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Preface

The finite element method has become an indispensible tool in structural
analysis, and tells an unparalleled success story. With success, however, came
criticism, because it was noticeable that knowledge of the method among prac-
titioners did not keep up with success. Reviewing engineers complain that the
method is increasingly applied without an understanding of structural behav-
ior. Often a critical evaluation of computed results is missing, and frequently
a basic understanding of the limitations and possibilities of the method are
nonexistent.

But a working knowledge of the fundamentals of the finite element method
and classical structural mechanics is a prerequisite for any sound finite element
analysis. Only a well trained engineer will have the skills to critically examine
the computed results.

Finite element modeling is more than preparing a mesh connecting the
elements at the nodes and replacing the load by nodal forces. This is a popular
model but this model downgrades the complex structural reality in such a
way that—instead of being helpful—it misleads an engineer who is not well
acquainted with finite element techniques.

The object of this book is therefore to provide a foundation for the finite
element method from the standpoint of structural analysis, and to discuss
questions that arise in modeling structures with finite elements.

What encouraged us in writing this book was that—thanks to the inten-
sive research that is still going on in the finite element community—we can
explain the principles of finite element methods in a new way and from a new
perspective by making ample use of influence functions. This approach should
appeal in particular to structural engineers, because influence functions are a
genuine engineering concept and are thus deeply rooted in classical structural
mechanics, so that the structural engineer can use his engineering knowledge
and insight to assess the accuracy of finite element results or to discuss the
modeling of structures with finite elements.

Just as a change in the elastic properties of a structure changes the Green’s
functions or influence functions of the structure so a finite element mesh effects
a shift of the Green’s functions.

We have tried to concentrate on ideas, because we considered these and
not necessarily the technical details to be important. The emphasis should
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be on structural mechanics and not on programming the finite elements, and
therefore we have also provided many illustrative examples.

Finite element technology was not developed by mathematicians, but by
engineers (Argyris, Clough, Zienkiewicz). They relied on heuristics, their in-
tuition and their engineering expertise, when in the tradition of medieval
craftsmen they designed and tested elements without fully understanding the
exact background. The results were empirically useful and engineers were
grateful because they could suddenly tackle questions which were previously
unanswerable. After these early achievements self-confidence grew, and a sec-
ond epoch followed that could be called baroque: the elements became more
and more complex (some finite element programs offered 50 or more ele-
ments) and enthusiasm prevailed. In the third phase, the epoch of “enlight-
ment” mathematicians became interested in the method and tried to analyze
the method with mathematical rigor. To some extent their efforts were futile
or extremely difficult, because engineers employed “techniques” (reduced inte-
gration, nonconforming elements, discrete Kirchhoff elements) which had no
analogy in the calculus of variations. But little by little knowledge increased,
the gap closed, and mathematicians felt secure enough with the method that
they could provide reliable estimates about the behavior of some elements.
We thus recognize that mathematics is an essential ingredient of finite ele-
ment technology.

One of the aims of this book is to teach structural engineers the theoretical
foundations of the finite element method, because this knowledge is invaluable
in the design of safe structures.

This book is an extended and revised version of the original German ver-
sion. We have dedicated the web page http://www.winfem.de to the book.
From this page the programs WINFEM (finite element program with focus on
influence functions and adaptive techniques), BE-SLABS (boundary element
analysis of slabs) and BE-PLATES (boundary element analysis of plates) can
be downloaded by readers who want to experiment with the methods. Addi-
tional information can also be found on http://www.sofistik.com.

FriedelHartmann@uni-kassel.de Casimir.Katz@sofistik.de

Kassel Friedel Hartmann
Munich August 2003 Casimir Katz
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One of the joys of writing a book is that the authors learn more about a sub-
ject. This does not stop after a book is finished. So we have added additional
sections to the text

• The Dirac energy
• How to predict changes
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• Generalized finite element methods (X-FEM)
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• Sensitivity analysis
• Weak form of influence functions
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1. What are finite elements?

1.1 Introduction

In this introductory chapter various aspects of the FE method are studied,
initially highlighting the key points.

1.2 Key points of the FE method

• FE method = restriction

Analyzing a structure with finite elements essentially amounts to constraining
the structure (see Fig. 1.1), because the structure can only assume those
shapes that can be represented by shape functions.

