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Preface 
to Volumes III and IV 

The first two volumes of this monograph can be regarded as an expansion 
and updating of my book "Linear partial differential operators" published 
in the Grundlehren series in 1963. However, volumes III and IV are almost 
entirely new. In fact they are mainly devoted to the theory of linear 
differential operators as it has developed after 1963. Thus the main topics 
are pseudo-differential and Fourier integral operators with the underlying 
symplectic geometry. The contents will be discussed in greater detail in the 
introduction. 

I wish to express here my gratitude to many friends and colleagues who 
have contributed to this work in various ways. First I wish to mention 
Richard Melrose. For a while we planned to write these volumes together, 
and we spent a week in December 1980 discussing what they should 
contain. Although the plan to write the books jointly was abandoned and 
the contents have been modified and somewhat contracted, much remains of 
our discussions then. Shmuel Agmon visited Lund in the fall of 1981 and 
generously explained to me all the details of his work on long range 
scattering outlined in the Goulaouic-Schwartz seminars 1978/79. His ideas 
are crucial in Chapter XXX. When the amount of work involved in writing 
this book was getting overwhelming Anders Melin lifted my spirits by 
offering to go through the entire manuscript. His detailed and constructive 
criticism has been invaluable to me; I as well as the readers of the book 
owe him a great debt. Bogdan Ziemian's careful proofreading has eliminated 
numerous typographical flaws. Many others have also helped me in my 
work, and I thank them all. 

Some material intended for this monograph has already been included in 
various papers of mine. Usually it has been necessary to rewrite these 
papers completely for the book, but selected passages have been kept from a 
few of them. I wish to thank the following publishers holding the copyright 
for granting permission to do so, namely: 
Marcel Dekker, Inc. for parts of [41] included in Section 17.2; 
Princeton University Press for parts of [38] included in Chapter XXVII; 
D. Reidel Publishing Company for parts of [40] included in Section 26.4; 
John Wiley & Sons Inc. for parts of [39] included in Chapter XVIII. 
(Here [N] refers to Hormander [N] in the bibliography.) 

Finally I wish to thank the Springer-Verlag for all the support I have 
received during my work on this monograph. 

Djursholm in November, 1984 Lars Hormander 
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Introduction 
to Volumes III and IV 

A great variety of techniques have been developed during the long history 
of the theory of linear differential equations with variable coefficients. In 
this book we shall concentrate on those which have dominated during the 
latest phase. As a reminder that other earlier techniques are sometimes 
available and that they may occasionally be preferable, we have devoted the 
introductory Chapter XVII mainly to such methods in the theory of second 
order differential equations. Apart from that Volumes III and IV are in
tended to develop systematically, with typical applications, the three basic 
tools in the recent theory. These are the theory of pseudo-differential oper
ators (Chapter XVIII), Fourier integral operators and Lagrangian distri
butions (Chapter XXV), and the underlying symplectic geometry (Chapter 
XXI). In the choice of applications we have been motivated mainly by the 
historical development. In addition we have devoted considerable space and 
effort to questions where these tools have proved their worth by giving 
fairly complete answers. 

Pseudo-differential operators developed from the theory of singular in
tegral operators. In spite of a long tradition these played a very modest role 
in the theory of differential equations until the appearance of Calderon's 
uniqueness theorem at the end of the 1950's and the Atiyah-Singer-Bott 
index theorems in the early 1960's. Thus we have devoted Chapter XXVIII 
and Chapters XIX, XX to these topics. The early work of Petrowsky on 
hyperbolic operators might be considered as a precursor of pseudo-differen
tial operator theory. In Chapter XXIII we discuss the Cauchy problem 
using the improvements of the even older energy integral method given by 
the calculus of pseudo-differential operators. 

The connections between geometrical and wave optics, classical me
chanics and quantum mechanics, have a long tradition consisting in part of 
heuristic arguments. These ideas were developed more systematically by a 
number of people in the 1960's and early 1970's. Chapter XXV is devoted to 
the theory of Fourier integral operators which emerged from this. One of its 
first applications was to the study of asymptotic properties of eigenvalues 
(eigenfunctions) of higher order elliptic operators. It is therefore discussed in 
Chapter XXIX here together with a number of later developments which 
give beautiful proofs of the power of the tool. The study by Lax of the 
propagation of singularities of solutions to the Cauchy problem was one of 
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the forerunners of the theory. We prove such results using only pseudo-
differential operators in Chapter XXIII. In Chapter XXVI the propagation 
of singularities is discussed at great length for operators of principal type. It 
is the only known approach to general existence theorems for such oper
ators. The completeness of the results obtained has been the reason for the 
inclusion of this chapter and the following one on subelliptic operators. In 
addition to Fourier integral operators one needs a fair amount of symplectic 
geometry then. This topic, discussed in Chapter XXI, has deep roots in 
classical mechanics but is now equally indispensible in the theory of linear 
differential operators. Additional symplectic geometry is provided in the 
discussion of the mixed problem in Chapter XXIV, which is otherwise 
based only on pseudo-differential operator theory. The same is true of 
Chapter XXX which is devoted to long range scattering theory. There too 
the geometry is a perfect guide to the analytical constructs required. 

