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Supervisors’ Foreword

It was a real pleasure to supervise Mark Barber’s Ph.D. research. Mark came to
St Andrews in 2012 with excellent qualifications from the University of Cambridge,
and his exceptional abilities soon became clear to us. When set a high-level research
task, Mark quickly understands on his own what is needed and almost always
returns with solutions rather than further questions.

Mark quickly began to make major contributions to the main theme of the
group’s work at that time, the development of a new technique for the application of
uniaxial pressure. In those early stages, calculations were required in order to
understand how to achieve the most homogeneous strain fields in the samples.
Rather than try to purchase commercial software, Mark wrote a package to perform
finite element calculations from scratch. He not only achieved this very quickly but
also designed the package so that it was adaptable and easy for him to use on a host
of related problems. The calculations strongly influenced the way that the samples
were mounted for the 2013 and 2014 experiments, hence making a major contri-
bution to their success.

After this excellent start to his research, he faced what most graduate students
would regard as an unwelcome disruption, as we relocated our group from
St Andrews to the Max Planck Institute for Chemical Physics of Solids in Dresden,
Germany. Given the choice to stay working with existing equipment in St Andrews
or come to the new environment, he was clear both that he wanted to move and that
he would like to take on a major experimental task. We had the funds to purchase
two new cryostats, to be installed in a brand new laboratory in Dresden. Mark asked
to be involved in the specification at the prepurchase stage but also to be given the
responsibility to commission the cryostats and associated electronics. This is a big
job, especially when one includes the demands of designing and writing a full data
acquisition package, but such is Mark’s ability that we agreed, as long as we could
monitor his progress. Needless to say, what he produced exceeded any reasonable
expectations. Within less than a year from an empty laboratory, he was simulta-
neously performing experiments on both cryostats, having written more or less
autonomous software that took data, performed initial online analysis of it, and used
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the information to “decide” on the next run. If human intervention was needed, it
sent him a message telling him what was required.

The semiautonomous software was a nice touch, but nothing that Mark does is
purely for show. It enabled him to build up two major data sets in an incredibly
short space of time. The first, on the unconventional superconductor Sr2RuO4, he
showed both that it is possible to drive it through a topological transition of its
Fermi surface with uniaxial pressure, and that its superconducting transition tem-
perature peaks sharply at approximately the same strain. These were world first
results, leading to the publication of several papers. In his second piece of original
research, he demonstrated the sensitivity to uniaxial pressure of the novel magnetic
and possibly nematic order in the related material Sr3Ru2O7. Mark also contributed
strongly to research on the high-temperature superconductor YBa2Cu3O6+x under
uniaxial stress, a notable effort as it required detailed collaboration with other
groups.

For parts of the Sr2RuO4 research, the high purity of the single crystals led to
difficulties in measuring their extremely low resistances accurately. Mark and a
colleague noted that this was due to a deficiency in standard current sources, and
designed and built a new one, described in the thesis, to overcome the problem.
This quiet determination, coupled with high ability and creativity, are Mark’s
defining characteristics as a scientist. Like most really good researchers, he is also
unselfish and always willing to help others, both within the group and beyond. We
have had a string of visitors, keen to learn the tricks of the new techniques. Mark is
always willing to help them, and having seen him at work, they regularly tell us
how impressed they are with quality of what he does. Having explained his work
many times in person, he realized the importance of the didactic part of his thesis,
and took considerable care to write a document that would help others around the
world who wish to set up similar experiments.

In summary, Mark has been an outstanding graduate student, with whom it has
been a pleasure to work, and this is in our opinion an outstanding thesis.

Dresden, Germany A. P. Mackenzie
March 2018 C. W. Hicks
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Abstract

In the repertoire of an experimental condensed matter physicist, the ability to tune
continuously through features in the electronic structure and to selectively break
point-group symmetries are both valuable techniques. The experimental technique
at the heart of this dissertation, uniaxial stress, can do both such things.