Fig. 1.1. The building can only execute movements that can be represented by
shape functions
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Fig. 1.2. Shear wall: a) support reaction B; b) the displacements observed at x if
the support B moves in the vertical direction are a direct measure of the influence
a (nearly concentrated point) load P = [Px, Py]T has on the support B. About 85%
of Py and 6% of Px will contribute to B. The better an FE program can model the
movement of the support B, the better the accuracy

This is an important observation, because the accuracy of an FE solution
depends fundamentally on how accurately a program can approximate the
influence functions for stresses or displacements. Influence functions are dis-
placements: they are the response of a structure to certain point loads. The
more flexible an FE structure is, the better it can react to such point loads,
and hence the better the accuracy of the FE solution; see Fig. 1.2.

• FE method = method of substitute load cases

It is possible to interpret the FE method as a method of substitute loadings
or load cases, because in some sense all an FE program does is to replace the
original load with a work-equivalent load, and solve that load case exactly.
The important point is that structures are designed for these substitute loads
not for the original loads.

• FE method = projection method

The shadow of a 3-D vector is that vector in the plane with the shortest
distance to the tip of the vector.

The FE method is also a projection method, because the FE solution is the
shadow of the exact solution when it is projected onto the trial space Vh, where
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Fig. 1.3. Plate with alternating edge load: a) system and load; b) equivalent nodal
forces

Vh contains all the deformations the FE structure can undergo. The metric
applied in the projection is the strain energy: one chooses that deformation
uh in Vh whose distance to the exact solution u measured in units of strain
energy is a minimum.

Let u denote the exact equilibrium position of a plate (subjected to some
load), and let uh be the FE approximation of this position. Now to correct the
FE position, that is, to force the plate into the correct shape, a displacement
field e = u− uh must be added to uh.

Let σ e
ij and ε e

ij denote the stresses and strains caused by this displacement
field e. The FE solution guarantees that the energy needed to correct the FE
solution is a minimum

a(e,e) =
∫

(σe
xx εe

xx + σe
xy γe

xy + σe
yy εe

yy) dΩ → minimum . (1.1)

This is equivalent to saying1 that the work needed to force the plate from its
position uh into the correct position u is a minimum. The effort cannot be
made any smaller on the given mesh.

In a vertical projection the length of a shadow is always less than the
length of the original vector (see Bessel’s inequality [232]); this implies that

The situation is different if a support of a structure is displaced. Then the
FE projection is a skew projection (see Sect. 1.38, p. 187), that is, the shadow
is longer than the original vector. This means that a greater effort is needed to
displace a support of a more rigid structure than of a more flexible structure.
But it will be seen later that even then a minimum principle still applies.

Because the FE solution is the shadow of the true solution, it cannot be
improved on the same mesh. This is also why some load cases cannot be solved
on an FE mesh. Each projection has a blind spot; see Fig. 1.3. The equivalent
nodal forces at the free nodes cancel and so K u = 0.
1 a(u, u) = a(uh, uh) − 2 a(uh, e) + a(e, e) and a(uh, e) = 0

mates the stiffness of the structure.

the strain energy of the FE solution is always less than the strain energy
of the exact solution. An engineer would say that the FE solution overesti-
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Fig. 1.4. Theoretically these load cases cannot be solved with the FE method

• FE method = energy method

An FE program thinks in terms of work and energy. Loads that contribute
no work do not exist for an FE program. Nodal forces represent equivalence
classes of loads. Loads that contribute the same amount of work are identical
for an FE program.

In modern structural analysis, zero is replaced by vanishing work. In clas-
sical structural analysis a distributed load p(x) is identical to a second load
ph(x) if at each point 0 < x < l of the beam the load is the same:

p(x) = ph(x) 0 < x < l strong equal sign . (1.2)

In contrast, identity is based on a weaker concept in modern structural anal-
ysis. Two loads are considered identical if the virtual work is the same for any
virtual displacement δw(x):∫ l

0

p(x) δw(x) dx =
∫ l

0

ph(x) δw(x) dx for all δw(x) . (1.3)

This is the weak equal sign. If all really means all then of course the weak equal
sign is identical to the strong equal sign. But in all other cases there remains
a specific difference, in that equivalence is established only with regard to a
finite set of virtual displacements δw.

