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Preface

Sonar instruments are the only ones capable of accurately mapping large areas of the
seabed and any water-covered area, because of the much lower attenuation in water of
acoustic radiation compared with, for example, electromagnetic radiation. Sonars are
therefore used all around the world, often in areas not mapped before. This meant
there was a clear need for a reference book for new users, or users confronted with new
features. This was first addressed by the Handbook of Seafloor Sonar Imagery, which
I wrote in 1997 with the help of my colleagues Bramley J. Murton, D. Milkert and
V. Hithnerbach whilst still at the Southampton Oceanography Centre (UK). Since
then, we have had the pleasure of seeing this book used as a reference by many
colleagues, in academic circles and in industry, during surveying or during processing
and interpretation on land. Some university courses have adopted it as their main
textbook and some survey companies have used it as the main learning support for
their new engineers.

As time passed, and as the last edition went out of print, friends and colleagues
everywhere started to press for a new edition. In the meantime, I had moved to
the Department of Physics, University of Bath and my research interests (and
publications) covered a broader range than just seabed mapping. Looking at other
underwater instruments (e.g., bistatic sonars, bio-inspired sonars, passive sensors) has
helped broaden the outlook of this book and put sidescan sonar applications in
perspective. Continued research in planetary remote sensing also helped better seeing
the general aspects of image interpretation, especially when confronted with strange,
new environments. These changes are reflected in this Handbook of Sidescan Sonar,
and in the way the different themes have been approached. After a brief introduction
(Chapter 1), this book is divided into three main sections: the acquisition of sonar
imagery (Chapters 2—4), covering all technological and scientific aspects of relevance
to the sonar user; examples from the different environments (Chapters 5-9), including
the increasing presence of man-made objects at all depths on the seabed; and tech-
niques of advanced interpretation (Chapters 10—11), with their latest developments



xii  Preface

but also an assessment of how far they can be used reliably. I have aimed at making
this book widely accessible by pitching it at a scientific graduate level, and reducing the
equations to the bare minimum. Wherever necessary, references are available for the
reader wanting to go further, essential ones at the end of each chapter and a full
reference list at the end of the book.

Reference to commercial products, processes, or services by tradename,
trademark, manufacturer, or otherwise does not constitute or imply its endorsement
by the author or his institution. Similarly, the presence or absence of particular articles
or results does not imply any judgment value, but merely the need to present the basics
of sidescan sonar processing and interpretation in a finite space and writing time,
focusing on the most representative and readily available examples.
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Introduction

1.1 BOOK OVERVIEW

Knowledge of the Earth and its evolving environment is proving increasingly crucial.
Scientific, economic, political, and social decisions all depend at some time or another
on this knowledge, and we like to think that we know all there is to know about our
planet. One may be justified in doing so today, in the 21st century, by looking back at
those maps with white unexplored regions that were still prevalent at the beginning of
the 20th century. Yet, in many respects, we know more about the solid surface of
other planets than about our own Earth. Rovers driving on Mars for years on end,
landers on far-away Titan, and now the international missions to the Moon cannot
mask the fact that ocean bottom landscapes only a few kilometers from our shores
are still completely unknown.

More than half of the world’s population live within 100 km of the sea. Thirteen
of the 15 largest cities in the world are now located on or near the coast. The effects of
denser population and accelerating climate change include the disappearance of
ecosystems, coastal erosion, over-fishing, marine pollution, and higher vulnerability
to marine disasters such as tsunami or volcanic activity. But the oceans cover more
than two-thirds of the Earth’s surface, and are not accessible to direct observation.
It is only in the last 20 to 30 years that technological advances have allowed us to
discover and map the Earth’s seafloor, mostly through acoustic remote sensing.