The most conspicuous omission in these books is perhaps the study of 
analytic singularities and existence theory for hyperfunction solutions. This 
would have required another volume - and another author. Very little is 
also included concerning operators with double characteristics apart from a 
discussion of hypoellipticity in Chapter XXII. The reason for this is in part 
shortage of space, in part the fact that few questions concerning such operators 
have so far obtained complete answers although the total volume of results 
is large. Finally, we have mainly discussed single operators acting on scalar 
functions or occasionally determined systems. The extensive work done on 
for example first order systems of vector fields has not been covered at all. 



Chapter XVII. Second Order Elliptic Operators 

Summary 

The study of differential operators with variable coefficients has led to the 
development of quite elaborate techniques which will be exposed in the 
following chapters. However, much simpler classical methods will often 
work in the second order case, and some results are in fact only valid then. 
Moreover, second order operators (or rather related first order systems) play 
an important role in many geometrical contexts, so it seems natural to 
exploit the simplifications which are possible for them. However, the well 
motivated reader aiming for the most high powered machinery can very 
well skip this chapter altogether. 

Elliptic operators are of constant strength so the results proved in 
Chapter XIII are applicable to them. The perturbation arguments used in 
Chapter XIII are recalled in Section 17.1 in the context of elliptic operators 
with low regularity assumptions on the coefficients and with U or Holder 
conditions on the solutions. However, we shall not aim for such refinements 
later on since their main interest comes from the theory of non-linear 
differential equations which is beyond the scope of this book. 

Section 17.2 is mainly devoted to the Aronszajn-Cordes uniqueness 
theorem stating in particular that if 

£ aa(x)D«u = 0 

is an elliptic equation where aa are real valued Lipschitz continuous func
tions for |a| = 2 and aa are bounded for |a |<2, then u vanishes identically if 
u vanishes of infinite order at some point. No such result is true for 
operators of higher order than two although there are weaker uniqueness 
theorems concerning solutions vanishing in an open set (see also Chapter 
XXVIII). In this context we also return to the uniqueness theorems of 
Section 14.7 where we now allow first order perturbations. 

In Section 17.3 we study the simplest classical boundary problem, the 
Dirichlet problem, consisting in finding a solution of Au = f with given 
boundary values. When the coefficients are constant and the boundary is flat, 
a reduction to the results of Section 17.1 is obtained by a simple reflection 
argument. As in Section 17.1 we can then use perturbation methods to 
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handle variable coefficients and a curved boundary. Thus the boundary is 
flattened, coefficients are frozen at a boundary point, the norm of the error 
then committed is estimated, and a Neuman series is applied. Obviously no 
good information on the singularities of solutions can be obtained in that 
way. In Section 17.4 we therefore present the Hadamard parametrix method 
which exploits the simple form of a second order operator in geodesic 
coordinates to describe the singularities of the fundamental solution with 
arbitrarily high precision. This method is in fact applicable to all second 
order operators with real non-degenerate principal symbol. It can also be 
applied to the Dirichlet problem although with considerable limitations due 
to the possible occurence of tangential or multiply reflected geodesies. 

In Section 17.5 we combine the results of Sections 17.3 and 17.4 to a 
study of the asymptotic properties of eigenfunctions and eigenvalues of the 
Dirichlet problem. First we prove the precise error estimate of Avakumovic 
away from the boundary. A fairly precise analogue at the boundary is given, 
but one component of the proof cannot be completed until Chapter XXIV. 
Further refinements will be given in Chapter XXIX. 

17.1. Interior Regularity and Local Existence Theorems 

Despite the title of the chapter we shall here study a differential operator 

P(x,D) = £ aa(x)D" 
|a|^m 

of arbitrary order m in an open set XczWC1. We assume that for some 
pe(l, oo) 

(i) aa is continuous when |a| = m; 
(ii) Pw(0,D)= £ aa(0) D« is elliptic; 

|a| = m 

(iii) aaeLM/0
(r~|a|) if m - | a | < n / p , aaeLP+c

8 for some e>0 if 

m - | a | = n/p, aaeZ/;oc if m- | a |>n /p . 

