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León Felipe escribió un
tributo, no al héroe de la

historia, sino a su fiel
caballo Rocinante,

quien lo llevó en su lomo
por las tierras de España.

El héroe es, por supuesto,
Don Quijote de la Mancha:

“El Caballero de la Triste Figura”

¡Yo quería ese nombre!
pero me lo ganaron,

llegué a este mundo casi
trescientos cincuenta

años tarde. . .

Ya sólo me queda ser:

“El Caballero de la Triste Locura. . .”

S. M.



Preface to the Second Edition

After 12 years of the publication of Topics on Continua many things have happened.
As it is well known, it is impossible to include everything. This Second Edition
contains two new chapters which appear for the first time in a book, namely: n-
fold Hyperspace Suspensions and Induced Maps on n-fold Hyperspaces. We include
recent developments.

The first two chapters have very few modifications. In the first one, we prepare
the way to prove the monotone-light factorization theorem, which appears later in
chapter eight. We also add the notions of freely decomposable continuum and more
concepts of aposyndesis. We include the notions of arc-smoothness of continua and
arcwise decomposable continua too. For the second chapter we have not included
much because of the two books on inverse limits and generalized inverse limits that
appeared in 2012, namely: the book by Professors W. T. Ingram and William S.
Mahavier Inverse Limits: From Chaos to Continua, Developments in Mathematics,
Vol. 25, Springer, 2012 and the book by Professor W. T. Ingram An Introduction to
Inverse Limits with Set-valued Functions, Springer Briefs in Mathematics, 2012. If
the reader is interested in such topics, please refer to the mentioned books. We add
the notions of confluent and weakly confluent maps to show that the bonding maps
of an inverse limit are confluent if and only if the projection maps are confluent and
the fact that each surjective map onto a chainable continuum is weakly confluent.
By using inverse limits, it can be shown that the Cantor set is a topological group.

Chapter 3 has four new sections, namely: Idempotency of T , Three Decom-
position Theorems, Examples, and T -closed sets. Throughout the chapter, we
present characterizations of locally connected continua using the distinct forms of
aposyndesis added in the first chapter. A sufficient condition for the idempotency
on closed sets is given we also present an example showing that the condition
is not necessary. We present a study of the relation between arc-smoothness and
strict point T -asymmetry. In particular, we show that Question 9.2.9 has a negative
answer. We include results about the idempotency of T on products, cones, and
suspensions. In particular, we prove that the first part of Question 9.2.3 has always a
negative answer. We present three decomposition theorems using T . In the strongest
of the theorems, we obtain a continuous decomposition of the continuum with a
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viii Preface to the Second Edition

locally connected quotient space and many of the elements of the decomposition
are indecomposable continua. We present several classes of continua for which T is
continuous and we study the family of T -closed sets.

Chapter 4 remains essentially the same; we add three more consequences of
the Property of Effros. The same happens with Chap. 5 where we include a few
characterizations of the continuity of the set function T for homogeneous continua.

Chapter 6 has two new sections, namely: Z-sets and Strong Size Maps. Through-
out the chapter, we include several bounds for the dimension of the n-fold
hyperspace of certain classes of continua. We show that the n-fold hyperspaces
are zero-dimensional aposyndetic. We give the correct statement and proof of
Theorem 6.5.14. We give basic properties of Z-sets and sufficient conditions in
order to show that the n-fold symmetric product of a continuum is a Z-set of the
n-hyperspace of such continuum. We add several results that indicate when the n-
fold symmetric product is a strong deformation retract of the m-fold hyperspace or
of the hyperspace of closed sets. Also, we include properties of the continuum and
the n-fold symmetric product when this is a retract of the m-fold hyperspace. We
add a characterization of the graphs for which their n-fold hyperspace is a Cantor
manifold. We also characterize the class of continua for which its n-fold hyperspace
is a k-cell. We include results about suspensions and products related to the ones
already given for cones. We end the chapter with a study of strong size maps, which
are a nice generalization of Whitney maps to n-fold hyperspaces.

Chapter 7 is new. It is about hyperspace suspensions. We present most of
what is known about n-fold hyperspace suspensions. We prove several properties
of these spaces. We give sufficient conditions in order to obtain that n-fold
hyperspace suspensions are contractible. We show that they are zero-dimensional
aposyndetic. We study these hyperspaces when the continuum is locally connected.
In particular, we give a sufficient condition to obtain that the n-fold hyperspace
suspension of a locally connected continuum is the Hilbert cube. We characterize
indecomposable continua by showing that their n-fold hyperspace suspensions are
arcwise disconnected by removing two points. We present a description of the arc
components of arcwise disconnected n-fold hyperspace suspensions when those
two points are removed. We study properties of the n-fold hyperspace suspensions
when they are homeomorphic to cones, suspensions, or products of continua. We
present several results about the fixed point property of these hyperspaces. We
study absolute n-fold hyperspace suspensions. We end this chapter by proving that
hereditarily indecomposable continua have unique n-fold hyperspace suspensions.

Chapter 8 is also new. It is about induced maps between n-fold hyperspaces;
these include hyperspace suspensions. We start with the definition of all the classes
of maps that we study. Then we continue with general properties about the induced
maps and present results about homeomorphisms, atomic maps, ε-maps, refinable
maps, and almost monotone maps. We continue with results about confluent,
monotone, open, light, and freely decomposable maps.

Chapter 9 (former Chap. 7), the last chapter, which is about questions, has two
new sections (one for each of the new chapters), with questions on n-fold hyperspace
suspensions and induced maps between n-fold hyperspaces.
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Preface to the First Edition

My aim is to present four of my favorite topics in continuum theory: inverse limits,
Professor Jones’s set function T , homogeneous continua, and n-fold hyperspaces.

Most topics treated in this book are not covered in Professor Sam B. Nadler Jr.’s
book: Continuum Theory: An Introduction, Monographs and Textbooks in Pure and
Applied Math., Vol. 158, Marcel Dekker, New York, Basel, Hong Kong, 1992.

