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Preface

The research on nanomaterials and nano biomedicine has been advancing rapidly
in recent years, particularly in the development of unique nanostructures for specific
biomedical applications. The research addresses the critical issues in medical
applications including in vivo imaging, cell targeting, local drug delivery and
treatment, bioactivity, compatibility, and toxicity. In the biomedical applications,
traditional materials science and engineering have to deal with new challenges in
the areas of synthesis, structure development, and biological, chemical, and physical
behaviors, since medical needs place new demands in these respects.

The novel nanotechnologies included in this book are of great importance for
biomedical applications. Based on these new developments, it is possible to alter
the intrinsic properties of nanomaterials that cannot be achieved by conventional
methods and materials. A key aspect ofbeing able to manipulate the properties of
the nanomaterials is the nanoscale architecture and engineering by various
processing techniques. Some of the novel approaches introduced in this book can
provide multi-functionality for a variety of substrates, be it biological, physical,
or chemical, which can then be engineered for particular biomedical applications.
For instance, novel surface functionalization methods have been developed for
bio assays and cell targeting. In these approaches, a thin coating of polymer can
be applied to the nano species and to provide various functional groups for
passive or covalent coupling to biological molecules, such as antigens, antibodies,
and DNA/RNA hybridization. However, the conventional synthesis of materials
has only resulted in a single functionality which is generally not suitable for
the complex procedures required for medical applications. The novel concept
introduced in this book can be used to develop multiple functionalities, particularly
suitable for medical diagnosis and treatment. The enhancement of properties is
based on the study of the new nano structures and interfacial mechanisms.

This book summarizes the most recent research and development in nano
biomedicine and addresses the critical issues in nanomaterials synthesis, structure,
and properties. In particular, the major topics in nano biomedicine are covered in



this book. The book devotes three parts of 25 chapters to various aspects of
nanomaterials and their medical applications. Detailed experimental procedures
are presented at a level suitable for readers with no previous training in these
areas.

The first part of the book concentrates on the research works of design,
synthesis, properties, and applications of nano scale biomaterials. Chapter 1 is on
the topics of stem cells and related nanotechnology. In Chapter 2, an overview is
documented on the recent progress of polymer nanofibers, mostly electrospun in
biomedical applications, along with a brief description of history, principle, and
operating parameters of electrospinning process. Chapter 3 introduces new concepts
in assembly of biomaterials. In view of the emerging importance of bio-inspired
materials in medical applications, this chapter is focused on describing the
fundamentals of intermolecular interactions and their applications in biomaterials
science. The particular focus will be on processes and structures that mimic the
natural ECM. Chapter 4 is on the fabrication and assembly of nanomaterials for
biological detections. In Chapter 5, the authors first introduce the peptide design
strategies for the construction of nanostructured materials. It then gives a brief
tutorial of amino acid structure and function. It further describes higher-order
assemblies of peptides and peptidomimetics. Chapter 6 introduces an important
category of nanomaterials: quantum dots. Chapter 7 focuses on the phosphate
ceramics for applications in bio-related fields. In this chapter, the authors briefly
review the progress made in the last decade on the microwave-assisted synthesis
and processing of biomaterials both in nanometer- and micrometer-size range.
Chapter 8 introduces the characterization of biointerfaces and biosurfaces in
biomaterials design. In Chapter 9, the authors bring the focus of the discussion to
one of the important nanomaterials: carbon nanotubes and their applications in
biosensing. Chpater 10 discusses the issues on heparin-conjugated nanointerfaces
for biomedical applications.

The second part of the book is on the new nanotechnologies in biomedicine. In
Chapter 11, the authors introduce some of the novel technologies in drug delivery.
Chapter 12 reports unique experimental results on nano metal particles for
biomedical applications. Chapter 13 is on the micro- and nanoscale technologies
in high-throughput biomedical experimentation. Chapter 14 introduces delivery
system of bioactive molecules for regenerative medicine. Chapter 15 gives an
overview on modification of nano-sized materials for drug delivery. Chapter 16
is another chapter on drug delivery, however via a different approach. Chapter 17
is about most recent developments in DNA nanotechnology. A major objective in
this chapter deals with the creation of ordered nanostructures for executing
complex operations. Chapter 18 provides an overview on the nanoscale bioactive
surfaces and endosseous implantology. Chapter 19 gives an overview ofpotential
applications of carbon nanotube smart materials in biology and medicine.