Why only—some would say ‘““primordially”’—acoustic remote sensing? Why not
use our most intuitive sense, vision, and the plethora of Earth observation satellites in
orbit? We are used to seeing satellite-derived topography for the entire Earth, from
one pole to the other (e.g., the ETP-SRTM30 dataset, at kilometric resolution). But it
is derived from average gravity measurements and even when supplemented with
actual bathymetry measurements, it cannot account for evolution over time, and is
easily subject to confusion with gravity anomalies. Conversely, more accurate
mapping systems (e.g., SHOALS, using airborne lasers) have shown it possible to



2 Introduction [Ch. 1

map coastal areas in great detail. But even lasers can only penetrate through a few
tens of meters in very clear water. Diving with submersibles is limited too, because
only a handful of submersibles in the world are capable of diving below 3,000 m (thus
limiting us to 46% of the planet’s surface) and further because their field of view is
limited. Most of the light travelling into water is absorbed and converted into heat,
and in the visible wavebands, the path length in pure sea water is still limited to a few
tens of meters towards the blue part of the spectrum (Figure 1.1). Vision is therefore
of limited use under water.

Acoustic waves, by contrast, can travel over long distances without attenuating
too much (see Chapter 2 for more details). They can reach all depths in the ocean,
from the deepest (>11 km in the Marianas Trench) to the most common (~ 4 km) and
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Figure 1.1. Light attenuation in pure water, as measured in different experiments (from
http:||oceanworld.tamu.edu/resources/ocng_textbook|chapter06/chapter06_10.htm). An absorp-
tion coefficient of 1 cm™! (coefficient ¢) means that in a single centimeter, light intensity will be
divided by e. Blue light is absorbed least, and red light attenuates very quickly. Seawater
contains salt and many heterogeneities (e.g., plankton), increasing the attenuation even more.
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the shallowest (a few centimeters). Acoustic echoes inform us about the range
travelled (i.e., the depth) and about how they were reflected (i.e., the type of seabed
or obstacle). Complex processing can reveal information at very small scales, down to
a few centimeters in some cases. They are used in instruments called sonars (for sound
navigation and ranging). The images and maps produced by these sensors are not
easy to interpret, because of their nature and because of the complex processes at play
during their propagation and reflection. There are different types of sonars, mostly
single-beam echo-sounders (looking directly beneath the supporting vessel), multi-
beam echo-sounders (looking on both sides of the vessel, providing mainly
bathymetry and sometimes imagery), and sidescan sonars (usually flown closer to
the seafloor, providing mainly imagery and sometimes bathymetry). They are all
presented in Chapter 2, but because the emphasis of the book is on imagery and
its interpretation, it will concentrate on sidescan sonars, whose imagery is much more
detailed, complex, and varied. Interpretation of multibeam imagery follows the same
principles and does not warrant separate treatment. Following in the footsteps of the
first (and then only) work on the subject (Belderson et al., 1972), the Handbook of
Seafloor Sonar Imagery (Blondel and Murton, 1997) was the first modern and
comprehensive book explaining the different steps of sidescan sonar imagery inter-
pretation. It proved a success, and the latest edition is now out of print. Ten years on,
it was felt necessary to update this book and expand its scope to the new domains of
sidescan sonar remote sensing.

The Handbook of Sidescan Sonar is more than just a new edition of the
Handbook of Seafloor Sonar Imagery, with a few updates and corrections. It has
been in fact substantially remodelled, redressing the undue bias toward mid-ocean
ridges of the previous version (explained by the domain in which both authors
worked) and taking into account more of the wider underwater world. This book
has also been substantially affected by many important developments of the last 10
years.

— The democratization of sonars. Once only used by powerful companies and
institutions, sonar sales and rentals have greatly increased every year (24% in
1997 alone).

— The emergence of new platforms. Sidescan sonars can still be towed behind ships,
but Unmanned Underwater Vehicles (UUVs), whether autonomous (AUV:
Autonomous Underwater Vehicles) or tethered (ROV: Remotely Operated
Vehicles) have become increasingly common and regularly use sidescan sonar
as their main mapping tool.

