutation Alignment 246

12221	Feature Extraction 248
	Narrowband Clustering 248
	Permutation Alignment 249
	Time-Frequency Masking 250
12.2.3	Source Number Estimation 250
12.3	Multichannel Classification 251
12.3.1	Two-Channel Classification 252
12.3.2	Generalization to More than Two Channels 253
12.3.3	Generalization in Classification Systems 254
12.4	Spatial Filtering Based on Masks 255
12.4.1	Mask-Based Beamforming using Covariance Subtraction 256
12.4.2	Mask-Based Multichannel Wiener Filtering 256
12.4.3	Mask-Based Maximum SNR Beamforming 257
12.4.4	Classification-Based Multichannel Wiener Filtering 257
12.5	Summary 257
	Bibliography 258
	8F/
13	Independent Component and Vector Analysis 263
	Hiroshi Sawada and Zbyněk Koldovský
13.1	Convolutive Mixtures and their Time-Frequency Representations 264
13.2	Frequency-Domain Independent Component Analysis 265
13.2.1	ICA Principle 266
13.2.2	Nongaussianity-Based Separation 266
13.2.3	Modeling the Signal Probability Distributions 268
13.2.4	Alternative Models 270
13.2.4.1	Nonstationarity 270
	Nonwhiteness 271
13.2.4.3	Hybrid Models 271
	ICA Algorithms 272
	Natural Gradient 272
13.2.5.2	FastICA 273
13.2.5.3	JADE 274
13.2.6	A Comparative Experiment 274
13.2.7	Required Post-Processing 275
	Scaling Ambiguity 276
	Permutation Problem 276
13.2.9.1	Activity Sequence Clustering 277
13.2.9.2	TDOA Clustering 278
13.3	Independent Vector Analysis 279
13.3.1	Formulation 279
13.3.2	Algorithms 279
13.3.2.1	Natural Gradient 279
13.3.2.2	FastIVA 280
13.4	Example 280
13.5	Summary 284
	Bibliography 284

44 Consider Market David Market have all Consensation 20	0
14 Gaussian Model Based Multichannel Separation 28	9
Alexey Ozerov and Hirokazu Kameoka	
14.1 Gaussian Modeling 289	0
14.1.1 Joint Spectral-Spatial Local Gaussian Modeling 28	19
14.1.2 Source Separation: Main Steps 292	
14.1.2.1 Mixing Models 292	
14.1.2.2 Source Spectral Models 293	
14.1.2.3 Spatial Models 294	
14.1.2.4 Parameter Estimation Schemes 294	
14.1.2.5 Source Signal Estimation Schemes 294	
14.2 Library of Spectral and Spatial Models 295	
14.2.1 Spectral Models 296	
14.2.1.1 GMM, Scaled GMM, HMM 296	
14.2.1.2 NMF, NTF 297	
14.2.1.3 AR and Variants 298	
14.2.1.4 Composite Models and DNN 299	
14.2.2 Spatial Models 300	
14.3 Parameter Estimation Criteria and Algorithms 300	0
14.3.1 Parameter Estimation Criteria 300	
14.3.2 Parameter Estimation Algorithms 302	
14.3.2.1 EM Algorithm 302	
14.3.2.2 MM Algorithm 303	
14.3.2.3 VB Algorithm 305	
14.3.3 Categorization of Existing Methods 305	
14.4 Detailed Presentation of Some Methods 305	
14.4.1 IS Multichannel NTF EM Algorithm 306	
14.4.2 IS Multichannel NMF MM Algorithm 308	
	311
14.5 Summary <i>312</i>	
Acknowledgment 312	
Bibliography 312	
15 Dereverberation 317	
Emanuël A.P. Habets and Patrick A. Naylor	
15.1 Introduction to Dereverberation 317	
15.2 Reverberation Cancellation Approaches 319	
15.2.1 Signal Models <i>319</i>	
15.2.2 Identification and Equalization Approaches 321	
	321
15.2.2.2 Noise Subspace Based Blind System Identification	322
15.2.2.3 Multichannel Equalization for Dereverberation 32	
15.2.3 Identification and Estimation Approaches 326	-
15.2.4 Multichannel Linear Prediction Approaches 326	
15.3 Reverberation Suppression Approaches 329	
15.3.1 Signal Models 329	
15.3.2 Early Signal Component Estimators 330	