We can then supplement Theorem 13.2.1 as follows: 

Theorem 17.1.1. / / (i)-(iii) are fulfilled and X is a sufficiently small neigh-
horhood ofO, then there is a linear operator E in LP(X) such that 

(17.1.1) If(X)3f^DaEfeI3(X) is continuous if p^q^oo and 

l/q^l/p—(m — \cc\)/n with strict inequality ifq = co; 

(17.1.2) P(x,D)Ef = f feU{X\ 

(17.1.3) EP(x,D)u = u if ueC™(X). 

Proof Let p(D) = Pm(0,D) and choose F0e&" according to Theorem7.1.22 so 
that F0(£)=l/p(£) when | f | ^ l and F0eC°°. Then it follows from Theorems 
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7.9.5 and 4.5.9 that 

(17.1.4) \\D*F0*g\\LqSC\\g\\LP 

if geUnS\ l/q=l/p-(m-\a\)/n, q<oo. 

Moreover, DaF0eEloc if m —|a|>n(l —1/r), for D*F0 is essentially homo
geneous of degree m — |a| — n > — n/r. 

Let E0 be a fundamental solution of p(D). Then F0-E0eC°°. If geLF(X) 
we define go^g in X and g0 = 0 in £X, and set E0g = E0*g0\X. From 
(17.1.4) and the subsequent observations it follows if X is contained in the 
unit ball that 

(17.1.5) \\D*EQg\\Lq{X)^ C\\g\\LP(X), geU(X). 

Here l/q = l/p — (m — \oc\)/n when m — \oc\<n/p, we choose q=p(p + e)/s with e 
as in condition (iii) when m — \a\ = n/p, and g = oo when m — \a\>n/p (take 
l / r + l / p = l). Now 

P(x,D)£0g = p(2))£0g + (P(x,Z))-p(i)))E0g = g + ^g , 

Rg= Z (aaM-aa(0))Da£og+ J fla(x)Da£0g. 
|a|=m |a|<m 

By Holder's inequality, (17.1.5) and conditions (i) and (iii), we have 

WRghpix^Wgh^ geU(X)9 

if X is sufficiently small. Thus I + R is then invertible, and E = E0(I + R)~1 

has properties (17.1.1) and (17.1.2) by (17.1.5) and the fact that 

P(x,D)Ef = (I + R)(I + R)-1f = f. 

Finally, if f = P(x,D)u, ueCo(X\ then the unique solution of the equation 
g + Rg = f is g = p(D)u, for E0g = u, hence 

p(D)u + Rp(D)u = p(D)u+ £ (aa(x)-aM)D*u+ I aa(x)Da
W 

|a| = m |a|<m 

is equal to P(x,D)u in X. This completes the proof. 

If one replaces the IF conditions by Holder conditions one obtains the 
following theorem instead: 

Theorem 17.1.1'. Assume that for some ye(0,1) the coefficients of P(x,D) are 
in Cy in a neighborhood of 0, and that Pm(0, D) is elliptic. If X is a sufficiently 
small ball with center at 0 then there exists a linear operator E in Cy(X) such 
that 

(17.1.1X Cy(X)3f\-+DaEfeCy(X) is continuous if |a| ^ m ; 

(17.1.2)' P(x,D)Ef=fi feO{X); 

(17.1.3)' EP(x,D)u = u if ueC™(X). 
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Here Cy(X) is the set of all continuous functions in X such that the 
norm 

sup|g(x)|+ sup|g(x)-g(j;) | / | ;c-)f 
xsX x,yeX 

is finite. If X has radius r, then a Cy extension to the whole space is given 
by 

goM = g(*)> *eX; 

go(x) = g(rx/\x\)(2-\x\/r), r£ |x |£2r ; 

goW = 0, |x |>2r. 

The proof of Theorem 17.1.1' is identical to that of Theorem 17.1.1 except 
that g0 is defined in this way and that (17.1.4) is replaced by the continuity 
in Cy when |a| = m, which follows from Theorem 7.9.6. We leave the details 
for the reader since the result will never be used here. 

By a slight twist of the proof of Theorem 17.1.1 one can prove a loga
rithmic convexity theorem for the IF norms of the derivatives which will be 
useful later on. To shorten the proofs we exclude lower order terms now. 
First we prove a lemma. 

Lemma 17.1.2. If P(D) is homogeneous and elliptic of order m, then 

(17.1.6) £ Am-M\\D°v\\LP^C(\\P(D)v\\LP + Am\\v\\LI,) 
\a\£m 

ifA>OandDaveIF,\<x\^m. 

Proof. Introducing i x a s a new variable instead of x makes A disappear in 
(17.1.6) so we may assume in the proof that A = l. We define F0 as in the 
proof of Theorem 17.1.1, thus P(D)F0 — d + co where we^. Then we have 

Dav = DaF0 * P(D)v-(Da(o) * v, 

and (17.1.6) follows since Daoel} and DaF0 satisfies the hypotheses of 

Theorem 7.9.5. 