The last part of the book concentrates on some of the most recent experimental
results on the nanomaterials synthesis and structure developments. These include
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the synthesis, properties, and application of intrinsically electroconducting nano-
particles of polypyrrole and pyrrole/sulfonic diphenylamine (20/80) Copolymers.
Some studies focuse on the fracture processes in advanced nanocrystalline and
nanocomposite materials. Unique nano properties such as field emission of
carbon nanotubes are also introduced. Finally, the book concludes by introducing
some theoretical aspects of the nanomaterials. In this chapter, the authors develop
microscopic modeling ofphonon modes in semiconductor nanocrystals.

Chapter 20 is on the physical origins of phonon behaviors in nanocrystals.
Chapter 21 gives an overview on computer simulations and theoretical modeling
of fracture processes in nanocrystalline metals and ceramic nanocomposites.
Chapter 22 describes a detailed experimental study on the fabrication, structures,
unique properties, and wide application potential of novel conducting polypyrrole
(PPY) nanoparticles and nanocomposites. Chapter 23 introduces some of the most
recent developments in the fascinating carbon nanotubes. Chapter 24 reviews the
progress in the flexible dye-sensitized nanostructured thin film solar cells (DSSCs).
Chapter 25 presents recent results on the synthesis of magnetic nanoparticles
(MNP) and various types of magnetic nanofluids (MNF) or ferrofluids, their
structural properties and behaviors in an external magnetic field.

We hope that these chapters will provide timely and useful information for the
progress of nanomaterials and their applications in biomedicine.
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Abstract Stem cells and nanomaterials are currently two of the most 
promising technologies for tissue regeneration and the treatment of 
degenerative disease. Because of their ability to self-renew and differentiate 
into any cell type, stem cells offer the potential to regrow all types of damaged 
or degenerated tissues that are unrepairable by currently available treatment 
methods. Nanomaterials may prove to be ideal growth substrates for tissue 
regeneration as well as an ideal delivery vehicle for the diagnostic markers, 
growth factors, and drugs that are required to promote tissue regeneration and 
treat degenerative disease. Despite their great potential, stem cell behaviors 
such as proliferation and differentiation must be tightly regulated in order for 
this technology to be practical in a clinical setting. Experimental evidence 
has shown that the interactions of nanomaterials with stem cells can have a 
significant effect on many types of stem cell behaviors. In addition, 
nanomaterials can be used to provide targeted delivery of various agents in a 
controlled manner that allows for regulation of the chemical environment. 
Regulation of the chemical environment is critical for controlled guidance of 
stem cell behavior and for the treatment of degenerative disease. A precise 
understanding of the interactions between stem cells and nanomaterials is an 
important step toward unlocking the great potential of these two technologies. 

Keywords nano, stem cell 

1.1 Introduction 

Stem cells and nanotechnology, two exciting and rapidly growing fields, have 
received extensive attention during the last decades. Stem cells and precursors 
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bring new hope to regenerate functional tissue with native histological structures 
and properties, as opposed to simple replacement with artificial structures alone. 
The two main advantages of stem cells are the ability to self-renew, which means 
they can reproduce themselves, and the ability to potentially differentiate into all 
the possible cell types (Pedersen, 1999; Solter and Gearhart, 1999). Stem cells 
may be harvested from two different sources. Embryonic stem (ES) cells may be 
harvested from embryos and can be derived from germ cells as well. If problems 
such as immune rejection and the high possibility of tumorgenicity can be solved, 
ES cells may serve as a good source of cells for tissue regeneration. Their 
potential for the study of human developmental biology is always promising 
(Good, 1998). Stem cells can also be harvested from adult tissue, such as from 
muscle, cartilage, bone, nervous system, liver, pancreas, tooth, adipose tissue, etc. 
(Good, 1998). Like stem cells, precursor cells can differentiate into more than 
one cell type, but these cells have undergone some degree of differentiation 
(Weissman, 2000). For example, glial-restricted precursors (GRP) can differentiate 
into type  and type  astrocytes and oligodendrocytes, but not neurons (Foster 
and Stringer, 1999). Precursor cells can be harvested from adult tissue as well 
(Rizzoli and Carlo-Stella, 1997). Knowledge of stem cells can also bring 
profound insight to cancer research due to the fact that many cancer cells possess 
the characteristics of stem/progenitor cells and many cancer cells originated from 
stem cells. It is known that two key chemical signals, Hedgehog and Wnt, are 
active in the stem cells that repair damaged tissue. These signals also have been 
found in certain hard to treat cancers, supporting an old idea that some cancers 
may start from normal stem cells that have somehow gone bad. Therefore, a 
section about cancer treatment using nanostructured biomaterials is included in 
this chapter as well.  