15.3.3 15.3.4 15.4 15.4.1 15.4.2 15.4.3 15.5 15.6	Single-Channel Spectral Variance Estimators 333 Multichannel Spectral Variance Estimators 333 Direct Estimation 335 Synthesizing a Clean Residual Signal 335 Linear Prediction Residual Processing 335 Deep Neural Networks 336 Evaluation of Dereverberation 336 Summary 337 Bibliography 337
	Part IV Application Scenarios and Perspectives 345
16	Applying Source Separation to Music 347
161	Bryan Pardo, Antoine Liutkus, Zhiyao Duan, and Gaël Richard
16.1	Challenges and Opportunities 348
16.1.1 16.1.2	Challenges 348 Opportunities 348
16.1.2	Nonnegative Matrix Factorization in the Case of Music 349
16.2.1	Shift-Invariant NMF 349
16.2.2	Constrained and Structured NMF 350
	Exploiting Music Instrument Models 351
	Exploiting Music Signal Models 353
16.3	Taking Advantage of the Harmonic Structure of Music 354
16.3.1	Pitch-Based Harmonic Source Separation 354
16.3.2	Modeling Timbre 355
16.3.3	Training and Adapting Timbre Models 356
16.3.4	Score-Informed Source Separation 357
16.4	Nonparametric Local Models: Taking Advantage of Redundancies
1641	in Music 358
16.4.1	HPSS: Harmonic-Percussive Source Separation 359
16.4.2 16.4.3	REPET: Separating Repeating Background 360 REPET-Sim: Exploiting Self-Similarity 361
16.4.4	KAM: Nonparametric Modeling for Spectrograms 361
16.5	Taking Advantage of Multiple Instances 363
16.5.1	Common Signal Separation 363
16.5.2	Multireference Bleeding Separation 365
16.5.3	A General Framework: Reference-Based Separation 366
16.6	Interactive Source Separation 367
16.7	Crowd-Based Evaluation 367
16.8	Some Examples of Applications 368
16.8.1	The Good Vibrations Problem 368
16.8.2	Reducing Drum Leakage: Drumatom 369
16.8.3	Impossible Duets Made Real 370
16.9	Summary 370
	Bibliography 370

17	Application of Course Consention to Bobust Charles Applyeis and
17	Application of Source Separation to Robust Speech Analysis and Recognition 377
	Shinji Watanabe, Tuomas Virtanen, and Dorothea Kolossa
17.1	Challenges and Opportunities 377
	Challenges 377
	Opportunities 378
17.1.2	Applications 380
	Automatic Speech Recognition 380
	Feature Extraction 381
	Acoustic Model 382
	GMM 383
	DNN 383
	Other Network Architectures 384
	Training Objectives 384
	Decoding 385
	Speaker and Language Recognition 385
	Paralinguistic Analysis 387
17.2.4	Audiovisual Analysis 389
	Robust Speech Analysis and Recognition 390
	Application of Single-Channel Source Separation 391
	Matrix Factorization 391
	Deep-Learning-Based Enhancement 392
	Application of Multichannel Source Separation 393
	Feature Extraction and Acoustic Models 393
	Robust Feature Extraction 394
	Feature Normalization 394
	Feature Transformation 394
	Acoustic Model 395
	Integration of Front-End and Back-End 397
	Uncertainty Modeling and Uncertainty-Based Decoding 397
	Observation Uncertainties in the GMM-HMM Framework 397
17.4.1.2	Observation Uncertainties in the DNN-HMM Framework 399
17.4.2	Joint Training Frameworks 401
17.5	Use of Multimodal Information with Source Separation 403
17.5.1	Localization-Based Multimodal Source Separation 403
	Voice Activity Detection Based Multimodal Source Separation 403
17.5.3	Joint Model-Based Multimodal Source Separation 403
17.6	Summary 404
	Bibliography 405
18	Binaural Speech Processing with Application to Hearing Devices 413
	Simon Doclo, Sharon Gannot, Daniel Marquardt, and Elior Hadad
18.1	Introduction to Binaural Processing 413
18.2	Binaural Hearing 415
18.3	Binaural Noise Reduction Paradigms 416
18.3.1	Paradigm 1: Binaural Spectral Postfiltering 417
18.3.2	Paradigm 2: Binaural Spatial Filtering 418