Remark. It follows from the proof that C can be taken independent of P if P 
varies in a compact set of elliptic polynomials of degree m. 

Theorem 17.1.3. Assume that Pm(x, D) satisfies the hypotheses (i) and (ii) above 
in a compact neighborhood K of 0. Let XaK be an open set, and denote by 
d(x) the distance from xeX to fX. If DaueU{X\ |a |^m, it follows then that 

(17.1.7) I M ( x ) w ^ 

where C is independent of X. 
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Proof. Let B = B(y,R) be a ball with radius & and center yeX with 
d(y)^2R. Set xB(x) = x((x-y)/R) with a fixed xeC%(B(0,1)) which is equal 
to 1 in B(Q,%). Applying (17.1.6) to P(D) = Pm(y9D) and v = iBu gives with 
another C 

^C( J \Pm(x,D)u\pdx + e(R) £ J |Daw|pdx 

+ £ i^-p(w- |a|) j |Daw|pdx + ,4pm J Mpdx). 
|a|<m B(y,R) B(y,R) 

Here we have expanded P(D)(xBu) by Leibniz' formula and estimated 
XB(Pm(y,D) — Pm(x9D))u(x) by means of the modulus of continuity £ of the 
coefficients. Thus £(JR)->0 when R-^0. Now we take A = M/R where M is a 
large constant and multiply by Rpm. This gives 

•£ Mp ( m" | a | )^ | a ! J |Dawf dx 

SC( J |irPm(x,D)u|pdx + e(£) £ j |KmZ)aw|pdx 
B(y,«) \<x\ = mB(y,R) 

+ X! #pW J \Dau\pdx + Mpm j |w|pdx). 
|a |<m B(y,K) B(y,R) 

With some small .R0 to be chosen later we define 

R(y) = mm(R0,d(y)/2) 

and integrate with respect to R(y)~ndy over X. Since \R(x) — R(y)\^\x — y\/2 
it follows if |x -y\<R(y) that |JR(j?) -^R(x)| <K(j)/2, hence 

R(y)/2<R(x)<3R(y)/2. 

On the other hand, if |x-.y|<2R(x)/5 then \R(y)-R(x)\<R(x)/5 so 

4R(x)/5<R(y)<6R(x)/5. 
Hence 

/ dy/R(y)n^(3/2T / dy/R{xf = 3n J dy, 
x€B(y,R(y))  \x-y\<2R(x) \y\<\ 

J dy/R(y)n^(5/6f f dy/R{xf = 3~" / dy. 
x€B(y,iR(y))  \x-y\<2R(x)/5 |y|<l 

With a new constant C independent of R0 it follows that 

£ Mp(m-|a|)f|-R(x)wDau|prfx 
| a |£m 

^C($\R{x)mPm(x,D)u\"dx + E(R0) £ f|R(x)mD«w|pdx 
| a |=m 

+ X f|£(x)|alDau|pdx + MpmJ|u|p<2x). 
|a| <m 
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Choose R0 so small that Cs(JR0)<i. When M^M0, say, we can then cancel 
the two sums on the right-hand side against half of the left-hand side and 
obtain 

Mm-M\\R(x)MD"u\\LP^ C(\\R(xrPm(x,D)u\\LP + Mm\\u\\LP). 

We choose M = M0 if \\R{x)mPJx,D)u\\LP<M^\\u\\LP\ otherwise we take M 
so that 

Mm\\u\\LP=\\R(xrPm(x,D)u\\LP, 

which gives (17.1.7). 

Corollary 17.1.4. Assume that Pm satisfies the hypotheses (i), (ii) in a neigh
borhood K of 0. / / D'uelF in K \ {0} for \a\^mand 

(17.1.8) J \u\pdx = 0(RN\ R-+0, 
R<\x\<2R 

(17.1.9) \Pm(x,D)u\^C £ |Daw||x||a|-w in K^{0} 
|a | <m 

then it follows if\a\^m that 

(17.1.10) J \R^Dau\pdx = 0(RN% R->0. 
R<\x\<2R 

Proof We can apply Theorem 17.1.3 with X = B(0,2R)^B(0,R) if R is small. 
Then 

d(x)m\Pm(x,D)u\SC £ d(x)W\D«u\ 
|a| <m 

because d(x)^R<>\x\. Hence it follows from (17.1.7) that 

|a| <m 

Thus 

X J \(R/3)WD"u\*>dx^ X ||rf |a|DaM||£PW 
|a|<m 4R<3\x\<5R |a|<m 

^crnW |i£PW=o(^), 
which proves (17.1.10) for |a|<m. Another application of (17.1.7) gives 
(17.1.10) when |a| = m also. 