Nanostructured materials refer to certain materials with delicate structures of 
‘small’ sizes, falling in the 1 100 nm range, and specific properties and 
functions related to the ‘size effect’ (Niemeyer, 2001; Safarik and Safarikova, 
2002; Whitesides, 2003). Dramatic development of nanotechnology in material 
science and engineering has taken place in the last decade (Gao et al., 2004; 
Niemeyer, 2001; Whitesides, 2003). This does not come as a surprise considering 
that nanostructured materials have the capability to be adapted and integrated 
into biomedical devices, since most biological systems, including viruses and 
membrane and protein complex, are natural nanostructures (Laval et al., 1999). 
Currently, medicine and biomedical engineering are among the most promising 
and challenging fields involved in the application of nanostructured materials 
(Desai, 2000; Ziener et al., 2005). Rapid advancements of nanostructured materials 
have been made in a wide variety of biomedical applications, including novel 
tissue engineered scaffolds and devices, site-specific drug delivery systems, non- 
viral gene carriers, biosensor and screening systems, and clinical bio-analytical 
diagnostics and therapeutics (Mazzola, 2003; Ziener et al., 2005). For example, 
nanocomposites have been used to stabilize and regenerate bone matrices (Bradt 
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et al., 1999; Du et al., 1998; Kikuchi et al., 2004; Kikuchi et al., 2004); biosensing 
with nanotubes and nanowires has demonstrated unprecedented sensitivity for 
biomolecule detection (Alivisatos, 2004; Drummond et al., 2003; Penn et al., 
2003); and nanoscale assemblies and particles have been used to deliver high 
concentrations of therapeutic drugs and/or biomolecules, possessing high bioaffinity 
to specific host sites for precise drug administration (Moghimi and Szebeni, 2003; 
Muller et al., 2001; Takeuchi et al., 2001). 

The combinational use of stem cells and nanostructured materials may help us 
to understand many scientific questions and also may bring many practical 
applications that promote the use of either or both components in biomedical 
research and clinical applications. In this chapter, the interactions between stem 
cells and nanostructured materials are discussed. In order to better present the 
contents, nanostructured materials are classified into two categories, one is 
nanotopographic substrate, which includes nanofibers and surface nano-textures, 
and the other is nanoparticles. 

1.2 Interaction of Stem Cells with Nanotopographic  
Substrates

Cells in their natural in vivo surroundings are exposed to a complex chemical 
and structural environment. The natural extracellular matrix (ECM) is made up of 
structural components that are of nanoscale dimensions. Major fibrous extracellular 
molecules are in the nano-scale range, fibers such as collagen fibers, elastin fibers, 
keratin fibers, etc. are nanofibers. Mimicking the natural environment when 
culturing cells in vitro is highly important because cell behavior is determined by 
both genetic make up and the surrounding environmental cues. Cellular behaviors 
such as proliferation, differentiation, morphology, and migration are commonly 
controlled in culture by modulation of the chemical environment, cells also 
respond to different morphological cues that can be determined by the growth 
substrate in vitro and in vivo. Four components may be involved in the growth, 
differentiation, and morphology of cells on biomaterial surfaces: (1) adsorption 
of serum components, (2) extracellular matrix components secreted by the cell, 
(3) cell adhesion molecules, and (4) cytoskeleton mechanics (Matsuzaka et al., 
1999). It has been shown that the structural substrate property of surface 
roughness can cause selective protein absorption, and that higher surface 
roughness increases total protein absorption (Deligianni et al., 2001). Increased 
protein adsorption could be attributed to an increase in surface area for rough 
surfaces and thus could be important in relation to nanotopographical materials 
because these exhibit extremely high surface areas. In relation to nanostructure 
and stem cell interactions, the cytoskeleton mechanics component is of 
importance because cells cultured on substrates with nanoscale features can take 
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on different shapes in response to the specific features that are encountered. It is 
very apparent that nanotopography effects cellular behavior through the regulation 
of morphology, but it is likely that there are unknown effects associated with 
nanotopographies as well. Cells can react to objects as small as 5 nm (Curtis, 
2001) and it is possible that nanostructures, especially those of similar dimensions 
to the natural ECM, can influence cell behavior through mechanisms other than 
determination of cell morphology, cytoskeletal mechanics, and protein absorption. 
It has been shown that stem cell behavior can be highly dependent on the 
substrate that they are cultured on and the understanding of stem cell interactions 
with nanosurfaces could provide valuable information about stem cells that could 
be utilized for desirable in vivo applications. 