— The introduction of new manufacturing technologies. Innovative materials and
production techniques, and their fast transfer from research to commercial
products (e.g., the blazed array technology, patented in 1999 and first commer-
cialized in 2002), have led to advances in the capabilities of sidescan sonars and to
a greater portability (some shallow-water applications have even used kayaks).

— The introduction of new transducer configurations, or their easier implementa-
tion. This has led in particular to the development of interferometric sonars
(providing bathymetry at the same scale as imagery).
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— Advances in sonar processing have been made possible by developments in
computer technology and processing power. CPU speed has increased more
than ten-fold since 1997, and the price of data storage decreased roughly a
hundred-fold: Moore’s law means this trend is likely to follow for the next
10-20 years.

— Advances in sensor merging. Driven by the advances in processing means that
different sonars can be considered together for interpretation, rendering a richer
picture of the actual processes on the seabed. Information from other sensors
(e.g., attitude and navigation) is also better integrated, making for more accurate
maps.

— Developments in navigation and processing techniques. More accurate naviga-
tion, or even micro-navigation at scales of millimeters or centimeters, have made
possible the development of Synthetic-Aperture Sonars, whose performance does
not degrade with range (see Chapter 2).

— The spread of the Internet, even at sea. The ease with which information can now
be retrieved, from anywhere in the world, has made redundant long lists of
technical specifications in books, as they can be accessed more timely and
more completely at the click of a mouse (coupled with the sheer variety of
sonars now available on the market, this is the reason the list of sonars and
their characteristics has been greatly reduced in this book, to show only the most
representative or interesting).

— New advances in knowledge of the seabed. In the last 10 years, our knowledge of
the oceans has tremendously increased, because of the wider availability of
sonars and because of the wider types of surveys done. Many readers of the
Handbook of Seafloor Sonar Imagery contributed to these developments them-
selves, and the present book will try to do justice to their endeavors by showing
some of the latest examples of new features.

This long list of developments in the field means that a single book is not enough
to describe everything and acknowledge everybody in a varied, rich, and inter-
disciplinary field, merging research, development, and straight applications. The
Handbook of Sidescan Sonar does not pretend to be an exhaustive list of everything;
it does not aim either at being a “coffee table” book with pretty images of every
feature under the sea. And it does not aim to recognize all past research or activities.
Rather, we have aimed at making it a convenient book for researchers and practi-
tioners wanting a concrete answer to their questions. Users of the previous Handbook
have encouraged us in this way by telling us how they used it, often at sea, and what
they liked and disliked in it, and we are grateful for their comments. Students new to
the field of sidescan sonar have used the book as a base for further learning (starting
with the “Further reading” sections at the end of each chapter). Engineers have used
it to think about new products. Surveyors have used it to check intriguing images or
double-check their analyses. And researchers have used it to think about new ways of
processing or analysing the data, as well as to better understand specific images. Such
widespread use, by so many experienced users, has led us to bolster the sections on
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Figure 1.2. The famous map of the seabed, compiled by Mary Tharp and Bruce Heezen during
the 1960s, was the first to show so dramatically the variety of the seabed. It is now superseded by
more accurate sea-based surveys and satellite measurements, but its scientific and artistic
qualities remain.

new techniques, currently on the market or still a few years away, and the sections on
computer-assisted interpretation.