With applications to global existence theory in mind we shall discuss in 
Section 17.2 whether a solution u of a differential equation with principal 
symbol Pm must be zero when (17.1.8) is valid for all N (or, equiva
lent^, if (17.1.10) is valid for all a with |a|<m and all N). We shall then 
have to assume that the coefficients of Pm are Lipschitz continuous, that is, 
\aa(x) — aa(y)\?>C\x — y\9 |a| = m. Then we can define Pm(x,D)u in the distribu-
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tion sense if DaueU, |a|<m, and Theorem 17.1.3 as well as Corollary 17.1.4 
can be improved by means of Friedrichs' lemma: 

Lemma 17.1.5. Let veU(WLn) and let \a(x)-a(y)\^M\x-y\ if x,yeWLn. If 
(j>eC^ and (/>e(x) = 0(;x;/̂ )^~^ then 

(17.1.11) l l ^ ^ ^ . - f l P ^ ^ J I I ^ g M b l l ^ f f l ^ l + lyMD^I)^ 

For fixed v the left-hand side tends to 0 when s-+0. 

Proof Since C^ is dense in If we may assume that veC™, and it suffices to 
prove (17.1.11) since it is then obvious that the limit is 0. The quantity to 
estimate is 

\\{a{x-y)-a{x)){D}v){x-y)<t>e{y)dy\ 
= \j(a(x-y)-a(x))v{x-y)Dj<l)e(y)dy-$(Dja)(x-y)v(x-y)(l)e(y)dy\ 

£Ml\v(x-yMy\\Dj4>MH(l>M)dy-

(17.1.11) follows now from Minkowski's inequality since 

!(\<l>M+\y\\Dj<l>M)dy 
is independent of e. 

Let us now return to Theorem 17.1.3 assuming only that DaueIf(X)9 

|a|<m, but that aa are Lipschitz continuous and that Pm(x,D)ueIf(X). Let 
X0, XieC^(X), XI = 1 in a neighborhood of supp x0, and set v=Xou- Then 
ve£'{X) and DaveLp, |a|<m, Pm(x9D)veLp. Choose 4>eC$ with j>dx = l 
and set ve = v*(j)e where (j)e(x)—(l)(x/s)/en. Then vBeC™ and if ba = Xiaa we 
have for small e 

Pm(x,D)vB= X baD*vt-+Pm(x9D)vinir 

by Lemma 17.1.5 since Jf^(x,D)u==£fcaD
at;. Hence we can apply (17.1.7) to 

vE— vd and conclude that Dave has a limit in IF when e-»0 if |a|=m. Hence 
DaueUioc(X) when |a|^m. The estimate (17.1.7) is therefore true if X is 
replaced by {xeX; d(x)>p}. Letting p->0 we obtain (17.1.7) as it stands. 
Thus Theorem 17.1.3 and Corollary 17.1.4 are valid when aa are Lipschitz 
continuous and Da ueU, |a| < m. 

17.2. Unique Continuation Theorems 

We shall begin with a unique continuation theorem similar to Theorem 8.6.5 
where operators of higher order are allowed. Let 

Pm(x>D)= I aa(x)D* 
|a| = m 
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be defined in an open set XaWLn and assume 
(i) aa is Lipschitz continuous in X, 

(ii) Pm is elliptic in X. 
By I we denote the closed conic set 

(17.2.1) Z = {(x,N)€T*(X)\0;  Pm(x,£ + rN) has a zero r of multiplicity ^ 2 

with f + TN £ 0 for some £ e JRn}. 

Of course T cannot be real then. 

Theorem 17.2.1. If D*UGL2
OC(X\ |a|<m, and Pm(x,D)ueL2

oc(Xl 

(17.2.2) r. |Pm(x,Z))u|^C X I£ a"| in X 
|a| <m 

t/iew iV(supp u) c Z, wftere T is defined by (17.2.1). 

For the notation N and the global uniqueness results which follow from 
Theorem 17.2.1 we refer to Sections 8.5 and 8.6. The definitions of I and of 
N are both local and invariant under local diffeomorphisms so it is suf
ficient to prove that if OeX and (09N)$Z, N = (0, ...,0,1) then M = 0 in a 
neighborhood of 0 if suppi /n{x;x n ^0}c{0}. This will be done by means 
of estimates with respect to high powers of a weight function with maxi
mum in the support of u taken at 0 only. 