1.2.1 Cell Shape and the Cytoskeleton 

While much is known about how various growth factors can regulate differentiation, 
the significance of cell density on cell differentiation is not well understood. It 
has been hypothesized that the differences in cell density cause differences in cell 
shape that in turn may act as differentiation cues (McBeath et al., 2004). The 
effect of cell shape on the differentiation of stem cells has been investigated. 
Spegelman and Ginty (1983) found that differentiation of an adipogenic cell line 
could be inhibited when it was allowed to attach and spread on fibronectin coated 
surfaces. The inhibitory effect on cell differentiation was reversed by keeping the 
cells rounded and by disrupting the actin cytoskeleton. On the contrary, cell 
spreading has been shown to cause an increase in osteoblast differentiation by 
osteoblastic progenitor cells as measured by increased osteocalcin expression 
(Thomas et al., 2002). It has been shown that regulation of cell shape can 
influence the differentiation of multipotent human mesenchymal stem cells 
(hMSCs) into adiogenic or osteoblastic fate (McBeath et al., 2004). hMSCs 
allowed to flatten and spread expressed osteoblastic markers, such as alkaline 
phosphatase, while constrained cells that remained unspread and rounded 
expressed adiogenic lipid production. In addition, more alkaline phosphatase 
activity was found at low hMSC plating density and more lipid staining was 
observed at high cell plating density. One proposed mechanism for the 
transduction of cell shape information into gene expression is by the transmission 
of mechanic forces directly from the myosin actin cytoskeleton to the nucleus 
(Maniotis et al., 1997). While cytoskeletal organization is related to cell shape, 
the cytoskeleton can influence gene expression independently of cell shape. In 
the study above, the inhibition of myosin-generated cytoskeletal tension in 
hMSCs caused decreased alkaline phosphatase activity and increased lipid 
production without changing cell shape (McBeath et al., 2004). 

Stem cells have been cultured on a variety of nanotopographies including 
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nanofibers, nanoparticle films, and etched nanosurfaces. Stem cells are highly 
responsive to nanotopagraphies for morphology, attachment, proliferation, and 
differentiation. Stem cells cultured on nanofibrous scaffolds can introduce two 
mechanical cues to cultured cells when compared to traditional culture methods. 
Nanofiber scaffolds present cells with a nanoscaled fibular microstructure and in 
many cases a three-dimensional 3-D growth environment. It is important to take 
both of these variables into consideration when analyzing the results from these 
studies. Because of differences in dimensionality, nanosurface interactions and 
nanofiber interactions will be described in separate sections. 

1.2.2 Morphology, Attachment and Proliferation 

1.2.2.1 Nanosurfaces 

Several investigations have observed the effects that surface nanotopography can 
have on the attachment, spreading, and orientation of cultured stem cells. 
Nanoparticle films made by layer-by-layer assembly can be used to create 
nanotopographies of increasing surface roughness. Mouse mesenchymal stem 
cells (mMSCs) seeded on TiO2 films of increasing particle desposition and 
surface roughness attached and spread better on the rough surfaces (Kommireddy 
et al., 2006).  

Photolithographic techniques have been used to create nanotopographies of 
pits, bumps and grooves on polymer surfaces. Rat bone marrow mesenchymal 
stem cells (rBMCs) cultured on grooved surfaces with an applied groove depth of 
0.5, 1.0 or 1.5 m and a groove width of 1, 2, 5 or 10 m induced alignment of 
the cells, matrix, actin filaments, and focal adhesion points to the surface grooves 
(Matsuzaka et al., 2000, et al., 1999). hMSCs were also cultured on wide grooves 
of 50 m width and 327 nm depth and narrow grooves of 5 m width and 
510 nm depth (Dalby et al., 2006). In this case, cells cultured on narrow grooves 
developed stress fibers that were highly aligned in the direction of the grooves, 
while cells cultured on wider grooves only approximately aligned to the axis of 
the grooves. This would be expected, as grooves of 50 m width are larger than 
the diameter of a cell. Bone marrow stem cell derived osteoblast-like cells cultured 
on 150 nm wide 60 nm deep grooves also directed cell orientation and actin fiber 
alignment with features of a much smaller scale(Zhu et al., 2005). hMSCs have 
also been cultured on pits of 30 m and 40 m widths and 310 nm and 362 nm 
depths respectfully and on bumps 10 45 nm in height(Dalby et al., 2006a, 
2006b). For all sizes of pits and bumps significant increases in cell area and 
defined cytoskeletal fibers were observed.  

Conflicting results on nanosurface effect on proliferation have been observed. 
Proliferation was enhanced for TiO2 nanoparticle surface and 150 nm wide 60 nm 
deep grooved surfaces versus smooth surfaces (Kommireddy et al., 2006; Zhu et 
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al., 2005). In contrast, in another study using 1 10 m wide, 0.5 1.5 m deep 
grooves, the differences in cell proliferation were not significant (Matsuzaka et 
al., 2000). 