Because the FE method is an energy method, problems in which the strain
energy is infinite—theoretically at least—cannot be solved with this method;
see Fig. 1.4.

• FE method = method of approximate influence functions

We will see that a mesh is only as good as the influence functions that can be
generated on that mesh. According to Betti’s theorem, the displacement u(x)
or the stress σx(x) at a point x is the L2-scalar product of the applied load p
and the corresponding influence function (Green’s function)

b) concrete block placed on line supports
because the strain energy is infinite: a) Concentrated forces acting on a plate;
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Fig. 1.5. FE analysis of a taut rope

u(x) =
∫ l

0

G0(y, x) p (y) dy , σx(x) =
∫ l

0

G1(y, x) p (y) dy . (1.4)

All an FE program does is to replace the exact Green’s functions with ap-
proximate Green’s functions Gh

0 and Gh
1 , respectively. Therefore the error in

an FE solution is proportional to the distance between the approximate and
the exact Green’s function:

u(x)− uh(x) =
∫ l

0

[
G0(y, x)−Gh

0 (y, x)
]

p (y) dy , (1.5)

σx(x)− σh
x(x) =

∫ l

0

[
G1(y, x)−Gh

1 (y, x)
]

p (y) dy . (1.6)
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1.3 Potential energy

To see these principles applied, we analyze a very simple structure, a taut
rope (see Fig. 1.5).

Imagine that the rope is pulled taut by a horizontal force H and that it
carries a distributed load p. The distribution of the vertical force V within
the rope and the deflection w of the rope are to be calculated. The deflection
w is the solution of the boundary value problem

−Hw′′(x) = p(x) 0 < x < l w(0) = w(l) = 0 . (1.7)

The vertical (or transverse) force T is proportional to the slope w′

T = Hw′ , (1.8)

and the vector sum of H and T is the tension S in the rope

S =
√

H2 + T 2 . (1.9)

The potential energy of the rope is the expression

Π(w) =
1
2

∫ l

0

H(w′)2 dx−
∫ l

0

p w dx =
1
2

∫ l

0

T 2

H
−
∫ l

0

p w dx . (1.10)

For completeness we also note Green’s first identity for the operator −H w′′:

G(w, ŵ) =
∫ l

0

−H w′′ ŵ dx + [T ŵ]l0 −
∫ l

0

T T̂

H
dx = 0 (1.11)

because it encapsulates the structural mechanics of the rope.
To approximate the deflection w(x) of the rope, the rope is subdivided

into four linear elements: see Fig. 1.5. The first and the last node are fixed
so that only the three internal nodes can be moved. Between the nodes the
deflection is linear, that is the rope is only allowed to assume shapes that
can be expressed in terms of the three unit displacements ϕi(x) of the three
internal nodes (see Fig. 1.5)

wh(x) = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) . (1.12)

The nodal deflections, w1, w2, w3, play the role of weights. They signal how
much of each unit deflection is contained in wh.

All these different shapes—let the numbers w1, w2, w3 vary from −∞ to
+∞—constitute the so-called trial space Vh.

The space Vh itself is a subset of a greater space, the deformation space
V of the rope. The space V contains all deflection curves w(x) that the rope
can possibly assume under different loadings during its lifetime. It is obvious
that the piecewise linear functions wh in the subset Vh represent only a very
small fraction of V .



1.3 Potential energy 7

The next question then is: what values should be chosen for the three
nodal deflections w1, w2, w3 of the FE solution? What is the optimal choice?

According to the principle of minimum potential energy, the true deflection
w results in the lowest potential energy on V

Π(w) =
1
2

∫ l

0

H(w′)2dx−
∫ l

0

p w dx . (1.13)

But if the exact solution w wins the competition on the big space V , it
seems a good strategy to choose the nodal deflections wi in such a way that
the FE solution

wh(x) =
3∑

i=1

wi ϕi(x) (1.14)

wins the competition on the small subset Vh ⊂ V . Then Π(wh) is as close as
possible to Π(w) on Vh.