Set p(<!;)=Pm(0,£). Then the hypothesis (09N)$E means that p(£ + ixN) 
and pin)(£ + iTN) = dp(£ + iTN)/d£n have no common zero (£,T)eRw + 1 \{0}. 
Thus 

(17.2.3) I T2(m-laI>|^|2^C(|p({ + iTiV)|2 + T2|p(w)(^ + iTiV)|2); 

K , i ) e r + 1 ; 

for both sides are homogeneous of degree 2m and can only vanish if r = 0 
and /?(£) = 0, that is £ = 0. Next we need an identity of Treves which is 
closely related to the commutation relations. 

Lemma 17.2.2. Let Q(x) = £a / x J . + ^bjX?/2 be a real quadratic polynomial in 
IR" and let P(D) be a differential operator with constant coefficients. If 
ue C%(JBL") andv = u eQ/2 then 

(17.2.4) / \P{D)u\2eQdx = / \P(D + iQ'/2)v\2dx 

= IE \PM(D - iQ'l2)v\2ba/a\dx. 
a 

Proof The first equality is obvious since Dju = e~QI2{Dj + idjQj2)v. The 
adjoint of Dj + idjQ/2 is Dj—idjQ/2 so we must show that 

(17.2.5) P(D-iQ'/2)P(D + iQy2) = %Pia\D + iQ^2)Pia\D-iQ'/2)ba/oiL 
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Now the commutators 

[Dj-^ie/2,Dfc+iake/2]=3.ake=fc.5jk 

are the same as the commutators of dj and bkxk. Since as operators 

P(d) P(b x) = £ (da P(b x)) P(a)(5)/a! 

by Leibniz' rule and this is a purely algebraic consequence of the com
mutation relations, it follows that (17.2.5) holds. 

The following is the crucial estimate in the proof of Theorem 17.2.1. 

Proposition 17.2.3. Let Pm(x,D) satisfy conditions (i) and (ii) above in a neigh-
borhood of 0 and assume that (0, N)(f;E. Then theve is a neighborhood XQCZX 

of 0 such that with </>(x) = xn + x2/2 we have for small e > 0 and large T > 0 

(17.2.6) X ^"-^-'^D'ufe^dx 

^Cl\Pm(sx,D)u\2e2^dx9 ueC%(X0). 

Proof If we write v(x) = u(x)er<t>{x) then 

Du = e-x4,{D + ix(j)l)v and Dv = ex*(D-iT<t)')u. 

Apart from the size of the constant, (17.2.6) is therefore equivalent to 

(17.2.6)' X T2(w-W)-1J|D«w|2dx 

^Cj|Pm(£x,D + f T 0 > | 2 d x , veC$(X0). 

Assume first that the coefficients of Pm are constant, thus Pm=p. If we apply 
(17.2.4) with P = p and Q = 2 %<j) it follows that 

(17.2.7) l\p{D-ix(j)')v\2dx + 2T\\fn){D-ix<l)')v\2dx 

^$\p(D + iT(l)')v\2dx. 

By (17.2.3) and Parseval's formula we have for all veC%QBLn) 

(17.2.3)' £ T2(m" ,a | ) J"\D<*vfdx^ C(J\p(D-ixJV)v\2dx 

+ x2\\^{D-ixN)v\2dx) 

If veC$(X0) and |x|<<5 in X09 it follows from (17.2.3)' that 

(17.2.8) X T2 ( m~ | a | )J |D a i ; |2dx^2C(J|p(D-iT0')i ; |2dx 
| a | ^m 

+ x2 ^^{D-ix <j>')v\2 dx)+ C{l+S2 x2) X T2<"-1-'«l)J|D"»|2dJC. 
|a|gm 
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When d is small and T is large we have C'(1 + S2T2)<T2/2 which allows us 
to cancel the last sum against half of the left hand side. (17.2.6) is then a 
consequence of (17.2.8) and (17.2.7). 

To complete the proof we need an elementary lemma which allows us to 
handle variable coefficients. We denote the L2 norm simply by || ||. 

Lemma 17.2.4. Let I c R " be an open set, and let A be a Lipschitz con
tinuous function with \A(x) — A(y)\^L\x — y\ for x, yeX. Then 

\$A{x){Dau(x)Dpv(x)-Dfiu(x)D"v(x))dx\^\a + p\LM 

ifu,veC™(X)and 

\\Da'u\\ \\Dfi'v\\SM when |a ' + j8'|<|a + jB|, max(|^|j31)^max(|a|,|jS|). 

Also the last inequality can be taken strict when |a|#=|j8|. 

Proof This is obvious when a + j? = 0. If |a + /?| = 1 we just have to note that 

J A(x) (Dju(x) v(x) — u(x) Dj v(x)) dx = — J DjA(x) u(x) v(x) dx. 

An integration by parts also gives the statement when |a| = |/?| = l, 

j A(x)(Dj u(x) Dk v(x) - Dk u(x) D} v(x)) dx = 

- / u(x)(DjA(x)Dkv(x) - DkA(x)Djv(x))dx. 