The reader is assumed to have taken a one-year course on general topology.
The book has seven chapters. In Chap. 1, we include the basic background to be

used in the rest of the book. The experienced readers may prefer to skip this chapter
and jump right to the study of their favorite subject. This can be done without any
problem. The topics of Chap. 1 are essentially independent of one another and can
be read at any time.

Chapter 2 is for the most part about inverse limits of continua. We present
the basic results on inverse limits. Some theorems are stated without proof in
Professor W. Tom Ingram’s book: Inverse Limits, Aportaciones Matemáticas, Textos
# 18, Sociedad Matemática Mexicana, 2000. We show that the operation of taking
inverse limits commutes with the operations of taking finite products, cones, and
hyperspaces. We also include some applications of inverse limits.

In Chap. 3 we discuss Professor F. Burton Jones’s set function T . After giving
the basic properties of this function, we present properties of continua in terms
of T , such as connectedness im kleinen, local connectedness, and semi-local
connectedness. We also study continua for which the set function T is continuous.
In the last section we present some applications of T .

In Chap. 4 we start our study of homogeneous continua. We present a topological
proof of a Theorem of Professor E. G. Effros given by F. D. Ancel. We include a
brief introduction to topological groups and group actions.

Chapter 5 contains our main study of homogeneous continua. We present two
Decomposition Theorems of such continua, whose proofs are applications of Pro-
fessor Jones’s set function T and Professor Effros’s Theorem. These theorems have
narrowed the study of homogeneous continua in such a way that they may hopefully
be eventually classified. We also give examples of nontrivial homogeneous continua
and their covering spaces.
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xii Preface to the First Edition

In Chap. 6 we present most of what is known about n-fold hyperspaces. This
chapter is slightly different from the other chapters because the proofs of many of
the theorems are based on results in the literature that we do not prove; however, we
give references to the appropriate places where proofs can be found. This chapter is
a complement of the two existing books—Sam B. Nadler, Jr., Hyperspaces of Sets:
A Text with Research Questions, Monographs and Textbooks in Pure and Applied
Math., Vol. 49, Marcel Dekker, New York, Basel, 19781 and Alejandro Illanes and
Sam B. Nadler, Jr., Hyperspaces: Fundamentals and Recent Advances, Monographs
and Textbooks in Pure and Applied Math., Vol. 216, Marcel Dekker, New York,
Basel, 1999, in which a thorough study of hyperspaces is done.

In Chap. 6, we also prove general properties of n-fold hyperspaces. In particular,
we show that n-fold hyperspaces are unicoherent and finitely aposyndetic. We study
the arcwise accessibility of points of the n-fold symmetric products from their
complement in n-fold hyperspaces. We give a treatment of the points that arcwise
disconnect n-fold hyperspaces of indecomposable continua. Then we study continua
for which the operation of taking n-fold hyperspaces is continuous (C∗

n-smoothness).
We also investigate continua for which there exist retractions between their various
hyperspaces. Next, we present some results about the n-fold hyperspaces of graphs.
We end Chap. 6 by studying the relation between n-fold hyperspaces and cones over
continua.

We end the book with a chapter (Chap. 7) containing open questions on each of
the subjects presented in the book.

We include figures to illustrate definitions and aspects of proofs.
The book originates from two sources—class notes I took from the course on

continuum theory given by Professor James T. Rogers, Jr. at Tulane University in
the Fall Semester of 1988 and the one-year courses on continuum theory I have
taught in the graduate program of mathematics at the Facultad de Ciencias of the
Universidad Nacional Autónoma de México, since the spring of 1993. I thank all
the students who have taken such courses.

I thank María Antonieta Molina and Juan Carlos Macías for letting me include
part of their thesis in the book. Ms. Molina’s thesis was based on two talks on the
set function T given by Professor David P. Bellamy in the IV Research Workshop
on Topology, celebrated in Oaxaca City, Oaxaca, México, November 14 through 16,
1996.

I thank Professors Sam B. Nadler, Jr. and James T. Rogers, Jr. for reading parts of
the manuscript and making valuable suggestions. I also thank Ms. Gabriela Sanginés
and Mr. Leonardo Espinosa for answering my questions about LATEX, while I was
typing this book.

I thank Professor Charles Hagopian and Marvi Hagopian for letting me use their
living room to work on the book during my visit to California State University,
Sacramento.

1This book has been reprinted in: Aportaciones Matemáticas de la Sociedad Matemática Mexicana,
Serie Textos # 33, 2006.
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Chapter 1
Preliminaries

We gather some of the results of topology of metric spaces which will be useful for
the rest of the book. We assume the reader is familiar with the notion of metric space
and its elementary properties. We present the proofs of most of the results; we give
an appropriate reference otherwise.

The topics reviewed in this chapter are: product topology, continuous decompo-
sitions, homotopy, fundamental group, geometric complexes, polyhedra, complete
metric spaces, compacta, continua and hyperspaces.

1.1 Product Topology

The symbols N, Z, Q, R and C denote the positive integers, integers, rational
numbers, real numbers and complex numbers, respectively. The material of this
section is taken from [10, 13, 17, 18, 25, 28].

The word map means a continuous function. A compactum is a compact metric
space.

1.1.1 Definition Given a sequence, {Xn}∞n=1, of nonempty sets, we define its
Cartesian product, denoted by

∏∞
n=1 Xn, as the set:

∞∏

n=1

Xn = {(xn)
∞
n=1 | xn ∈ Xn for each n ∈ N}.

For each m ∈ N, there exists a function

πm :
∞∏

n=1

Xn →→ Xm

defined by πm((xn)
∞
n=1) = xm. This function πm is called the mth-projection map.