Because each function wh in Vh is uniquely determined by the nodal de-
flections wi at the three interior nodes, i.e. the vector w = [w1, w2, w3]T , the
potential energy on Vh is a function of these three numbers only

Π(wh) = Π(w) =
1
2

wT Kw − fT w

=
1
2

[w1, w2, w3]
4 H

l

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦
⎡
⎣w1

w2

w3

⎤
⎦− [f1, f2, f3]

⎡
⎣w1

w2

w3

⎤
⎦

=
4 H

l
[w2

1 − w1 w2 + w2
2 − w2 w3 + w2

3]− f1 w1 − f2 w2 − f3 w3 ,

(1.15)

where the matrix K and the vector f have the elements

k ij =
∫ l

0

Hϕ′
i ϕ′

j dx f i =
∫ l

0

p ϕi dx = p le = p
l

4
. (1.16)

Finding the minimum value of Π on Vh is therefore equivalent to finding the
vector w—the “address” of wh ∈ Vh—for which the function Π(w) becomes
a minimum. A necessary condition is, that the first derivatives of the function
Π(w) vanish at this point w:

∂Π

∂wi
=

3∑
j=1

k ij wj − f i = 0 , i = 1, 2, 3 , (1.17)

which leads to the system of equations

Kw = f (1.18)
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Fig. 1.6. The error e is orthogonal to
the plane

or

4 H

l

⎡
⎣ 2 −1 0
−1 2 −1

0 −1 2

⎤
⎦
⎡
⎣w1

w2

w3

⎤
⎦ =

p l

4

⎡
⎣1

1
1

⎤
⎦ , (1.19)

which has the solution w1 = w3 = 1.5 p l2/(16 H) , w2 = 2.0 p l2/(16 H). Hence
the deflection

wh(x) =
p l2

16 H
[1.5 · ϕ1(x) + 2.0 · ϕ2(x) + 1.5 · ϕ3(x)] (1.20)

is the best approximation on Vh.

1.4 Projection

Work is a scalar quantity, as are temperature and pressure. This is nearly the
most important statement that can be made about work. Work is force ×
displacement. Work and energy are the same. The integral

1
2

∫ l

0

T 2

H
dx , T = Hw′ , (1.21)

is the internal energy of the rope. It measures the strain energy stored in the
rope.

Energy can also serve as a scale. It is the scale FE methods work with.
Having a scale means having a topology, which in turn defines “far away” and
“nearby”. To measure the length of a vector the Euclidean norm is used:

|x| =
√

x2
1 + x2

2 + x2
3 . (1.22)
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Fig. 1.7. All vectors have the same
shadow x′

In this topology two cities A and B are close neighbors if the difference between
their position vectors a and b (with reference to the origin of a map) is small:

|a− b | “small” =⇒ A and B are neighbors . (1.23)

Projections only make sense if distances can be measured. The shadow x′ of a
3-D vector x is the vector in the plane which has the smallest distance to the
tip of x; see Fig. 1.6. The distance between the original vector and its shadow
is the length of the vector

e = x− x′ , (1.24)

which points from the tip of the shadow to the tip of the vector x. The shadow
x′ renders this distance a minimum

|e| =
√

(x1 − x′
1)2 + (x2 − x′

2)2 + (x3 − 0)2 = minimum . (1.25)

Any other vector x̃′ in the plane has a greater distance from the vector x

|ẽ| = |x− x̃′| > |e| = |x− x′| . (1.26)

This is the first feature of a projection: the shadow solves a minimum problem.
The second feature is that the residual vector, the error e, is orthogonal to

the x1−x2-plane (assuming that the sun shines from straight above), because
the scalar product between the error and the shadow is zero:
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eT x′ = 0 . (1.27)

This is equivalent to saying that the shadow of the error e has no physical ex-
tent, but only if the line of sight coincides with the direction of the projection!
Seen from any other direction the length of e is not zero. Hence a projection
method is blind with respect to errors which lie in the line of sight. All vectors
x̃ that lie “above” the vector x, which differ from x only by an additive term

The third feature is that the result of a projection cannot be improved.
Repeating a projection changes nothing: the shadow of the shadow is the
shadow. Which means that a projection method freezes after the first step,
while other operations, such as squaring a number, can be repeated infinitely
often.