18.4	The Binaural Noise Reduction Problem 420
18.4.1	Acoustic Scenario and Signal Definitions 420
18.4.2	Performance Measures and Binaural Cues 422
18.4.3	Binaural MWF and Binaural MVDR Beamformer 423
18.5	Extensions for Diffuse Noise 425
18.5.1	Binaural MWF with Partial Noise Estimation 426
18.5.2	Binaural MWF with Interaural Coherence Preservation 427
18.5.3	Psychoacoustically Optimized Tradeoff Parameters 428
18.5.4	Experimental Results 429
18.6	Extensions for Interfering Sources 431
18.6.1	Binaural MWF with Interference RTF Constraint 431
18.6.2	Binaural MWF with Interference Reduction Constraint 432
18.6.3	Special Case: Binaural MWF-IR for $\delta = 0$ 433
18.6.4	Simulations with Measured Acoustic Transfer Functions 434
18.6.5	Simulations with Noisy Speech Signals 436
18.7	Summary 437
	Bibliography 437
10	Developed 442
19	Perspectives 443
19.1	Emmanuel Vincent, Tuomas Virtanen, and Sharon Gannot
	Advancing Deep Learning 443 DNN Design Choices 443
19.1.1 19.1.2	
19.1.2	End-to-End Approaches 445 Unsupervised Separation 445
19.1.5	Exploiting Phase Relationships 447
19.2.1	Phase Reconstruction and Joint Phase-Magnitude Estimation 447
19.2.1	Interframe and Interband Filtering 448
19.2.2	Phase Models 449
19.2.3	Advancing Multichannel Processing 450
19.3.1	Dealing with Moving Sources and Microphones 450
19.3.1	Manifold Learning 451
19.3.2	Addressing Multiple-Device Scenarios 453
19.4.1	Synchronization and Calibration 453
19.4.1	Distributed Algorithms 455
19.4.3	Multimodal Source Separation and Enhancement 455
19.4.5	Towards Widespread Commercial Use 455
19.5.1	Practical Deployment Constraints 455
19.5.1	Quality Assessment 456
19.5.2	New Application Areas 456
12.3.3	Acknowledgment 457
	Bibliography 457
	Divilographly 437

List of Authors

Shoko Araki

NTT Communication Science Laboratories Japan

Roland Badeau

Institut Mines-Télécom France

Alessio Brutti

Fondazione Bruno Kessler Italy

Israel Cohen

Technion Israel

Simon Doclo

Carl von Ossietzky-Universität Oldenburg Germany

Iun Du

University of Science and Technology of China China

Zhiyao Duan

University of Rochester NY USA

Cédric Févotte

CNRS France

Sharon Gannot

Bar-Ilan University Israel

Tian Gao

University of Science and Technology of China
China

Timo Gerkmann

Universität Hamburg Germany

Emanuël A.P. Habets

International Audio Laboratories Erlangen Germany

Elior Hadad

Bar-Ilan University Israel

Hirokazu Kameoka

The University of Tokyo Japan

Walter Kellermann

Friedrich-Alexander Universität Erlangen-Nürnberg Germany

Zbyněk Koldovský

Technical University of Liberec Czech Republic

Dorothea Kolossa

Ruhr-Universität Bochum Germany

Antoine Liutkus

Inria France

Michael I. Mandel

City University of New York NY **USA**

Erik Marchi

Technische Universität München Germany

Shmulik Markovich-Golan

Bar-Ilan University Israel

Daniel Marquardt

Carl von Ossietzky-Universität Oldenburg Germany

Rainer Martin

Ruhr-Universität Bochum Germany

Nasser Mohammadiha

Chalmers University of Technology Sweden

Gautham J. Mysore

Adobe Research CA

USA

Tomohiro Nakatani

NTT Communication Science Laboratories Japan

Patrick A. Naylor

Imperial College London UK

Maurizio Omologo

Fondazione Bruno Kessler Italy

Alexey Ozerov

Technicolor France

Bryan Pardo

Northwestern University IL USA

Pasi Pertilä

Tampere University of Technology Finland

Gaël Richard

Institut Mines-Télécom France

Hiroshi Sawada

NTT Communication Science Laboratories Japan

Paris Smaragdis

University of Illinois at Urbana-Champaign IL **USA**

Piergiorgio Svaizer

Fondazione Bruno Kessler Italy

Emmanuel Vincent

Inria France

Tuomas Virtanen

Tampere University of Technology Finland

Shinji Watanabe

Johns Hopkins University MD USA

Felix Weninger

Nuance Communications Germany

Preface

Source separation and speech enhancement are some of the most studied technologies in audio signal processing. Their goal is to extract one or more source signals of interest from an audio recording involving several sound sources. This problem arises in many everyday situations. For instance, spoken communication is often obscured by concurrent speakers or by background noise, outdoor recordings feature a variety of environmental sounds, and most music recordings involve a group of instruments. When facing such scenes, humans are able to perceive and listen to individual sources so as to communicate with other speakers, navigate in a crowded street or memorize the melody of a song. Source separation and speech enhancement technologies aim to empower machines with similar abilities.