© Springer International Publishing AG, part of Springer Nature 2018
S. Macías, Topics on Continua, https://doi.org/10.1007/978-3-319-90902-8_1

1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-90902-8_1&domain=pdf
https://doi.org/10.1007/978-3-319-90902-8_1


2 1 Preliminaries

1.1.2 Remark Given a metric space (X, d ′), there exists a metric, d , which gener-
ates the same topology as d ′, with the property that d(x, x ′) ≤ 1 for each pair of
points x and x ′ of X. This metric d is called bounded metric. An example of such
metric is given by d(x, x ′) = min{1, d ′(x, x ′)}.
1.1.3 Notation Given a metric space (X, d) and a subset A of X, ClX(A), IntX(A)

and BdX(A) denote the closure, interior and boundary of A, respectively. We omit
the subindex if there is no confusion. If ε is a positive real number, then the symbol
Vd

ε (A) denotes the open ball of radius ε about A. If A = {x}, for some x ∈ X, we
write Vd

ε (x) instead of Vd
ε ({x}).

1.1.4 Definition If {(Xn, dn)}∞n=1 is a sequence of metric spaces, with bounded
metrics, we define a metric ρ, for its Cartesian product as follows:

ρ((xn)
∞
n=1, (x

′
n)

∞
n=1) =

∞∑

n=1

1

2n
dn(xn, x

′
n).

1.1.5 Remark Since the metrics, dn, in Definition 1.1.4 are bounded, ρ is well
defined.

1.1.6 Lemma If {(Xn, dn)}∞n=1 is a sequence of metric spaces, with bounded
metrics, then ρ (Definition 1.1.4) is a metric and for each m ∈ N, πm is a continuous
function.

Proof The proof of the fact that ρ is, in fact, a metric is left to the reader.
Let m ∈ N be given. We show that πm is continuous. Let ε > 0 and let δ = 1

2m ε.
If (xn)

∞
n=1 and (x ′

n)
∞
n=1 are two points of

∏∞
n=1 Xn such that ρ((xn)

∞
n=1, (x

′
n)

∞
n=1) <

δ, then, since 1
2m dm(xm, x ′

m) ≤ ∑∞
n=1

1
2n dn(xn, x

′
n), we have that 1

2m dm(xm, x ′
m) <

δ. Hence,

dm(xm, x ′
m) < 2mδ = ε.

Therefore, πm is continuous.
Q.E.D.

1.1.7 Lemma If {(Xn, dn)}∞n=1 is a sequence of metric spaces, with bounded
metrics, then given ε > 0 and a point (xn)

∞
n=1 ∈∏∞

n=1 Xn, there exist N ∈ N and N

positive real numbers, ε1, . . . , εN , such that
⋂N

j=1 π−1
j (Vdj

εj (xj )) ⊂ Vρ
ε ((xn)

∞
n=1).

Proof Let N ∈ N be such that
∑∞

n=N+1
1

2n < ε
2 . For each j ∈ {1, . . . , N}, let

εj = ε

2N . We assert that
⋂N

j=1 π−1
j

(
Vdj

εj
(xj )
)

⊂ Vρ
ε ((xn)

∞
n=1). To see this, let

(yn)
∞
n=1 ∈ ⋂N

j=1 π−1
j

(
Vdj

εj (xj )
)

. We want to see that ρ((xn)
∞
n=1, (yn)

∞
n=1) < ε.
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Note that

ρ((xn)
∞
n=1, (yn)

∞
n=1) =

∞∑

n=1

1

2n
dn(xn, yn) =

N∑

n=1

1

2n
dn(xn, yn) +

∞∑

n=N+1

1

2n
dn(xn, yn) <

N∑

n=1

1

2n

1

2N
ε + 1

2
ε =
(

1 − 1

2N

)
1

2N
ε + 1

2
ε ≤ 1

2
ε + 1

2
ε = ε.

Q.E.D.

1.1.8 Lemma If {(Xn, dn)}∞n=1 is a sequence of metric spaces, with bounded
metrics, then given a finite number of positive real numbers ε1, . . . , εk and a
point (xn)

∞
n=1 ∈ ∏∞

n=1 Xn, there exists ε > 0 such that Vρ
ε ((xn)

∞
n=1) ⊂

⋂k
j=1 π−1

j (Vdj
εj

(xj )).

Proof Let (xn)
∞
n=1 ∈ ∏∞

n=1 Xn, and let U =⋂k
j=1 π−1

j

(
Vdj

εj (xj )
)

. Take

ε = min

{
1

2
ε1, . . . ,

1

2k
εk

}

.

We show Vρ
ε ((xn)

∞
n=1) ⊂ U . Let (yn)

∞
n=1 ∈ Vρ

ε ((xn)
∞
n=1). Then

ρ((xn)
∞
n=1, (yn)

∞
n=1) < ε, i.e.,

∞∑

n=1

1

2n
dn(xn, yn) < ε.

Hence, 1
2j dj (xj , yj ) < ε ≤ 1

2j εj for each j ∈ {1, . . . , k}. Thus, if j ∈ {1, . . . , k},
then dj (xj , yj ) < εj . Therefore, Vρ

ε ((xn)
∞
n=1) ⊂ U .

Q.E.D.

1.1.9 Theorem Let Z be a metric space. If {(Xn, dn)}∞n=1 is a sequence of metric
spaces, then a function f : Z → ∏∞

n=1 Xn is continuous if and only if πn ◦ f is
continuous for each n ∈ N.

Proof Clearly, if f is continuous, then πn ◦ f is continuous for each n ∈ N.
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Suppose πn ◦ f is continuous for each n ∈ N. Let
⋂k

j=1 π−1
j (Uj ) be a basic

open subset of
∏∞

n=1 Xn. Since

f −1

⎛

⎝
k⋂

j=1

π−1
j (Uj )

⎞

⎠ =
k⋂

j=1

f −1(π−1
j (Uj ))

=
k⋂

j=1

(πj ◦ f )−1(Uj ),

we have that f −1
(⋂k

j=1 π−1
j (Uj )

)
is open in Z. Hence, f is continuous.

Q.E.D.

1.1.10 Theorem Let {Xn}∞n=1 and {Yn}∞n=1 be two countable collections of metric
spaces. Suppose that for each n ∈ N, there exists a map fn : Xn → Yn. Then
the function

∏∞
n=1 fn : ∏∞

n=1 Xn → ∏∞
n=1 Yn given by

∏∞
n=1 fn((xn)

∞
n=1) =

(fn(xn))
∞
n=1 is continuous.