The fourth feature of a projection is that the length of the shadow is
shorter than the length of the original vector; see Fig. 1.7. This is not only
true for vectors, but also for functions: the Fourier series fn(x) of a function
f(x) is the projection of f(x) onto the trigonometric functions in the sense

2

(= 2 n is less than the L2-norm of f :

||fn|| 0 = [
∫ l

0

f2
n(x) dx]1/2 ≤ [

∫ l

0

f2(x) dx]1/2 = ||f || 0 . (1.28)

All this applies now to the FE method as well: the exact deflection curve w ∈ V
is projected onto a subspace Vh, and the shadow wh is the FE solution.

In the case of the rope the space Vh contains all the deformations which
are expansions in terms of the three unit displacements ϕi(x),

wh(x) = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) , (1.29)

and the FE solution is the solution of the following minimum problem:

Find the deflection

wh(x) = w1 · ϕ1(x) + w2 · ϕ2(x) + w3 · ϕ3(x) (1.30)

in Vh which has the shortest distance (= strain energy) from the exact deflec-
tion w.

In FE analysis the strain energy is usually expressed

a(w,w) :=
∫ l

0

H (w′)2 dx =
∫ l

0

T 2

H
dx . (1.31)

If

e(x) = w(x)− wh(x) (1.32)

Fig. 1.7.
parallel to the line of sight (i.e., projection), have the same shadow; see

L -norm) of the Fourier series f
of the L -scalar product, and according to Bessel’s inequality the length
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is the error of the FE solution, then the FE solution is that function in Vh for
which the strain energy of the error e(x) becomes a minimum:

a(e, e) =
1
2

∫ l

0

(T − Th)2

H
dx = minimum . (1.33)

Any other function wh in Vh has a larger distance—in terms of energy—than
the FE solution. This property of the FE solution wh can also be expressed
as follows, see (7.413) p. 572,

a(e, e) ≤ a(w − vh, w − vh) for all vh ∈ Vh . (1.34)

We also know that the strain energy of the FE solution is always less than
the strain energy of the exact solution:

a(wh, wh) =
∫ l

0

T 2
h

H
dx <

∫ l

0

T 2

H
dx = a(w,w) , (1.35)

h

0 < a(w,w) = a(wh + e, wh + e)
= a(wh, wh) + 2 a(e, wh)︸ ︷︷ ︸

= 0

+ a(e, e)︸ ︷︷ ︸
> 0

, (1.36)

where

a(e, wh) =
∫ l

0

(T − Th)Th

H
dx = 0 (1.37)

is a consequence of the Galerkin orthogonality

a(e, ϕi) = 0 i = 1, 2, 3 (1.38)

i.e., the fact that the error e is orthogonal in terms of the strain energy to all
unit displacements ϕi, and therefore also to wh = w1 · ϕ1 + w2 · ϕ2 + w3 · ϕ3.

Hence the strain energy or internal energy is the metric FE methods work
with. Distance is measured in this metric and therefore also convergence.

The internal energy induces a topology on the space V which is even a
norm on this space, because it separates the elements of V . Two functions w1

and w2 are identical if and only if their distance in terms of the strain energy
is zero:

1
2

∫ l

0

(T1 − T2)2

H
dx =

1
2

∫ l

0

H (w′
1 − w′

2)
2 dx = 0 ⇔ w1 = w2 (1.39)

that is if w1 − w2 has zero energy.

inequality follows directly from
has a shorter length (= strain energy) than w. Thisi.e., the shadow w
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Fig. 1.8. A small deflection
curve can hide a large strain
energy

A function w is small in this metric if its energy (essentially the square of
the first derivative) is small, and the exact deflection w and the FE solution
wh are close in this metric if the strain energy of the error

e(x) = w(x)− wh(x) (e = error) (1.40)

is small

1
2

∫ l

0

T 2
e

H
dx =

1
2

∫ l

0

H(w′ − w′
h)2 dx = small =⇒ e(x) = small . (1.41)

This energy metric makes more sense than a naive metric that considers a
function such as w(x) = sin(8π x) a “small” function (see Fig. 1.8), while for
the FE method it is a “large” function, because the strain energy due to the
rapid oscillations is large∫ 1

0

w(x)2 dx = 0.5 ,
1
2

∫ 1

0

Hw′(x)2 dx = 316 ·H . (1.42)

Hence from an engineering standpoint it makes more sense to classify functions
with regard to the strain energy than their amplitude or their L2-norm.