1.2.2.2 Nanofibers 

Nanofiber meshes seeded with different types of stem cells have demonstrated 
the ability to promote cell adhesion, directional guidance and morphological 
changes. Osteoprogenitor cells cultured on electrospun polymer fiber meshes with 
diameters ranging from 140 nm to 2100 nm responded to fibrous nanotopography 
and osteogenic growth factors (Badami et al., 2006). Cells on fibers had a smaller 
projected area than cells on smooth surfaces, but cells on 2100 nm fibers had a 
higher aspect ratio. Proliferation was also effected by the fibrous nanotopography. 
Cells cultured on fibers exhibited a lower cell density than those on smooth 
surfaces in the absence of osteogenic factors, but when osteogenic factors were 
added the cell density of fiber surfaces was equal to or greater than that on 
smooth surfaces. In both cases cell density increased with fiber diameter. In 
contrast, osteoblast cells grown on carbon nanotubes of various diameters 
proliferated at much higher rates on smaller fibers with three times as many cells 
on 60 nm fibers than 125 nm fibers after 7 days in culture (Elias et al., 2002). 
Mouse (ES) cells cultured in a nanofibrullar network also greatly enhanced 
proliferation in comparison with the growth of tissue on culture surfaces without 
nanofibers (Nur et al., 2006). Another investigation observed hematopoietic stem 
cell proliferation to increase at a similar rate for both polymer films and nanofiber 
polymer meshes (Chua et al., 2006). Cell adhesion properties of nanofibers were 
also tested on hematopoietic stem cells grown on polymer nanofiber meshes and 
polymer films. After ten days of expansion culture, cells were gently washed 
three times and approximately 40% of total cells on nanofiber meshes were 
adherent as opposed to 25% of total cells on film substrates. 

Similar to linear oriented etched surfaces, aligned nanofibers are able to promote 
directional guidance in stem cell culture. Neuronal stem cells seeded on random 
and aligned 300 nm and 1.5 m nanofibers attached well and changed their shape 
from rounded to elongated and spindle-like for all fiber scaffolds. In addition, 
cells turned through large angles in order to grow parallel to the fiber alignment 
independent of fiber diameter (Yang et al., 2005). 

1.2.3 Differentiation 

1.2.3.1 Nanosurfaces 

Nanotopography has been shown to have an effect on differentiation as measured 
by increased osteogenic gene expression in bone marrow cells. Rat bone marrow 
cells cultured on grooved polymer surfaces 500 1500 nm deep had greater 
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alkaline phosphatase activity than cells cultured on smooth surfaces (Matsuzaka 
et al., 1999). The osteoblastic markers osteocalcin and osteopontin were expressed 
by human bone marrow stem cells (hBMCs) that were cultured on bumps 
10 45 nm in height, while the same cells cultured on smooth surfaces displayed 
negligible positive staining (Dalby et al., 2006a). Increases in osteocalcin and 
osteopontin versus negligible staining in controls were also observed for hBMCs 
cultured on nanoscale pits 40 m in width and 310 nm in depth (Dalby et al., 
2006b).

1.2.3.2 Nanofibers

Different types of stem cells have been observed to differentiate in a variety of 
nanofiber scaffolds. hMSCs were induced to differentiate into adipogenic, 
chondrogenic, and osteogenic lineages in electrospun nanofibrous polymer scaffolds 
when cultured in specific differentiation media (Li et al., 2005). Neuronal stem 
cells were able to differentiate into neurons with sprouting neurites in a 
nanofibrous polymer scaffold made by liquid-liquid phase separation (Yang et al., 
2004). Mouse embryonic fibroblasts cultured in 3-D peptide scaffolds were 
observed to undergo strong osteogenic differentiation after osteogenic induction 
while cells cultured in 2-D conditions did not differentiate (Garreta et al., 2006). 
Furthermore, mouse embryonic fibroblasts cultured in 3-D systems without 
osteogenic induction still maintained an adult stem cell-like phenotype and 
expressed the early stage markers of osteoblast differentiation. 

Beyond having the capability to support stem cell differentiation, nanofibrous 
topography has been shown to selectively influence differentiation based on fiber 
diameter. Differentiation of neural stem cells cultured on aligned and random 
nanofiber meshes with fiber diameters of 300 nm and 1500 nm were observed to 
be highly dependent on fiber diameter (Yang et al., 2005). When the neural 
differentiation was evaluated on the basis of shape change it was found that the 
quantitative differentiation rates were ~80% and ~40% for 300 nm and 1500 nm, 
respectively. Fiber size dependent differentiation results were consistent for both 
randomly oriented and aligned nanofibers. 