Proof For each m ∈ N, let πm : ∏∞
n=1 Xn →→ Xm and

π ′
m : ∏∞

n=1 Yn →→ Ym be the projection maps.
Let (xn)

∞
n=1 be a point of

∏∞
n=1 Xn, and let m ∈ N. Then π ′

m◦∏∞
n=1 fn((xn)

∞
n=1)= π ′

m

(
(fn(xn))

∞
n=1

) = fm(xm) = fm ◦ πm((xn)
∞
n=1). Hence, by Theorem 1.1.9,∏∞

n=1 fn is continuous.
Q.E.D.

The following result is a particular case of Tychonoff’s Theorem, which says that
the Cartesian product of any family of compact topological spaces is compact. The
proof of this theorem uses the Axiom of Choice. However, the case we show only
uses the fact that compactness and sequential compactness are equivalent in metric
spaces [17, Remark 3, p. 3].

1.1.11 Theorem If {(Xn, dn)}∞n=1 is a sequence of compacta, then
∏∞

n=1 Xn is
compact.

Proof By Lemma 1.1.6,
∏∞

n=1 Xn is a metric space. We show that any sequence of
points of

∏∞
n=1 Xn has a convergent subsequence.

Let {pk}∞k=1 be a sequence of points of
∏∞

n=1 Xn, where pk = (pk
n)

∞
n=1 for

each k ∈ N (in this way, if we keep n fixed, {pk
n}∞k=1 is a sequence of points of

Xn). Since (X1, d1) is sequentially compact, {pk
1}∞k=1 has a convergent subsequence

{pkj

1 }∞j=1 converging to a point q1 of X1. Let us note that, implicitly, we have defined

a subsequence {pkj }∞j=1 of {pk}∞k=1.
Now, suppose, inductively, that for some m ∈ N, we have defined a subsequence

{pki }∞i=1 of {pk}∞k=1 such that {pki
m}∞i=1 converges to a point qm of Xm. Since

(Xm+1, dm+1) is sequentially compact, {pki

m+1}∞i=1 has a convergent subsequence
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{pkij

m+1}∞j=1 such that it converges to a point qm+1 of Xm+1. Hence, by the Induction

Principle, we have defined a sequence of subsequences of {pk}∞k=1 in such a way
that each subsequence is a subsequence of the preceding one. Now, let � =
{p1, pk2 , pkj3 , p

kji4 , . . .}. Clearly, � is a subsequence of {pk}∞k=1 which converges
to the point (qn)

∞
n=1. Therefore,

∏∞
n=1 Xn is compact.

Q.E.D.

1.1.12 Definition Let Q = ∏∞
n=1[0, 1]n, where [0, 1]n = [0, 1], for each n ∈ N.

Then Q is called the Hilbert cube.

1.1.13 Theorem The Hilbert cube is a connected compactum.

Proof By Lemma 1.1.6, Q is a metric space. By Theorem 1.1.11, Q is compact. By
[17, Theorem 11, p. 137], Q is connected.

Q.E.D.

1.1.14 Definition Let f : X → Y be a map between metric spaces. We say that f

is an embedding if f is a homeomorphism onto f (X).

1.1.15 Definition A map f : X → Y between metric spaces is said to be closed
provided that for each closed subset K of X, f (K) is closed in Y .

The next theorem says that there exists a “copy” of every compactum inside the
Hilbert cube.

1.1.16 Theorem If X is a compactum, then X can be embedded in the Hilbert cube
Q.

Proof Let d be the metric of X. Without loss of generality, we assume that
diam(X) ≤ 1. Since X is a compactum, it contains a countable dense subset,
{xn}∞n=1. Let h : X → Q be given by h(x) = (d(x, xn))

∞
n=1. By Theorem 1.1.9,

h is continuous. Clearly, h is one-to-one. Since X is compact and Q is metric, h is a
closed map. Therefore, h is an embedding.

Q.E.D.

1.2 Continuous Decompositions

We present a method to construct “new” spaces from “old” ones by “shrinking”
certain subsets to points. The preparation of this section is based on [10, 13, 18, 27].

1.2.1 Definition A decomposition of a set X is a collection of nonempty, pairwise
disjoint sets whose union is X. The decomposition is said to be closed if each of its
element is a closed subset of X.

1.2.2 Definition Let G be a decomposition of a metric space X. We define X/G as
the set whose elements are the elements of the decomposition G. X/G is called the
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quotient space. The function q : X →→ X/G, which sends each point x of X to the
unique element G of G such that x ∈ G, is called the quotient map.

1.2.3 Remark Given a decomposition of a metric space X, note that q(x) = q(y) if
and only if x and y belong to the same element of G. We give a topology to X/G in
such a way that the function q is continuous and it is the biggest with this property.

1.2.4 Definition Let X be a metric space, let G be a decomposition of X and let
q : X →→ X/G be the quotient map. Then the topology

U = {U ⊂ X/G | q−1(U) is open in X}

is called the quotient topology for X/G.

1.2.5 Remark Let G be a decomposition of a metric space X, and let q : X →→ X/G
be the quotient map. Then a subset U of X/G is open (closed, respectively) if and
only if q−1(U) is an open (closed, respectively) subset of X.

1.2.6 Definition Let f : X →→ Y be a surjective map between metric spaces. Since
f is a function, Gf = {f −1(y) | y ∈ Y } is a decomposition of X. The function
ϕf : X/Gf → Y given by ϕf (q(x)) = f (x) is of special interest. Note that ϕf is
well defined; in fact, it is a bijection and the following diagram:

X
f−→ Y

↘
q

↗
ϕfX/Gf

is commutative.

The next lemma is a special case of the Transgression Lemma [27, 3.22].

1.2.7 Lemma Let f : X →→ Y be a surjective map between metric spaces. If X/Gf

has the quotient topology, then the function ϕf is continuous.

Proof If U is an open subset of Y , then ϕ−1
f (U) = qf −1(U). Since q−1ϕ−1

f (U) =
q−1qf −1(U) = f −1(U) and f −1(U) is an open subset of X, we have, by the
definition of quotient topology, that ϕ−1

f (U) is an open subset of X/Gf . Therefore,
ϕf is continuous.