These technologies are already present in our lives today. Beyond "clean" single-source signals recorded with close microphones, they allow the industry to extend the applicability of speech and audio processing systems to multi-source, reverberant, noisy signals recorded with distant microphones. Some of the most striking examples include hearing aids, speech enhancement for smartphones, and distant-microphone voice command systems. Current technologies are expected to keep improving and spread to many other scenarios in the next few years.

Traditionally, *speech enhancement* has referred to the problem of segregating speech and background noise, while *source separation* has referred to the segregation of multiple speech or audio sources. Most textbooks focus on one of these problems and on one of three historical approaches, namely sensor array processing, computational auditory scene analysis, or independent component analysis. These communities now routinely borrow ideas from each other and other approaches have emerged, most notably based on deep learning.

This textbook is the first to provide a comprehensive overview of these problems and approaches by presenting their shared foundations and their differences using common language and notations. Starting with prerequisites (Part I), it proceeds with single-channel separation and enhancement (Part II), multichannel separation and enhancement (Part III), and applications and perspectives (Part IV). Each chapter provides both introductory and advanced material.

We designed this textbook for people in academia and industry with basic knowledge of signal processing and machine learning. Thanks to its comprehensiveness, we hope it will help students select a promising research track, researchers leverage the acquired cross-domain knowledge to design improved techniques, and engineers and developers

xxii | Preface

choose the right technology for their application scenario. We also hope that it will be useful for practitioners from other fields (e.g., acoustics, multimedia, phonetics, musicology) willing to exploit audio source separation or speech enhancement as a pre-processing tool for their own needs.

May 2017

Emmanuel Vincent, Tuomas Virtanen, and Sharon Gannot

Acknowledgment

We would like to thank all the chapter authors, as well as the following people who helped with proofreading: Sebastian Braun, Yaakov Buchris, Emre Cakir, Aleksandr Diment, Dylan Fagot, Nico Gößling, Tomoki Hayashi, Jakub Janský, Ante Jukić, Václav Kautský, Martin Krawczyk-Becker, Simon Leglaive, Bochen Li, Min Ma, Paul Magron, Zhong Meng, Gaurav Naithani, Zhaoheng Ni, Aditya Arie Nugraha, Sanjeel Parekh, Robert Rehr, Lea Schönherr, Georgina Tryfou, Ziteng Wang, and Mehdi Zohourian

May 2017

Emmanuel Vincent, Tuomas Virtanen, and Sharon Gannot

Notations

Linear algebra

\boldsymbol{x}	scalar
X	vector
г э	4

 $\begin{array}{ll} [x_i]_i & \text{vector with entries } x_i \\ (\mathbf{x})_i & i\text{th entry of vector } \mathbf{x} \\ \mathbf{0}_I & I \times 1 \text{ vector of zeros} \\ \mathbf{1}_I & I \times 1 \text{ vector of ones} \end{array}$

X matrix

 $[x_{ij}]_{ij}$ matrix with entries x_{ij} $(\mathbf{X})_{ij}$ (i,j)th entry of matrix \mathbf{X} I

 ${\cal X}$ tensor/array (with three or more dimensions) or set

 $\{x_{ijk}\}_{ijk}$ tensor with entries x_{ijk}

 $Diag(\mathbf{x})$ diagonal matrix whose entries are those of vector \mathbf{x}

 $X \circ Y$ entrywise product of matrices X and Y

tr(X) trace of matrix X

 $\det(\mathbf{X}) \qquad \qquad \det \text{eterminant of matrix } \mathbf{X} \\
 \mathbf{x}^T \qquad \qquad \text{transpose of vector } \mathbf{x}$

 \mathbf{x}^H conjugate-transpose of vector \mathbf{x}

 x^* conjugate of scalar x $\Re(x)$ real part of scalar xj imaginary unit

Statistics

p(x)	probability distribution of continuous random variable x
$p(x \mid y)$	conditional probability distribution of x given y
P(x)	probability value of discrete random variable x
$P(x \mid y)$	conditional probability value of x given y
$\mathbb{E}\{x\}$	expectation of random variable x
$\mathbb{E}\{x \mid y\}$	conditional expectation of x
$\mathbb{H}\{x\}$	entropy of random variable x
$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$	real Gaussian distribution with mean μ and covariance Σ
$\mathcal{N}_{c}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$	complex Gaussian distribution with mean μ and covariance Σ
\hat{x}	estimated value of random variable x (e.g., first-order statistics)

```
xxvi Notations
```