The ability of nanofibrous scaffolds in preventing differentiation has also been 
explored. Hematopoietic stem cells cultured in polymer nanofiber meshes for 10 
days showed a slightly higher percentage of CD34+ CD45+ cells when compared 
to polymer film (Chua et al., 2006). Nanofiber meshes also mediated a lower 
monoblastic phenotype and greater number on primitive progenitor cells 
compared to films. Mouse ES cells also proliferated in 3-D polymer nanofiber 
meshes while maintaining their pluri-potency (Nur et al., 2006). While 
proliferation with self-renewal was allowed to continue in nanofiber topography, 
cells were observed to maintain their ability to differentiate when exposed to 
differentiation factors. In a separate study, a small fraction of mouse ES cells 
isolated during embryoid body development or after osteogenic induction 
appeared to develop into small ES cell-like colonies (Garreta et al., 2006). It was 
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also found that the frequency of these colonies was remarkably higher in 3-D 
peptide nanofiber cultures than in 2-D culture, suggesting that 3-D 
microenvironment promoted the generation of a stem cell-like niche that allows 
undifferentiated stem cell maintenance.  

1.2.4 Self-Assembling Peptide Nanofibers 

The self-assembling peptide method used to create nanofibrous scaffolds for in 
vitro culture can be utilized for in vivo tissue engineering as well. When these 
peptides are injected into the body, the interaction with the physiological 
environment induces peptide nanofiber assembly. Peptide solution injected into 
the myocardium was able to assemble a 3-D nanofiber mesh and did not induce a 
major inflammatory response (Davis et al., 2005). This 3-D microenvironment 
recruited endothelial progenitor cells, smooth muscle cells, and myocyte progentitor 
cells and promoted vascularization. Implantation of matrigel as control resulted 
in few numbers of endothelial cells and no myocyte progenitors. In addition, the 
injection of neonatal myocytes with the peptide solution into the microenvironment 
increased the density of endogenous cardiac progenitors recruited and injected 
ES cells were able to differentiate into cardiac myocytes in the nanofiber 
microenvironment. Self-assembling nanofiber peptide networks have also been 
used as drug delivery vehicles. Improved differentiation of neural progenitor 
cells was observed when they were cultured in peptide nanofibers incorporated 
with isolucine-lysine-valine-alanine-valine (IKVAV) epitope found in laminin 
(Silva et al., 2004). Nanofiber scaffolds incorporating the IKVAV epitope 
promoted rapid and selective differentiation of NSCs into neurons, with about 
35% of cells differentiating after only 1 day. Neural stem cells cultured on 2-D 
laminin coated surfaces differentiated at a much lower percentage that did not 
exceed 15% even after 7 days. It was shown that the increase in differentiation 
was not due to 3-dimensionality when NSCs cultured in non-bioactive nanofiber 
meshes with soluble IKVAV did not promote differentiation, and was further 
shown when a 2-D substrate coated with IKVAV incorporated fibers promoted 
differentiation at the same level as 3-D IKVAV nanofiber meshes. The hypothesis 
for the success of this approach was that IKVAV nanofiber meshes could amplify 
the density of epitope presentation to the cells by a factor of 103 when compared 
to a laminin monolayer. 

1.2.5 Summary 

The results of nanofiber cell culture in relation to oriented cell guidance and 
improved attachment agree well with results from nanosurface culture; however, 
cell area was increased versus control for nanosurfaces and decreased on 



1 Stem Cells and Nanostructured Materials 

9

nanofibers. This could result from differences in the structure or dimensions, but 
it could also be a result of the three dimensionality of the nanofiber structure. 
Results for cell proliferation vary between similar studies for nanofiber scaffolds 
and for nanosurfaces. This discrepancy could be due to the differences in cell 
types and structures used in the individual studies, but it is certainly an indication 
that there may not be a direct relationship between topography and proliferation 
or that this relationship can be outweighed by other factors. 

Nanofibrous topography has been shown to have a very strong effect on the 
differentiation of stem cells. Stem cells have been able to readily differentiate in 
nanofiber meshes and in some case the nanofiber mesh itself has been a 
requirement for differentiation. The influence of nanofibrous structures on stem 
cells differentiation lies in both its structural properties, such as fiber diameter, 
and its three dimensionality. It is important to note that there is evidence that 
dimensionality plays a role in maintaining stemness in proliferating ES cells and 
that nanofibrous structures could be the bioengineering tool used to exploit this 
role. It has been demonstrated that cells cultured on nanofiberous 3-D meshes 
experienced a loss of actin containing stress fibers and the absence of classic 
focal adhesions (Schindler et al., 2005). Stem cells cultured on nanosurfaces 
experience increased adhesion and formation of stress fibers that usually coincide 
with increased differentiation; therefore, it could be hypothesized that the loss of 
actin and focal adhesions could in fact be the reason for the ability of 3-D 
nanofiber networks to maintain stemness. The ability of nanostructures to affect 
stem cell behaviors such as attachment, proliferation, and differentiation shows 
the value of understanding and utilizing these special structures in advancing the 
applications of stem cells.  