Q.E.D.

1.2.8 Example Let X = [0, 2π) and let f : X →→ S1, where S1 is the unit circle,
be given by f (t) = exp(t) = eit . Then f is a continuous bijection. Since Gf is,
“essentially,” X, it follows that X/Gf is homeomorphic to X. On the other hand, X

is not homeomorphic to S1, since X is not compact and S1 is. Therefore, ϕf is not
a homeomorphism.

1.2.9 Definition A map f : X → Y between metric spaces is said to be open
provided that for each open subset K of X, f (K) is open in Y .
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The following theorem gives sufficient conditions to ensure that ϕf is a homeo-
morphism:

1.2.10 Theorem Let f : X →→ Y be a surjective map between metric spaces. If f

is open or closed, then ϕf : X/Gf →→ Y is a homeomorphism.

Proof Suppose f is an open map. Since ϕ is a bijective map, it is enough to show
that ϕf is open. Let A be an open subset of X/Gf . Since ϕf (A) = f q−1(A), ϕf (A)

is an open subset of Y . Therefore, ϕf is an open map.
The proof of the case when f is closed is similar.

Q.E.D.

Decompositions are also used to construct the cone and suspension over a given
space.

1.2.11 Definition Let X be a metric space and let G = {{(x, t)} | x ∈ X and t ∈
[0, 1)} ∪ {(X × {1})}. Then G is a decomposition of X × [0, 1]. The cone over X,
denoted by K(X), is the quotient space (X × [0, 1])/G. The element {X × {1}} of
(X × [0, 1])/G is called the vertex of the cone and it is denoted by νX.

A proof of the following proposition may be found in [10, 5.2, p. 127].

1.2.12 Proposition Let f : X → Y be a map between metric spaces. Then f

induces a map K(f ) : K(X) → K(Y ) by

K(f )(ω) =
{

νY , if ω = νX ∈ K(X);
(f (x), t), if ω = (x, t) ∈ K(X) \ {νX}.

1.2.13 Definition Let X be a metric space and let G = {{(x, t)} | x ∈ X and t ∈
(0, 1)} ∪ {(X × {0}), (X × {1})}. Then G is a decomposition of X × [0, 1]. The
suspension over X, denoted by �(X), is the quotient space (X × [0, 1])/G. The
elements {X × {0}} and {X × {1}} of (X × [0, 1])/G are called the vertexes of the
suspension and are denoted by ν− and ν+, respectively.
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1.2.14 Definition Let X be a metric space and let G be a decomposition of X. We
say that G is upper semicontinuous if for each G ∈ G and each open subset U of X

such that G ⊂ U , there exists an open subset V of X such that G ⊂ V and such that
if G′ ∈ G and G′ ∩ V �= ∅, then G′ ⊂ U . We say that G is lower semicontinuous
provided that for each G ∈ G any two points x and y of G and each open set U of
X such that x ∈ U , there exists an open set V of X such that y ∈ V and such that if
G′ ∈ G and G′ ∩ V �= ∅, then G ∩ U �= ∅. Finally, we say that G is continuous if G
is both upper and lower semicontinuous.

1.2.15 Example Let X = ([−1, 1] × [0, 1])∪ ({0} × [0, 2]). For each t ∈ [−1, 1] \
{0}, let Gt = {t} × [0, 1], and for t = 0, let G0 = {0} × [0, 2]. Let G = {Gt | t ∈
[0, 1]}. Then G is an upper semicontinuous decomposition of X.

Upper semicontinuous decomposition



1.2 Continuous Decompositions 9

1.2.16 Example Let

X = ([0, 1] × [0, 1)) ∪
(

{1} ×
[

0,
1

3

]

∪ {1} ×
[

2

3
, 1

])

.

For each t ∈ [0, 1), let Gt = {t} × [0, 1], let G1 = {1} ×
[
0, 1

3

]
and let G′

1 =
{1} ×

[
2
3 , 1
]
. Let G = {Gt | t ∈ [0, 1]} ∪ {G′

1}. Then G is a lower semicontinuous

decomposition of X.

Lower semicontinuous decomposition

The following theorem gives us a way to obtain upper semicontinuous decompo-
sitions of compacta.

1.2.17 Theorem Let f : X →→ Y be a surjective map between compacta. If Gf =
{f −1(y) | y ∈ Y }, then Gf is an upper semicontinuous decomposition of X.

Proof Let U be an open subset of X such that f −1(y) ⊂ U . Note that X \ U is a
closed subset; hence, compact, of X. Then f (X \ U) is a compact subset; hence,
closed, of Y such that y �∈ f (X \ U). Thus, Y \ f (X \ U) is an open subset of Y

containing y.
If V = f −1 (Y \ f (X \ U)), then V is an open subset of X such that f −1(y) ⊂

V ⊂ U . Since V =⋃{f −1(y) | y ∈ Y \f (X \ U)}, clearly V satisfies the required
property of the definition of upper semicontinuous decomposition.

Q.E.D.

1.2.18 Remark Let us note that Theorem 1.2.17 is not true without the compactness
of X. Let X be the Euclidean plane R2 and let π : R2 →→ R be given by π((x, y)) =
x. Then Gπ is a decomposition of X which is not upper semicontinuous. To see this,

let U =
{
(x, y) ∈ X

∣
∣ x �= 0 and y < 1

x

}
∪ {0} × R. Then U is an open set of X

such that π−1(0) ⊂ U , whose boundary is asymptotic to π−1(0). Hence, for each
t ∈ R \ {0}, π−1(t) ∩ (X \ U) �= ∅.

The next theorem gives three other ways to think about upper semicontinuous
decompositions.
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1.2.19 Theorem If X is a metric space and G is a decomposition of X, then the
following conditions are equivalent:

(a) G is an upper semicontinuous decomposition;
(b) the quotient map q : X →→ X/G is closed;
(c) if U is an open subset of X, then WU = ⋃{G ∈ G | G ⊂ U} is an open subset

of X;
(d) if D is a closed subset of X, then KD = ⋃{G ∈ G | G ∩ D �= ∅} is a closed

subset of X.