$rac{\sigma_x^2}{\widehat{\sigma}_x^2}$	variance of random variable x
$\widehat{\sigma}_x^2$	estimated second-order statistics of random variable x
	autocovariance of random vector x
$\frac{\Sigma_{\mathbf{x}}}{\widehat{\Sigma}_{\mathbf{x}}}$	estimated second-order statistics of random vector \mathbf{x}
Σ_{xy}	covariance of random vectors x and y
$egin{array}{l} oldsymbol{\Sigma}_{ ext{xy}} \ oldsymbol{\hat{\Sigma}}_{ ext{xy}} \ \mathcal{C}^{ ext{cost}}(oldsymbol{ heta}) \end{array}$	estimated second-order statistics of random vectors \mathbf{x} and \mathbf{y}
$C^{\rm cost}(oldsymbol{ heta})$	cost function to be minimized w.r.t. the vector of parameters $ heta$
$\mathcal{M}^{ ext{objective}}(oldsymbol{ heta})$	objective function to be maximized w.r.t. the vector of parameters θ
$\mathcal{Q}(oldsymbol{ heta},\cdot)$	auxiliary function to be minimized or maximized, depending on the
	context

Common indexes

I	number of microphones or channels
i	microphone or channel index in $\{1, \dots, I\}$
J	number of sources
j	source index in $\{1, \dots, J\}$
T	number of time-domain samples
t	sample index in $\{0, \dots, T-1\}$
L	time-domain filter length
au	tap index in $\{0, \dots, L-1\}$
N	number of time frames
n	time frame index in $\{0, \dots, N-1\}$
F	number of frequency bins
f	frequency bin index in $\{0, \dots, F-1\}$
ν_f	frequency in Hz corresponding to frequency bin f
x(t)	time-domain signal x
x(n,f)	complex-valued STFT coefficient of signal x

Signals

x_i	input signal recorded at microphone <i>i</i>
x	$I \times 1$ multichannel input signal, e.g. $\mathbf{x}(t) = [x_1(t), \dots, x_I(t)]^T$
X	matrix of input signals, e.g. $\mathbf{X} = [x_i(t)]_{it}$ or $\mathbf{X} = [x(n, f)]_{fn}$
$ \mathbf{X} $	input magnitude spectrogram, i.e. $ \mathbf{X} = [x(n,f)]_{fn}$
\mathcal{X}	tensor/array/set of input signals, e.g. $\mathcal{X} = [x_i(n,f)]_{ifn}$
S_{j}	point source signal
s	$J \times 1$ vector of source signals, e.g. $\mathbf{s}(t) = [s_1(t), \dots, s_I(t)]^T$
S	matrix of source signals, e.g. $\mathbf{S} = [s_i(t)]_{it}$
c_{ij}	spatial image of source j as recorded on microphone i
$\mathbf{c}_{j}^{'}$	$I \times 1$ spatial image of source j on all microphones
Ć	tensor/array/set of spatial source image signals, e.g. $C = [c_{ij}(n,f)]_{ijfn}$
a_{ij}	acoustic impulse response (or transfer function) from source <i>j</i> to
,	microphone i
\mathbf{a}_{i}	$I \times 1$ vector of acoustic impulse responses (or transfer functions)
,	from source <i>j</i> , mixing vector
\mathbf{a}_{j}	

 $I \times I$ matrix of acoustic impulse responses (or transfer functions), A

mixing matrix

 $I \times 1$ noise signal 11

Filters

* convolution operator

single-output single-channel filter (mask), e.g. $\hat{s} = w^*x$ w single-output multichannel filter (beamformer), e.g. $\hat{s} = \mathbf{w}^H \mathbf{x}$ w

W multiple-output multichannel filter, e.g. $\hat{\mathbf{s}} = \mathbf{W}^H \mathbf{x}$

Nonnegative matrix factorization

 \mathbf{b}_k kth nonnegative basis spectrum В matrix of nonnegative basis spectra kth activation coefficient in time frame n $h_k(n)$ vector of activation coefficients in time frame n $\mathbf{h}(n)$

Н matrix of activation coefficients

Deep learning

Н number of layers layer index in $\{1, \dots, H\}$ h number of neurons in layer h K_h neuron index in $\{1, \dots, K_h\}$ k

 \mathbf{Z}_h matrix of weights and biases in layer h

activation function in layer h g_h

multivariate nonlinear function encoded by the full DNN g_{z}

Geometry

\mathbf{m}_i 3D location of microphone i with respect to the array origin

 $\ell_{ii'}$ distance between microphones i and i'

3D location of source *j* with respect to the array origin \mathbf{p}_i

distance between source i and microphone i r_{ii}

azimuth of source *j* elevation of source *j* speed of sound in air

time difference of arrival of source j between microphones i and i' $\Delta_{ii'i}$