1.3 Stem Cell Interactions with Nanoparticles 

Nanoparticles can be used for a variety of applications with stem cells and cancer 
cells. Magnetic or fluorescent nanoparticles are attached to the surface of stem 
cells in order to separate them from larger groups of cells by flow cytometry. 
Nanoparticles can also be internalized in stem cells and cancer cells after which 
the internalized nanoparticles can be exploited for a variety of functional 
purposes, such as gene delivery or transfection. For example, nanoparticles are 
used to deliver substances that need to be protected from the outside environment 
such as DNA to stem cells or drugs to cancer cells. Nanoparticles can also be 
used in vivo as markers to track transplanted stem cells or to locate tumor cells 
with selectively properties in vivo. In relation to stem cell applications, 
nanoparticles can be used as contrast agents or vehicles. Contrast agents such as 
magnetic nanoparticles are the target substance for delivery to the cell and are 
usually encapsulated by another substance before applied to the cell. These 
nanoparticles can be used as vehicles for delivery of target substance to the cell.  



NanoScience in Biomedicine 

10

1.3.1 Nanoparticles as Contrast Agents 

1.3.1.1 Super Paramagnetic Nanoparticles 

Paramagnetic materials are materials that do not normally have magnetic 
properties, but become magnetic when exposed to an external magnetic field.
Superparmagnetic nanoparticles are small particles that can act as imaging probes 
in magnetic resonance (MR) images. The most commonly used superparmagnetic 
nanoparticle is iron oxide (FeO2), which is biocompatible and inert. Gadolinium 
(Gd) is another paramagnetic nanoparticle that can be visualized by MR imaging. 
Gd is strongly toxic as a free ion so it is nessecary that it be combined with 
ligands to form very stable chelates when used for biological purposes. Iron 
oxide nanoparticles usually consist of a FeO2 core and an outer polymer shell and 
acts primaraly as a negative T2 constrast agent producing dark spots in MR 
images. Gd acts to enhance T1 MR images. 

1.3.1.2 Quantum Dots 

Quantum dots are inorganic semi-conductor nanoparticles that have been explored 
as fluorescent labeling agents for cells for biological imaging. Quantum dots are 
typically less than 10 nm in size. Quantum dots are advantageous over conventional 
organic probes because they can be excited by a wider range of wavelengths and 
they exhibit narrower emission bandwidths (Dubertret et al., 2002). Quantum 
dots (QDs) are coated with ligand shells for incorporation into cells. (Dubertret et 
al., 2002) CdSe/ZnS-core/shell quantum dots are of special interest because of 
their uniquely strong luminance and high photostability (Hoshino et al., 2004). 

1.3.1.3 Nanoshells 

Nanoshells are composed of a dielectric core and surrounded by a thin metal shell. 
Nanoshells cores and shells are typically silica and gold respectfully. Nanoshells 
can be designed with specific optical emission absorption properties. Nanoshells 
tunable optical resonance has also been exploited to generate heat (Cuenca et al., 
2006).

1.3.2 Nanoparticles as Vehicles 

1.3.2.1 Silica Nanoparticles 

Organically modified silica nanoparticles surface functionalized with amino groups 
have been shown to bind and protect plasmid DNA from enzymatic digestion 
during the tranfection process. Silica nanoparticles are used as an immobilization 
matrix rather than in tracking. Silica nanopartilces have been used to deliver 
DNA to stem cells in vivo (Bharali et al., 2005). Mesoporous silica nanoparticles 
could be internalized by cells without modification (Huang et al., 2005). 
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1.3.2.2 Polymer Nanoparticles 

Polymer nanoparticles can encapsulate substances to provide protection from the 
outside environment and add specificity for targeted cell delivery. Through 
controlled biodegradation, polymers can assure a controlled rate for sustained 
drug release. An important use of polymer nanoparticles is as a carrier for gene 
therapy. Catatonic polymers bind and condense plasmid DNA to protect it during 
intracellular transport. Polymer surfaces are also easy to modify which raises the 
prospect of targeting specific cellular receptors to avoid side effects resulting 
from expression of the genes in sites other than those intended (Corsi et al., 2003). 
Some polymers used as gene carriers are poly-L-lysine (PLL), polyethyleimine 
(PEI), chitosan, and poly (lactide-co-glycolide) (PLGA). Polymer nanoparticles 
show evidence of varying levels of cytotoxicity and transfection efficiency and 
can be modified to optimize these characteristics (Corsi et al., 2003). 