Proof Suppose G is an upper semicontinuous decomposition. Let D be a closed
subset of X. By Remark 1.2.5, we have that q(D) is closed in X/G if and only
if q−1(q(D)) is closed in X. We show that X \ q−1(q(D)) is open in X. Let x ∈
X\q−1(q(D)). Then q(x) ∈ X/G\q(D) and, hence, q−1(q(x)) ⊂ X\D. Therefore,
since X \ D is open, by Definition 1.2.14, there exists an open set V of X such that
q−1(q(x)) ⊂ V and for each y ∈ V , q−1(q(y)) ⊂ X \ D. Clearly, x ∈ V and
q(V ) ⊂ X/G \ q(D). Thus, V ⊂ X \ q−1(q(D)). Therefore, X \ q−1(q(D)) is
open, since x ∈ V ⊂ X \ q−1(q(D)).

Now, suppose q is a closed map. Let U be an open subset of X. Since q is
a closed map, we have that q−1(X/G \ q(X \ U)) is an open subset of X such
that q−1(X/G \ q(X \ U)) = WU . (If x ∈ q−1(X/G \ q(X \ U)), then q(x) ∈
X/G \ q(X \ U). Hence, q−1(q(x)) ⊂ X \ q−1(q(X \ U)) ⊂ X \ (X \ U)) = U .
Thus, x ∈ WU . The other inclusion is obvious.)

Next, suppose WU is open for each open subset U of X. Let D be a closed
subset of X. Then X \ D is open in X. Hence, WX\D is open in X. Since, clearly,
KD = X \ WX\D , we have that KD is closed.

Finally, suppose KD is closed for each closed subset D of X. To see G is upper
semicontinuous, let G ∈ G and let U be an open subset of X such that G ⊂ U .
Note that X \ U is a closed subset of X. Hence, KX\U is a closed subset of X. Let
V = X \ KX\U . Then V is open, G ⊂ V ⊂ U and if G′ ∈ G and G′ ∩ V �= ∅, then
G′ ⊂ V . Therefore, G is upper semicontinuous.

Q.E.D.

1.2.20 Corollary Let X be a metric space. If G is an upper semicontinuous
decomposition of X, then the elements of G are closed.

Proof Let G ∈ G. Take x ∈ G and let q : X →→ X/G be the quotient map. Since X

is a metric space, {x} is closed in X. By Theorem 1.2.19, q({x}) is closed in X/G.
Since q is continuous and q−1(q({x})) = G, G is a closed subset of X.

Q.E.D.

1.2.21 Theorem If X is a compactum and G is an upper semicontinuous decompo-
sition of X, then X/G has a countable basis.
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Proof Let q : X →→ X/G be the quotient map. Since X is a compactum, it has a
countable basis U . Let

B =
⎧
⎨

⎩

n⋃

j=1

Uj

∣
∣
∣ U1, . . . , Un ∈ U and n ∈ N

⎫
⎬

⎭
.

Note that B is a countable family of open subsets of X.
Let

B = {X/G \ q(X \ U) | U ∈ B}.

We see that B is a countable basis for X/G. Clearly, B is a countable family of open
subsets of X/G. Let U be an open subset of X/G and let x ∈ U . Then q−1(U) is
an open subset of X and q−1(x) ⊂ q−1(U). Since q−1(x) is compact, there exist
U1, . . . , Uk ∈ U such that q−1(x) ⊂ ⋃k

j=1 Uj ⊂ q−1(U ). Let U = ⋃k
j=1 Uj .

Then U ∈ B. Hence, X/G \ q(X \ U) ∈ B. Also, x ∈ X/G \ q(X \ U) ⊂ U .
Therefore, B is a countable basis for X/G.

Q.E.D.

1.2.22 Corollary If X is a compactum and G is an upper semicontinuous decom-
position of X, then X/G is metrizable.

Proof By Theorem 1.2.21, we have that X/G has a countable basis. By [16,
Theorem 1, p. 241], it suffices to show that X/G is a Hausdorff space. Let x and y be
two distinct points of X/G. Then q−1(x) and q−1(y) are two disjoint closed subsets
of X. Since X is a metric space, there exist two disjoint open subsets, U1 and U2,
of X such that q−1(x) ⊂ U1 and q−1(y) ⊂ U2. Note that, by Theorem 1.2.19 (c),
WU1 and WU2 are open subsets of X such that q−1(x) ⊂ WU1 ⊂ U1, q−1(y) ⊂
WU2 ⊂ U2, and q(WU1) and q(WU2) are open subsets of X/G. Since U1 ∩ U2 = ∅,
q(WU1) ∩ q(WU2) = ∅. Therefore, X/G is a Hausdorff space.

Q.E.D.

The next theorem gives a characterization of lower semicontinuous decomposi-
tions.

1.2.23 Theorem Let X be a metric space and let G be a decomposition of X. Then
G is lower semicontinuous if and only if the quotient map q : X →→ X/G is open.

Proof Suppose G is lower semicontinuous. Let U be an open subset of X. We show
q(U) is an open subset of X/G. To this end, by Remark 1.2.5, we only need to prove
that q−1(q(U)) is an open subset of X.

Let y ∈ q−1(q(U)). Then q(y) ∈ q(U), and there exists a point x in U such
that q(x) = q(y). Since G is a lower semicontinuous decomposition, there exists an
open subset V of X containing y such that if G ∈ G and G∩V �= ∅, then G∩U �= ∅.
Hence, V ⊂ q−1(q(U)). Therefore, q is open.
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Now, suppose q is open. Let G ∈ G. Take x, y ∈ G and let U be an open subset
of X such that x ∈ U . Since q is open, V = q−1(q(U)) is an open subset of X

such that G ⊂ V . In particular, y ∈ V . Let G′ ∈ G be such that G′ ∩ V �= ∅.
Then G′ ⊂ V . Thus, q(G′) ∈ q(U). Hence, there exists a point u ∈ U such that
q(u) = q(G′). Since q−1(q(G′)) = G′, u ∈ G′. Thus, G′ ∩ U �= ∅. Therefore, G is
lower semicontinuous.