This book is divided into chapters that deal first with the stages of sonar data
acquisition and processing and then (roughly) to the different regions of the seabed
(Figure 1.2). Chapter 2 (““Acoustics for sidescan sonars’) presents the basics of
acoustics needed to successfully process and interpret sidescan sonar imagery. It also
introduces some of the new tools which are currently emerging or will transition from
prototypes to finished products in the coming decade. Finally, it synthesizes the
performance of sonars: how to choose the one most adapted to the survey in mind,
and how to compare different instruments, sometimes widely different. Chapter 3
(“Imagery and bathymetry’) presents the acquisition of bathymetric data, either
from sidescan sonars or from other sources, and how it can be successfully merged
with imagery. Chapter 4 (‘“‘Sidescan sonar data processing’’) explains in detail the
different steps to create a true and accurate map of the seabed, finishing with ex-
amples of a handful of successful systems (commercial and academic). Chapter 5
(““Spreading and subduction’) presents the manifestations of plate tectonics on the
seabed, and its varied examples on different types of mid-ocean ridges and subduction
environments. Chapter 6 (““Abyssal basins and polar seas’) presents sidescan sonar
images from poorly known environments, often accessed with great difficulty but
nonetheless acoustically rich and scientifically important. Chapter 7 (“‘Continental
margins”) summarizes the wide variety of structures—sedimentary, tectonic, and
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volcanic—uvisible in these regions of highly varying depths. Chapter 8 (‘““Shallow-
water environments’’) moves closer to shore, presenting features that can also be
found in lakes and rivers. Wherever possible, the detailed examples of specific
features and processes shown in Chapters 5 to 8 are followed by regional imagery
showing a variety of structures as they might appear in a full survey. Chapter 9
(“Synthetic structures’) acknowledges both the move of sonars to increasingly
shallower environments and the pros and cons of the growing influence of human
population on the seabed. It will therefore include examples of planned activities
(e.g., pipelines, mineral exploitation) and “‘accidental” discoveries (e.g., shipwrecks,
marine pollution, and the effects of trawl-fishing). This chapter will also present
examples of problems posed by mines and more peaceful applications to underwater
archaeology. Chapter 10 (‘““Anomalies and artefacts’’) assesses what can go wrong in
the acquisition of a sonar image, in its processing, and in its interpretation, drawing
on real examples from all over the world. Chapter 11 (“Computer-assisted inter-
pretation”) presents the different techniques now available to assist (or sometimes
replace) the interpreter, from traditional Computer-Aided Detection/Computer-
Aided Classification (CAD/CAC) techniques to ATR (Automatic Target Recogni-
tion) and the potential of Artificial Intelligence (AI) techniques. All chapters end with
a small section suggesting “‘Further reading”. The “Bibliography” chapter at the end
of the book bolsters these suggestions with more references. Chapter 12 (““‘Conclu-
sion”’) aims at putting these distinct topics in a coherent framework, showing the few
differences and great similarities in the interpretation of sonar imagery in all environ-
ments, as well as thoughts about the evolution of the field in the next decade.

This book is an ambitious project, trying to form a single source of easy reference
covering all the stages of data acquisition, processing, and interpretation. It covers all
environments found on Earth, from the deepest to the shallowest. It draws on first-
hand personal experience, at sea (from 44°S to 79°N) and in the laboratory, of the
complexity of acoustic scattering processes. But it would not have been possible
without the combined experience of all our colleagues, who opened their “treasure
chests” of images for this book, as they did for its predecessor back in 1997. As in the
first book, we have endeavoured to give credit where credit is due (i.e., for each image,
to mention who acquired it, with which instrument, and if possible to mention the
reference publication). Any mistake or omission should be notified to the author or
publisher, who will correct it for the next edition. Commercial systems are presented
throughout this book, and it should go without saying that their mention does not
present any form of endorsement by the author or the publisher.

Finally, ““last but not least”, this introduction should acknowledge the important
role played by Clive Horwood, director of Praxis Publishing Ltd. and his colleagues
at Praxis and Springer. Numerous changes to the scope of this project, and
(numerous) delays in the writing of this book have taxed patience and nerves, but
the unfailing assistance of Clive and his team, combined with the expert support of
Neil Shuttlewood, mean that this book is now completed and ready to join the older
Handbook of Seafloor Sonar Imagery on the bookshelves of colleagues around the
world, on land and at sea, with hopefully the same success.