A better strategy would it be to base the metric on both components, the
zero-order and the first-order derivative. This leads to the so-called Sobolev
norms, which, depending on the index n, measure the derivatives up to order

||w||n =

[∫ l

0

[
w(x)2 + w′(x)2 + . . . + w(n)(x)2

]
dx

]1/2

(1.43)

and classify functions according to this metric. By increasing the index n
different topologies can be generated on V . In the same way the distance
between two vectors does not depend on the difference of the first two com-
ponents alone, |a− b| = √

(a1 − b1)2 (which would be a very crude topology)
but on the difference of all components

n
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the FE program can represent
constitute a subset Vh of V

|a− b| =
√

(a1 − b1)2 + (a2 − b2)2 + . . . + (an − bn)2 . (1.44)

This metric generates the finest possible topology, just as in a lottery the prize
money increases, the more figures on a ticket agree with the number drawn.

Remark 1.1. Later it will be seen that in so-called load cases δ when displace-
ments are prescribed the projection is no longer orthogonal but “skew” this
implies that the length of the shadow (the strain energy) will be greater than
the strain energy of the exact solution; see Sect. 1.38, p. 187. This is to be
expected: the stiffer a structure the greater the strain energy developed by
displacing a support.

1.5 The error of an FE solution

• the deflection w
• the vertical force T = Hw′

• the load p = −Hw′′

i.e., the zero-order, first-order, and second-order derivative of the deflection
w. All three derivatives of w are relevant to the structural analysis, and hence
it is legitimate to ask which of the three errors

Fig. 1.9. The shapes which

The FE method is an approximate method, see Fig. 1.9. As such it must
approximate three functions:
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Fig. 1.10. The error in the displacement is zero at the nodes, while the error in
the stresses is zero at the midpoints of the elements. This is a typical pattern in FE
analysis

w−wh error in the deflection
T − Th error in the internal action
p− ph error in the load

is to be minimized? In principle we have already given the answer. The FE
solution aims at minimizing the square of the error of the internal action
T − Th, ∫ l

0

(T − Th)2

H
dx =

∫ l

0

H(w′ − w′
h)2 dx → minimum . (1.45)

Hence an FE solution does not tend to win a beauty contest by imitating
the original shape w as closely as possible nor does it aim to simulate the
loading; rather, the solution tends to minimize the error in the strain energy
(the internal energy).

The load case ph

A closer study of the FE solution reveals that wh is the equilibrium position
of the rope if the distributed load were concentrated at the nodes, fi = p le.
This load case is called the FE load case ph, (see Fig. 1.10).



1.6 A beautiful idea that does not work 15

Of course we would like to know what the consequences are. How far are
the results of the load case ph (= nodal forces) from p (= distributed load)?
Stated otherwise: given the error in the load

r := p− ph (residual forces) (1.46)

how large is the error in the vertical force

Te := T − Th (1.47)

and the difference in the deflection

e := w − wh ? (1.48)

In other words what can be said about the error in the first-order, T − Th =
H(w−w′

h), and zero-order derivative, w−wh, if the error in the second-order
derivative p− ph is known?

The normal procedure is to differentiate the deflection w, yielding the
vertical force T , and to differentiate T to find the load p

w ⇒ T = H w′ ⇒ p = −H w′′ . (1.49)

In a reverse order, the functions must be integrated

w =
∫∫
− p

H
dx dx ⇐ T =

∫
−p dx ⇐ p = −H w′′ (1.50)

and integration smoothes the wrinkles; see Fig. 1.10.
But is there a reliable method to make predictions about the distance

in the first-order derivatives by looking at the distance in the second-order
derivative? The answer is no. Otherwise it would suffice to calculate an ap-
proximate solution on a coarse mesh, and extrapolate from this solution to
the exact solution. In general this seems not to be possible, certainly not in
one step. There exist only different techniques which provide upper or lower
bounds for the error. The development of such error estimators is the subject
matter of adaptive methods.