Q.E.D.

The following corollary is a consequence of Theorems 1.2.19 and 1.2.23:

1.2.24 Corollary Let X be a metric space and let G be a decomposition of X. Then
G is continuous if and only if the quotient map is both open and closed.

The following theorem gives us a necessary and sufficient condition on a map
f : X →→ Y between compacta, to have that Gf = {f −1(y) | y ∈ Y } is a continuous
decomposition.

1.2.25 Theorem Let X and Y be compacta and let f : X →→ Y be a surjective map.
Then Gf = {f −1(y) | y ∈ Y } is continuous if and only if f is open.

Proof If Gf is a continuous decomposition of X, by Theorem 1.2.23, the quotient
map q : X →→ X/Gf is open. By Theorem 1.2.10, ϕf : X/Gf →→ Y is a homeomor-
phism. Hence, f = ϕf ◦ q is an open map.

Now, suppose f is open. By Theorem 1.2.17, Gf is upper semicontinuous.
Since q = ϕ−1

f ◦ f and f is open, q is open. By Theorem 1.2.23, Gf is a lower
semicontinuous decomposition. Therefore, Gf is continuous.

Q.E.D.

In the following definition a notion of convergence of sets is introduced.

1.2.26 Definition Let {Xn}∞n=1 be a sequence of subsets of the metric space X.
Then:

(1) the limit inferior of the sequence {Xn}∞n=1 is defined as follows:

lim inf Xn = {x ∈ X | for each open subset U of X such that

x ∈ U, U ∩ Xn �= ∅ for each n ∈ N, save, possibly, finitely many}.

(2) the limit superior of the sequence {Xn}∞n=1 is defined as follows:

lim sup Xn = {x ∈ X | for each open subset U of X such that

x ∈ U, U ∩ Xn �= ∅ for infinitely many indices n ∈ N}.

Clearly, lim inf Xn ⊂ lim sup Xn. If lim inf Xn = lim sup Xn = L, then we say that
the sequence {Xn}∞n=1 is a convergent sequence with limit L = lim

n→∞ Xn.
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1.2.27 Lemma Let {Xn}∞n=1 be a sequence of subsets of the metric space X. Then
lim inf Xn and lim sup Xn are both closed subsets of X.

Proof Let x ∈ Cl(lim inf Xn). Let U be an open subset of X such that x ∈ U . Since
x ∈ Cl(lim inf Xn) ∩ U , we have that lim inf Xn ∩ U �= ∅. Hence, U ∩ Xn �= ∅ for
each n ∈ N, save, possibly, finitely many. Therefore, x ∈ lim inf Xn. The proof for
lim sup is similar.

Q.E.D.

The next theorem tells us that separable metric spaces behave like sequentially
compact spaces using the notion of convergence just introduced.

1.2.28 Theorem Each sequence {Xn}∞n=1 of closed subsets of a separable metric
space X has a convergent subsequence.

Proof Let {Um}∞m=1 be a countable basis for X. Let {X1
n}∞n=1 = {Xn}∞n=1. Suppose,

inductively, that we have defined the sequence {Xm
n }∞n=1. We define the sequence

{Xm+1
n }∞n=1 as follows:

(1) If {Xm
n }∞n=1 has a subsequence {Xm

nk
}∞k=1 such that lim sup Xm

nk
∩ Um = ∅, then

let {Xm+1
n }∞n=1 be such subsequence of {Xm

n }∞n=1.
(2) If for each subsequence {Xm

nk
}∞k=1 of {Xm

n }∞n=1, we have that lim sup Xm
nk

∩Um �=
∅, we define {Xm+1

n }∞n=1 as {Xm
n }∞n=1.

Since we have the subsequences {Xm
n }∞n=1, let us consider the “diagonal subse-

quence” {Xm
m}∞m=1. By construction, {Xm

m}∞m=1 is a subsequence of {Xn}∞n=1. We
see that {Xm

m}∞m=1 converges.
Let us assume that {Xm

m}∞m=1 does not converge. Hence, there exists p ∈
lim sup Xm

m\lim inf Xm
m . Let Uk be a basic open set such that p ∈ Uk and Uk∩X

m

m


=
∅ for some subsequence {Xm


m

}∞
=1 of {Xm

m}∞m=1 (lim inf Xn is a closed subset of X

by Lemma 1.2.27). Clearly, {Xm

m


}∞
=k is a subsequence of {Xk
n}∞n=1. Thus, {Xk

n}∞n=1
satisfies condition (1), with k in place of m. Hence, lim sup Xk+1

n ∩ Uk = ∅. Since
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{Xm
m}∞m=k+1 is a subsequence of {Xk+1

n }∞n=1 and lim sup Xm
m ⊂ lim sup Xk+1

n , it
follows that lim sup Xm

m ∩ Uk = ∅. Now, recall that p ∈ lim sup Xm
m ∩ Uk . Thus, we

obtain a contradiction. Therefore, {Xm
m}∞m=1 converges.

Q.E.D.

1.2.29 Theorem Let X be a compactum. If {Xn}∞n=1 is a sequence of connected
subsets of X and lim inf Xn �= ∅, then lim sup Xn is connected.

Proof Suppose, to the contrary, that lim sup Xn is not connected. Since lim sup Xn

is closed, by Lemma 1.2.27, we assume, without loss of generality, that there exist
two disjoint closed subsets A and B of X such that lim sup Xn = A ∪ B. Since X is
a metric space, there exist two disjoint open subsets U and V of X such that A ⊂ U

and B ⊂ V . Then there exists N ′ ∈ N such that if n ≥ N ′, then Xn ⊂ U ∪ V . To
show this, suppose it is not true. Then for each n ∈ N, there exists mn > n such that
Xmn \ (U ∪V ) �= ∅. Let xmn ∈ Xmn \ (U ∪V ) for each n ∈ N. Since X is compact,
without loss of generality, we assume that the sequence {xmn}∞n=1 converges to a
point x of X. Note that x ∈ X \ (U ∪ V ) and, by construction, x ∈ lim sup Xn, a
contradiction. Therefore, there exists N ′ ∈ N such that if n ≥ N ′, then Xn ⊂ U ∪V .