The thesis will start with a thorough discussion of our new technique, which was
continually developed over the course of this work, presenting both its unique
capabilities and also some guidance on the best working practices, before moving
on to describe results obtained on two different strongly correlated electron
materials.

The first, Sr2RuO4, is an unconventional superconductor, whose order parameter
has long been speculated to be odd-parity. Of interest to us is the close proximity of
one of its three Fermi surfaces to a Van Hove singularity (VHs). Our results
strongly suggest that we have been able to traverse the VHs, inducing a topological
Lifshitz transition. Tc is enhanced by a factor � 2.3 and measurements of Hc2 open
the possibility that optimally strained Sr2RuO4 has an even-parity, rather than
odd-parity, order parameter. Measurements of the normal state properties show that
quasiparticle scattering is increased across all the bands and in all directions, and
effects of quantum criticality are observed around the suspected Lifshitz transition.

Sr3Ru2O7 has a metamagnetic quantum critical endpoint, which in highly pure
samples is masked by a novel phase. Weak in-plane magnetic fields are well-known
to induce strong resistive anisotropy in the novel phase, leading to speculation that a
spontaneous, electronically driven lowering of symmetry occurs. Using magnetic
susceptibility and resistivity measurements, we can show that in-plane anisotropic
strain also reveals the strong susceptibility to electronic anisotropy. However, the
phase diagram that these pressure measurements reveal is consistent only with large
but finite susceptibility, and not with spontaneous symmetry reduction.
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Chapter 1
Introduction

The interactions between particles in nature can present a bewildering array of exotic
states and phenomena, each fascinating in their own right, but also in terms of their
potential applications. Condensed matter systems with as many as 1022 atoms in a
single cubic centimetre are a prime example. Of interest for this thesis are a group
of materials in which the interactions between electrons are particularly strong, such
that onemust consider the behaviour of the electrons as correlated. These interactions
can drive the formation of states such as superconductors, strangemetals and a variety
of different magnetic states, to name just a few.

To understand the behaviour of a complex system one often turns to the individ-
ual building blocks. In condensed matter physics these are the atoms making up the
solid. When considering metals we are concerned with the positive ions which form
the crystal lattice and the conduction electrons that move through it. The positive
ions comprise the nuclei of the constituent atoms plus the core electrons. The con-
duction electrons are the outer most electrons which can lower their kinetic energy
by travelling through the lattice. This energy benefit is key to the cohesion of atoms
in metals [1].

It is simple to account for the motion of each of the individual building blocks
and the Coulomb interactions between them but this fully reductionist approach runs
into complications [2]. The equations can describe a vast number of properties in
condensed matter but the interaction terms put exact solutions for all but the simplest
systems out of reach. Instead we must simplify the situation and look for ‘emergent’
phenomena. As experimentalists we can try to understand these emergent states by
measuring their physical properties, but given the ability to perturb the systems we
can play with the underlying interactions and make the best tests of theories.

In this thesis I will present measurements on two materials, the first Sr2RuO4,
known for its unconventional superconductivity, and the second Sr3Ru2O7, for its
quantum critical behaviour and large nematic-like susceptibility, and show how their
properties can be manipulated through carefully applied uniaxial stress. Both mate-
rials are exquisitely clean, so to perturb them without destroying the fragile nature of

© Springer International Publishing AG, part of Springer Nature 2018
M. E. Barber, Uniaxial Stress Technique and Investigations of Correlated Electron
Systems, Springer Theses, https://doi.org/10.1007/978-3-319-93973-5_1
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2 1 Introduction

Hamiltonian describing simple metals. Hi
describes the positive ion subsystem with masses
Mi and charges Zi . Pi is the momentum of ion i .
He similarly describes the electron subsystem and
He−i accounts for the coulomb potential between
the electrons and positive ions at positions r and
R, respectively.