These two identities allow us to exchange indices between a and /? and 
transfer excess derivatives at a cost of LM for each index affected. 

End of Proof of Proposition 17.2.3. Writing Pm(0,D) = p(D) and r(x,D) 
= Pm(x,D)—p(D) now, we know by hypothesis that the coefficients of 
r(sx,D) and their Lipschitz constants are 0(e) in X. With the notation in 
the first part of the proof we form 

j \Pm(s x,D + iz (j)') v\2 dx - J \Pm(s x,D-iT (/>') v\2 dx. 

Inserting Pm=p + r we first obtain the terms 

\\p(D + ix^)v\2 dx-\\p{D-ix^')v\2 dx^2x\\fn\D-ix^')v\2 dx. 

The other terms where no derivative falls on (j)' are of the form 

T2m-^~^^A(x)(Dav(x)Dpv(x)-Dfiv{x)Dav(x))dx; |<x|£m, |j»l^m; 

where the Lipschitz constant of A is 0(e). These terms can be estimated by 
means of Lemma 17.2.4. In addition there are terms of the form 

TvJA(x)D"v(x)Dpv(x)dx; v + |a| + |j8|.<2m, |a|gm, |j8|^m; 
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where sup \A\ = 0(e). Thus 

\\Pm(ex,D-iT<l)')v\\2 + T\\^(D-iT(t>')v\\2 

|a|^m 

If we observe that (17.2.8) remains valid with p(D — i%4>') replaced by 
P^x.D — ix^') provided that e<<5, we complete the proof of (17.2.6) just as 
in the constant coefficient case. 

Proof of Theorem 17.2.1. We recall that it suffices to prove that if OeX 
and (0,N)$Z, iV = (0,.. . ,0,l) then w = 0 in a neighborhood of O if 
suppwn{x;xn^O}<={0}. In doing so we set ue(x) = u(ex) where e is chosen 
so small that (17.2.6) is valid for a neighborhood X0<=:X/e of 0. Let 
xeC™(X0) be equal to 1 in a neighborhood V of 0, and set U = xuE. If 
Pm(x,D)u = / t h e n 

Pm(ex,D)U = e*n
X(x)f(ex) + £ D*XP£\zx,D)uJoi\ 

0<|<x|^m 

which implies that Pm(ex,D) UeL2 and that, by (17.2.2), 

\Pm(ex,D)U\^C £ sm-W\D*U\ in V. 
\a\<m 

By the remarks at the end of Section 17.1 we have Da Uel3 when |a |^m, so 
it is clear that (17.2.6) may be applied to U. If supp/ is small enough we 
have 4>^ — c for some c > 0 in supp l / \ K Hence we obtain using (17.2.6) 

T* £ \\ez*DaU\\^C\\ex<t>Pm(£x,D)U\\SC £ \\ex*D*U\\ + C" e~cx. 
|a|<m |a|<m 

For large T it follows that 

T* £ \\ex*DaU\\^2C"e-ct. 
\a\ <m 

Hence 17 = 0 when 4>> — c, which proves the theorem. 

In the second order case the following lemma shows that the set I has a 
very simple description: 

Lemma 17.2.5. Let p be a quadratic form in Rn with complex coefficients 
which is elliptic, that is, p(£)#0 when 0=KeRw. If iVe]Rn\Q and 
(JEK/'XIRJV, n + 2, it follows that the equation p(£ + TJV) = 0 has one root with 
l m r > 0 and one with l m i < 0 . When n = 2 the roots are distinct unless p is the 
square of a linear form. 

Proof IR/'xRiV is connected if n>2. Since P(£ + TN) has no real zero if 
£ e R n \ R i V it follows that the number of zeros with l m t > 0 is independent 
of £. Replacing £ by — £ changes the sign of T also so there must be one 
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zero in each half plane. When n = 2 there is a factorization p(£) = L1(£)L2(Q 
with linear factors Lx and L2. They must be proportional if they have a 
common zero; and then they can be chosen equal. 

If m = 2 it follows that E is empty when n>2 and that £= ( J (T x * \0 ) for 
all x such that Pm{x^) is the square of a linear form when w = 2. If X is 
connected and Pm(x,t;) is real for some x then I is empty, for the two zeros 
of JJ,(X,J + T N ) must remain in different half planes for reasons of con
tinuity. 

In what follows we shall only consider the second order case and shall 
then use the notation p(x,D) instead of Pm(x,D). We shall prove that if u 
satisfies a weakened form of (17.2.2) and vanishes of infinite order at a point 
where the coefficients are real, then u is equal to 0. 