Since lim inf Xn �= ∅ and lim inf Xn ⊂ lim sup Xn, we assume, without loss of
generality, that lim inf Xn ∩ U �= ∅. Then there exists N ′′ ∈ N such that if n ≥ N ′′,
U ∩ Xn �= ∅. Let N = max{N ′, N ′′}. Hence, if n ≥ N , then Xn ⊂ U ∪ V and
U ∩ Xn �= ∅. Since Xn is connected for every n ∈ N, Xn ∩ V = ∅ for each n ≥ N ,
a contradiction. Therefore, lim sup Xn is connected.

Q.E.D.

The following theorem gives us a characterization of an upper semicontinuous
decomposition of a compactum in terms of limits inferior and superior.

1.2.30 Theorem Let X be a compactum, with metric d . Then a decomposition G of
X is upper semicontinuous if and only if G is a closed decomposition and for each
sequence {Xn}∞n=1 of elements of G and each element Y of G such that lim inf Xn ∩
Y �= ∅, then lim sup Xn ⊂ Y .

Proof Suppose G is an upper semicontinuous decomposition of X. By Corol-
lary 1.2.20, G is a closed decomposition. Let {Xn}∞n=1 be a sequence of elements
of G and let Y be an element of G such that lim inf Xn ∩ Y �= ∅.

Suppose there exists p ∈ lim sup Xn\Y . Since Y is closed and p is not an element
of Y , there exists an open set W of X such that p ∈ W and Cl(W) ∩ Y = ∅. Let
U = X \ Cl(W). Since G is upper semicontinuous, there exists an open set V of X

such that Y ⊂ V and if G ∈ G such that G ∩ V �= ∅, G ⊂ U .
Let q ∈ lim inf Xn ∩ Y . Then q ∈ lim inf Xn ∩ V . Hence, V ∩ Xn �= ∅ for

each n ∈ N, save, possibly, finitely many. Thus, W ∩ Xn = ∅ for each n ∈ N, save,
possibly, finitely many. This contradicts the fact that p ∈ W ∩lim sup Xn. Therefore,
lim sup Xn ⊂ Y .

Now, suppose G is a closed decomposition and let Y be an element of G. Suppose
that if {Xn}∞n=1 is a sequence of elements of G such that lim inf Xn ∩ Y �= ∅, then
lim sup Xn ⊂ Y .
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To see G is upper semicontinuous, let U be an open subset of X such that Y ⊂ U .
For each n ∈ N, let Vn = Vd

1
n

(Y ). Suppose that for each n ∈ N, there exists

an element Xn of G such that Xn ∩ Vn �= ∅ and Xn �⊂ U . For each n ∈ N, let
pn ∈ Xn∩Vn. Since X is compact, {pn}∞n=1 has a convergent subsequence {pnk }∞k=1.
Let p be the point of convergence of {pnk }∞k=1. Note that p ∈ lim inf Xnk ∩Y . Hence,
lim sup Xnk ⊂ Y .

For each k ∈ N, let qk ∈ Xnk \U . Since X is compact, the sequence {qnk }∞k=1 has
a convergent subsequence {qnk


}∞
=1. Let q be the point of convergence of {qnk

}∞
=1.

Note that q �∈ Y and q ∈ lim sup Xnk

⊂ lim sup Xnk , a contradiction. Therefore, G

is upper semicontinuous.
Q.E.D.

As an application of Theorem 1.2.30, we have the following result which says
that the components of the elements of an upper semicontinuous decomposition
form another upper semicontinuous decomposition.

1.2.31 Theorem Let X be a compactum and let G be an upper semicontinuous
decomposition of X. If D = {D | D is a component of G, for some G ∈ G}, then D
is an upper semicontinuous decomposition of X.

Proof Clearly, the elements of D are closed in X. Let {Dn}∞n=1 be a sequence of
elements of D and let D ∈ D be such that lim inf Dn ∩ D �= ∅. Let G ∈ G be
such that D ⊂ G and for each n ∈ N, let Gn ∈ G be such that Dn ⊂ Gn. Since
lim inf Dn ⊂ lim inf Gn and lim inf Dn ∩ D �= ∅, lim inf Gn ∩ G �= ∅. Hence,
by the upper semicontinuity of G, lim sup Gn ⊂ G (Theorem 1.2.30). Thus, since
lim sup Dn ⊂ lim sup Gn, lim sup Dn ⊂ G.

By hypothesis, each Dn is connected. Then, by Theorem 1.2.29, lim sup Dn is
connected. Since D is a component of G, lim sup Dn ⊂ G and lim sup Dn ∩D �= ∅,
lim sup Dn ⊂ D. Therefore, by Theorem 1.2.30, D is an upper semicontinuous
decomposition.

Q.E.D.

The following theorem gives us a characterization of a continuous decomposition
of a compactum in terms of limits inferior and superior.

1.2.32 Theorem Let X be a compactum, with metric d . Then a decomposition G of
X is continuous if and only if G is a closed decomposition and for each sequence
{Xn}∞n=1 of elements of G and each element Y of G such that lim inf Xn ∩ Y �= ∅,
then lim sup Xn = Y .

Proof Suppose G is a continuous decomposition of X. By Corollary 1.2.20, G is a
closed decomposition. Let {Xn}∞n=1 be a sequence of elements of G and let Y be an
element of G such that lim inf Xn ∩ Y �= ∅. By Theorem 1.2.30, lim sup Xn ⊂ Y .
Suppose there exists p ∈ Y \ lim sup Xn. Let U be an open subset of X such that
p ∈ U and U ∩ lim sup Xn = ∅ (by Lemma 1.2.27, lim sup Xn is closed). Let
q ∈ lim sup Xn ⊂ Y . Since G is a lower semicontinuous decomposition, there exists
an open set V of X such that q ∈ V and if G ∈ G and G ∩ V �= ∅, then G ∩ U �= ∅.