H = Hi + He + He−i

Hi =
∑

i

P2
i

2Mi
+ 1

2

∑

i �= j

Zi Z j e2∣∣Ri − R j

∣∣

He =
∑

i

p2i
2me

+ 1

2

∑

i �= j

e2∣∣ri − r j

∣∣

He−i = −
∑

i

∑

j

Z j e2∣∣ri − R j

∣∣

the emergent phenomena a suitably clean tuning parameter is required. Significant
technical development was needed to be able to apply a sufficiently homogeneous
uniaxial pressure, so as well as the results a thorough discussion on the improvements
to the technique that made this work possible will be given. Before this, though, I will
start by briefly introducing how we describe the behaviour of electrons in metals,
which will later form the basis for the specific discussions of each material presented
in their respective chapters.

1.1 Electrons in Metals

To start the discussion of electron correlations in metals it is intuitive to begin with
the free non-interacting case and then slowly introduce the correlations. In adopting
this procedure, one must trust that reintroducing electron correlations later will not
render the insights from the non-interacting case meaningless. In fact there are good
reasons for this and a proper justification will be given in the section on Fermi
liquids. Now also leaving the lattice of ions behind briefly, or better assuming a
uniform positive background charge to maintain charge neutrality, we begin with the
free Fermi gas and follow the Sommerfeld model. Conduction electron densities in
metals are typically of the order 1022 cm−3 at room temperature [3]. At these densities
the interparticle separations are less than the thermal de Broglie wavelength of the
electrons. So to correctly describe the nature of this gas of electrons, quantum effects
must be included and the electron gas will obey Fermi-Dirac statistics. Electrons
occupy quantised energy states and obey the Pauli exclusion principle. Imagining
a gas of electrons in a box of side L with periodic boundary conditions, the wave-
functions of the electrons are plane waves with energy

εk = �
2k2

2me
(1.1)
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Fig. 1.1 Free electron Fermi surface. Each k point within the sphere is occupied by one up-
and one down-spin electron

with quantised values of the wave-vector k in units of (2π/L). The ground state is
built up by filling up from the lowest energy state to the N th lowest state where N
is the number of electrons. The highest occupied energy is called the Fermi energy
εF with the corresponding Fermi wave-number kF. In reciprocal space the surface
separating the volume containing all the filled states from the unoccupied states is
called the Fermi surface, see Fig. 1.1 [3–5].

At non-zero temperature the population of states follows the Fermi-Dirac distri-
bution. Thermal energy can excite an electron from within the filled Fermi surface
to a state just outside creating an electron-hole pair. In a ‘free electron metal’ the
typical Fermi temperature, εF/kB ∼ 3 × 104 K, is much much higher than ambient
temperature so only a small number of states within an energy of ∼kBT of the Fermi
energy are ever excited. The Pauli exclusion principle prevents the excitation of the
lower states since there are no unoccupied final states within ∼kBT . This leads to
a T linear specific heat, unlike the constant value for a classical gas, and a temper-
ature independent magnetic susceptibility unlike the Curie-Weiss behaviour of the
classical gas, both of which can be observed in real materials.

Reintroducing the periodic lattice, the wave-functions for the electrons are no
longer plane waves but instead are described by Bloch waves [5]. The wave-vector
or momentum used in the free electron picture no longer makes sense for the Bloch
states because of the translational symmetry breaking. Instead, the electron states
can be described by a quantity called crystal momentum.

The real space crystal structure is completely defined within the definition of
the primitive unit cell. This irreducible volume can map out the whole structure by
copying it along each of the translation vectors of the lattice. The same periodicity
must exist in reciprocal spacewhere the irreducible volume is nowcalled theBrillouin
zone. All momentum states can be mapped back to the first Brillouin zone through
the reciprocal lattice vectors giving us the first idea of an electronic band structure,
i.e. multiple bands of the electron dispersion, each at higher energy, within the first
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Fig. 1.2 Nearly-free electron dispersion.The free electron dispersion, dashed line, transforms
into a set of discrete bandswith energygaps in betweenwhen aperiodic potentialwith lattice constant
a is weakly introduced

Brillouin zone. Each band has its own dispersion relationship, E = E(k), but the
number of possible states in each band is always equal to the number of allowed
crystal momenta in the first Brillouin zone. This is always two times the number of
primitive unit cells in the crystal, with the factor of two for spin degeneracy. Filling
the allowed states proceeds as in the free electron gas and Sommerfeldmodel; starting
from the lowest energy but now filling a new bandwhen it is the next lowest in energy
(Fig. 1.2).