1.3.3 Effect of Internalized Nanoparticles 

1.3.3.1 Toxicity 

The toxicity of commonly used nanoparticles is manner of debate. There is 
significant evidence for the toxicity of commonly used non-nanoparticle cationic 
liposome transfection agents (van den Bos et al., 2003). The limitation of cationic 
liposome is one of the reasons that the use nanoparticles as carriers for genes, and 
tracking agents is of such interest. Quantum dot tracking agents exhibit 
concentration dependent toxicity, but have not appeared to cause cytotoxicity at 
lower, but still functional levels and encapsulation can alleviate this effect 
(Dubertret et al., 2002; Hoshino et al., 2004). Polymer nanoparticles have also 
contributed to increased cytotoxicity at varying levels depending on conditions 
such as the type of polymer or the molecular weight (Corsi et al., 2003). FeO2
particles can be toxic to cells at high concentration as well, but can be internalized 
at applicable concentration without apparent toxicity. The toxicity of nanoparticles 
is a however a subject of debate and there are conflicting reports on the toxicity 
of nanoparticles, but the overwhelming majority of published experiments 
reported negligible or minimal effects on cell viability for the specific type and 
concentration of nanoparticles that were transfected (Aime et al., 2004; Bulte et 
al., 2001; Corsi et al., 2003; Huang et al., 2005; Jendelova et al., 2004; Lewin et 
al., 2000; Miyoshi et al., 2005; Vuu et al., 2005; Zhao et al., 2002). Unfortunately, 
most viability tests conducted on nanoparticles are done over relatively short 
periods of time and with little detail. It has been stated that there is a serious lack 
of information concerning the impact of nanostructured materials on human 
health and the environment (Braydich-Stolle et al., 2005). An important issue in 
the assessment of the safety of nanoparticles may be the in vivo effects at the 
level of the organism and the long-term effects. Because of its sensitivity to 
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environmental changes, a mouse spermatogonial stem cell line was used as a 
model to test the effect of different nanoparticles in vitro (Braydich-Stolle et al., 
2005). Silver, aluminum, and molybdenum nanoparticles added into the 
spermatogonial cell line culture all demonstrated a concentration-dependent 
toxicity whereas the corresponding soluble salts had no effect. The effect of 
nanoparticle internalization was dependent of the material, as silver nanoparticles 
were very toxic and molybdenum did not affect metabolic activity at low 
concentrations.

1.3.3.2 Differentiation 

The effect of internalized nanoparticles on differentiation is also a phenomena 
that is not well understood. Stem cells have been reported to differentiate 
normally with internalized iron oxide, quantum dots, and silica nanoparticles, but 
there are relatively few cases in which were this effect has been investigated 
(Bulte et al., 2001; Huang et al., 2005; Jing et al., 2004). In addition, many of the 
conclusions made about the normal differentiation of cells with internalized 
nanoparticles have been made based on morphological observations and gross 
analysis on the growth properties of cells without detailed characterization of 
molecular activities such as gene expression (Hsieh et al., 2006). Investigation of 
the differentiation properties of bone marrow stem cells (BMSCs) cultured with 
internalized CdSe/ZnS quantum dots showed that cells with quantum dots 
exhibited impaired linage specific gene expression for chondrogenesis and 
osteogenesis (Hsieh et al., 2006; Hsieh et al., 2006). The presence of quantum 
dots did not affect the proliferation of BMSCs or the size of chondrospheres after 
chondrogenesis induction, but mRNA, protein of type  collagen and aggrecan 
was significantly inhibited. In a separate experiment, BMSCs induced to 
differentiate to an osteogenic lineage displayed lower alkaline phosphatase activity 
and significant inhibition of osteopontin and osteocalcin expression when 
compared to control cells. These results raise concerns about the effect of using 
quantum dots to label stem cells as well the possibility that internalization of other 
types of nanoparticles could have similar effects on stem cell differentiation.  

1.3.3.3 Cell Internalization of Nanoparticles and Cell Tracking  

In order to utilize nanoparticles to track stem cells or deliver agents to them, the 
nanoparticles must first be internalized in vitro or in vivo. Methods of labeling 
cells by surface attachment that are commonly used in cell sorting are not 
suitable for in vivo conditions because of the rapid reticuloendothelial recognition 
and clearance of cells thus labeled (Lewin et al., 2000). The most common 
modes of internalization are pinocytosis, which deals with the ingestion of fluid 
by means of small vesicles and endocytosis, which is a process where substances 
bound to the cell membrane and molecules present in the extracellular fluid are 
entrapped in endosomic vesicles. The high incubation concentration for absorption 