1.6 A beautiful idea that does not work

• An FE solution cannot be improved on the same mesh.

Once it is understood that the error of an FE solution can be traced back to
deviations in the load, could the situation not be improved by applying the
residual forces p − ph, solving this load case again with finite elements, and
repeating this loop as long as the error is greater than a preset error margin
ε?

This idea does not work, because the residual forces



16 1 What are finite elements?

Fig. 1.11. The FE solution
of this load case is zero

r = p− ph (1.51)

leave no traces on the mesh, i.e., all the equivalent nodal forces fr
i vanish,

fr
i =

∫ l

0

p ϕi dx−
3∑

j=1

fj · ϕi(xj) = fi − fi = 0 for all ϕi , (1.52)

so that the rope will not deflect, because zero nodal forces mean zero deflec-
tion:

Ku = 0 ⇒ u = 0 . (1.53)

This riddle is easily solved by recalling that the exact curve w is projected
onto the trial space Vh. But because the error w − wh is orthogonal (in the
energy sense) to the space Vh,∫ l

0

H(w′ − w′
h) ϕi

′ dx = 0 for all ϕi , (1.54)

it casts no shadow, i.e., e = 0.
It follows that there are load cases which cannot be solved on an FE mesh

(see Fig. 1.11) namely all load cases where the load p is so arranged that it
contributes no work. This is the case if all equivalent nodal forces fi are zero:

fi = δWe(p, ϕi) = 0 , i = 1, 2, . . . n . (1.55)

Loads that happen to be parallel to the line of sight have a “null shadow”.

1.7 Set theory

In their lowest level, many systems are at their most stable position. Many
processes in physics are governed by a minimum principle. The same holds
in beam analysis: the deflection curve w of a continuous beam minimizes the
potential energy of the beam

Π(w) =
1
2

∫ l

0

M2

EI
dx−

∫ l

0

p w dx → minimum (1.56)
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Fig. 1.12. The potential energy Π(wh) of the FE solution always lies to the right
of the exact potential energy Π(w)

on V , which is the set of all functions w that satisfy the support conditions,
i.e., that have zeros, w = 0, at all supports. All such functions w compete for
the minimum value of Π(w).

The winner is the deflection curve w of the continuous beam. According
to Green’s first identity, G(w,w) = 0 (see Sect. 7.2, p. 508)∫ l

0

M2

EI
dx =

∫ l

0

p w dx (2 Wi = 2We) , (1.57)

hence the minimum of the potential energy is

Π(w) =
1
2

∫ l

0

M2

EI
dx−

∫ l

0

p w dx = −1
2

∫ l

0

p w dx . (1.58)

Obviously the potential energy is negative in the equilibrium position, because
the integral (p, w) itself is positive. It is the work done by the distributed load
p inducing its own deflections, and such work (eigenwork) is always positive.

If no load p is applied, but instead displacements δ are prescribed at one
or more supports then the potential energy is

Π(w) =
1
2

∫ l

0

M2

EI
dx > 0 , (1.59)

(support displacements δ never enter into the potential energy—they only
appear in the definition of the space V ), i.e., the minimum value of Π must
be greater than zero, because the integral of M2 is positive. Hence the two
types of load cases differ by the sign of the potential energy:

• load cases p Π < 0
• load cases δ Π > 0 .

Now if a continuous beam is placed on additional supports as in Fig. 1.13, the
set V “shrinks” because the candidates—the deflection curves w that compete
for the minimum value of Π(w)—must have zeros, w = 0, at additional points.
In contrast if supports are removed, then V increases, because the numbers
of constraints w = 0 shrinks. Therefore the “size” of V is proportional to
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ports, the smaller the space
V

and |Π(u)|
increase

potential energy must decrease (V shrinks) or increase (V grows).

increases, because then also those displacement fields that are discontinuous at
the faces of the crack can compete for the minimum value of Π(u) whereupon
the minimum value of Π(u) decreases, which actually means that |Π(u)|
increases [115].

The opposite tendency is observed in FE analysis where one seeks the
minimum value of Π(u) only on a subset Vh of V . On the subset the minimum
value cannot be less than the minimum on the whole space V .