Theorem 17.2.6. Let p(x,D) = ^aJk(x)DJD fc be an elliptic operator in a con
nected neighborhood X of 0 such that ajk(0) is real, ajk is continuous in X, 
Lipschitz continuous in X \ { 0 } , and \a'jk\^C\x\d~l for some <5>0. / / 
D*ueL2

oc, MSI and 

(112.2)' \p(x,D)u\SC £ |x|'+W"2ID-iil, 

(17.2.9) j \u\2dx = 0{e% £ - 0 , 
\X\<B 

for every N, then w = 0 in X. 

Proof Since (17.2.2)' implies (17.1.9) it follows from Corollary 17.1.4 in the 
extended form discussed at the end of Section 17.1 that for |a| ^ 2 and all N 

(17.2.9)' J \Dau\2dx = 0{eNl c->0. 
e<|x| <2e 

Hence u is the sum of a function in HffiX) and a distribution with support 
at 0. However, no distribution with support at 0 is in l}loc so it follows that 
ueH^iX). By Theorem 17.2.1 it suffices to show that w = 0 in a neigh
borhood of 0. Without restriction we may assume that p(0,D)=£D?. 

As in the proof of Proposition 14.7.1 we introduce polar coordinates in 
JR"\{0} by writing x = eta> where telR and coeSn~l. Then we have 

d/dxj^e-'icojd/dt + Qj) 

where Q. is a vector field in Sn~l. With the notation p(x,D)=^a j k(x)D jDk 

it follows that 

p(x, D) = - e~ 2t £ ajk{e< co)(coj(d/dt -1) + Q) (cok d/dt + Qk). 

With L/(t,co)=w(^co) the inequality (17.2.2)' can be written 

(17.2.2)" iXflj^coHco/a/Sr-lJ + O ^ ^ a / S t + Q J t / I ^ C X 6*1141 
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where Ua = (a>d/dt + Q)a U. By assumption we have ajk{el a)) = djk + 0(edt) as 
t-+ — oo, first order derivatives are 0{e8t\ and 

X {a>j(Wt - 1 ) + Oj) (co j d/dt + O,) = d2/dt2 + (n - 2) d/d t + £ flj 

since J]G>.fi</ = 0 and ^O ja)7==^r3co J . /5x i=^r3(x J/r)/3x i = n —1. The oper
ator £ & j is the Laplace-Beltrami operator Am in the unit sphere. The 
adjoint of fi^ as an operator in L2(Sn~ *) is (n — 1)^—Q^. In fact, 

$(QjU)vdx+ §uQjVdx = $Qj(uv)dx = §\x\d(uv)/dXjdx—\\(ojd(uv)/drrnd(odr 

= —\(Djuvdx + n\a>juvrn~1d(tidr 

= (n — l)ja>jUvdx. 

In spite of this Aa is of course self-adjoint; indeed, we have 

X((«-i)^-^)2=(»-i)2-(«-i)E^^+E«i=Z^2-
In the proof of Theorem 17.2.1 the essential estimate (17.2.7) was ob

tained from (17.2.4) thanks to the positivity of bj9 that is, the convexity of 
the exponent <f>. To obtain a similar effect we introduce for some s with 
0 < £ < (5 a new variable T instead of t, 

t=T+eeT; dt/dT=l + eeeT>0. 

Note that T<t < T + 1 < T/2 if T< -2. After multiplication by (1 + seeT)2 

the operator in the left-hand side of (17.2.2)" becomes 

Q = d2/dT2 + c(T)d/dT+(l + aeET)2Yjn
2 + £ caJ(T,co)(d/dTYQ*. 

I«l+ii2 

Here c(T) = (n-2)(l + seeT)-s2eeT/(l + eeeT) is close to n-2 at - o o , and 

(17.2.10) caJ = 0(edtl dcaJ = 0(e3t) as T->-oo. 

(Note that this change of variables is not smooth in the original variables.) 
We shall prove that for some T0 

(17.2.11) X ?3-2iHWl)tt\(d/dTYQ*U\2e-(2T-e)Td(DdT 
j+\a\£2 

SCl$\QU\2e-2xTd(DdT, [ / e C ^ - o o ^ x S " - 1 ) . 

(When |a| = 2 we define Q* for example as a product Q}Qk with j^k.) This 
will serve the same purpose as (17.2.6) did in the proof of Theorem 17.2.1. 

Proof of (17.2.11). Set U = exTVm& 

QxV=e-TTQ(etTV). 

Thus Qx is obtained from Q when d/d T is replaced by d/dT+z. Then 
(17.2.11) is equivalent to 

(17.2.11)' X ^-2U+Wl)ttWdTYQ*V\2eETd(DdT 
J+\*\£2 

SCtf\QxV\2dcodT, VeC%((-cx),T0)xSn-1). 