A second observation can be added to this: in a load case p, the strain
energy of the FE solution is always less than the strain energy of the exact
solution, see (1.36),∫ l

0

M2
h

EI
dx ≤

∫ l

0

M2

EI
dx (load case p) , (1.60)

while in a load case δ the situation is just the opposite, because the strain
energy of the FE solution exceeds the strain energy of the exact solution∫ l

0

M2

EI
dx ≤

∫ l

0

M2
h

EI
dx (load case δ) . (1.61)

Both effects suggest that an FE solution tends to overestimate the stiffness of
a structure.

Fig.

the number of constraints and consequently the absolute value |Π(w)| of the

both the space V

1.13.

Or imagine that a crack develops in a plate; see Fig. 1.14. Then the space V

The more sup-

Fig. 1.14. With each crack,
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The potential energy of the exact solution is always less than the potential
energy of the FE solution:

Π(w) < Π(wh) because Vh ⊂ V (1.62)

or if we identify Π with numbers on the x-axis, the point Π(wh) will always
lie to the right of the point Π(w); see Fig. 1.12.

This implies that in a load case p the potential energy of the FE solution
will not be as low as the potential energy of the true solution and the structure
will not deflect as much—the displacements will be smaller.

The fact that Π(wh) lies to the right of Π(w) means in a load case δ
that more strain energy is “stored” in the FE solution than the true solution.
Obviously because more energy must be supplied, to displace the support of
a stiffer structure. To sum it up we have:

• in a load case p Π(wh) is closer to zero than Π(w)
• in a load case δ Π(wh) lies farther from zero than Π(w)

But these observations do not imply that FE displacements are smaller than
the exact displacements! This certainly will be true for some nodes, but in
general it cannot be guaranteed to be true for all nodes.

There is only one example where this conclusion—at least for one node—
holds, namely if a single force P acts at a point xP of a Kirchhoff plate. In
the equilibrium position the potential energy is just the (negative) work done
by the force P

− 1
2
P w(xP ) = Π(w) < Π(wh) = −1

2
P wh(xP ) (1.63)

and this inequality can only be true if the FE deflection at xP is less than the
exact value, wh < w.

A similar result can be observed in a beam which is loaded at midspan,
x = l/2, with a single force P , so that

Π(w) = −1
2
P w(

l

2
) . (1.64)

What happens next is exactly what is predicted by set theory. The more
supports that are added (see Fig. 1.15), the smaller the deflection w(l/2) at
the center of the beam. Then V decreases, as does the absolute value |Π(w)|
of the potential energy and thus the deflection w(l/2).

The same effect can be observed if the beam is placed on one or two
additional elastic supports. Springs are different, in that they do not change
the size of V , because springs have no hard supports such as w(0) = 0.

Braces and diaphragms also enable the absolute value of the potential
energy of a structure to decrease. The more plates, beams, columns and slabs
a structure contains per cubic meter, the closer the absolute value of the
potential energy of the structure in a load case p will be to zero, while in a
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Fig. 1.15. The greater the number of supports, the smaller the value of |Π|, the
smaller the deflection w, and the smaller the size of the space V

load case δ the opposite will be true. If in addition such a complex structure
is modeled with just the bare minimum of elements, the structure will be very
stiff.

Minimum or maximum ?

In some sense the principle of minimum potential energy could also be called a
maximum principle—at least for load cases p. Calling it a minimum principle is
attractive, because many processes in nature follow a principle of least action,
but in reality the load p on a beam tends to push the beam downwards as far
as possible, transforming positional energy into potential energy:

Π(w) = −1
2

∫ l

0

p w dx , at w = equilibrium point (1.65)

in mathematical terms, it pushes the point |Π(w)| as far away from zero as
possible.

The movement stops at the equilibrium point. This is the point at which
the external work We equals the internal energy Wi,

We =
1
2

∫ l

0

p w dx =
1
2

∫ l

0

M2

EI
dx = Wi at the equilibrium point w .

(1.66)

The more the load presses the beam down (We increases), the more resistance
the load feels because the beam bends; the bending moments increase, thereby
increasing the internal energy Wi; see Fig. 1.16. The equilibrium point is the
point at which the two trends balance.

Only in load cases δ does the minimum keep its original meaning. Then
the structure tries to avoid any excess strain energy, and follows with as little