Between each of the bands an energy gap develops, i.e. there are regions of
energywhere noBlochwave solutions exist [4]. Atwave-vectors satisfying theBragg
reflection condition of the lattice, the two left and right travelling wave-functions
combine to form two different standingwaves. The two standingwaves have different
probability densities, with one having higher probability at the lattice sites, and the
other between lattice sites. There is therefore a difference in potential energy between
the two solutions and this is the origin of the energy gap.

From the idea of Bloch waves we can extract a mean velocity for each of the
electron states. At the Fermi energy we define the Fermi velocity

υF = 1

�
∇kε|kF , (1.2)

and from this we can identity a band mass

m∗ =
(

1

�2kF
∇kε|kF

)−1

. (1.3)

This measures the impact of the lattice on the motion of the electrons by how much
it differs from the bare electron mass me. We will see later that electron correlations
can also enhance the effective mass further above the band mass.

When filling up states up to the Fermi level we can think of filling up to a surface
with electrons but if only a few empty states remain close to the top of the band it
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is equally sensible to describe the band in terms of only the unoccupied states, or
holes, at the top of the band. A hole is the absence of an electron so carries opposite
charge and momenta to the electron states they are replacing.

There are two common limiting cases when continuing this discussion further;
the periodic potential can be added to the free electron gas as a weak perturbation in
a model called the nearly-free electron model, or we can start with atomic orbitals
and slowly bring the lattice closer together allowing the electrons to hop between
atomic sites described by the tight-binding model [5]. In this case, the itineracy is a
perturbation on the atomic limit. The nearly-free electron model works very well for
the alkali metals [5]. Although the Coulomb attraction to the lattice should at first
sight be large, the Pauli exclusion principle keeps the conduction electrons in higher
orbitals, further away from the ion cores on average, where the interaction is lower
and the core electrons can additionally screen the ion’s charge. So in some scenarios
the nearly-free electron model is entirely valid. For the alkali metals, with only one
valence electron per atom, it is particularly good, because the Fermi surface fills only
half of the first Brillouin zone, well away from the zone boundaries, thus avoiding
the distortions of the band due to the band gaps [3].

For the materials we will be discussing later, Sr2RuO4 and Sr3Ru2O7, both tran-
sition metal oxides, we are mainly concerned with the d-electron shell. For example,
at the normal valencies for strontium and oxygen in Sr2RuO4, Sr2+ and O2−, the
ruthenium ion with a valency of Ru4+ is left in a 4d4 electronic configuration [6].
The d-electron shells have small orbital radii meaning the interatomic overlap of the
orbitals will be small and there will be a large potential penalty for double occupancy
[7]. These factors take us away from the nearly-free electron limit. Many d-electron
systems remain localized, forming a magnetic insulating state as opposed to a metal-
lic one, especially in the 3d series [7]. The strontium ruthenate series is an exception
and each remains metallic, but it is constructive to view them in a tight-binding fash-
ion. I will now continue with a more formal description of the tight-binding model
which will be useful for the derivations of the Fermi surfaces for both materials later.

In the tight-binding descriptionwe build theBlochwavefunctions for the electrons
from the atomic orbitals [3].We assume the extent of the atomic orbitals,φ(r), is close
to or smaller than the interatomic separation so they are mostly unperturbed when
assembled into the lattice. The tight-binding wavefunction is a linear combination
of approximately atomic orbitals [5]

Ψk(r) =
∑

R

eik·Rφ(r − R) . (1.4)

The real space positions of the atoms determine how the bands develop. To illustrate
this I will start with a simple cubic lattice, lattice constant a, of s states. We take a
small perturbation, V (r), to the atomic Hamiltonian which captures the periodicity
of the lattice and look for the first-order corrections to the energy.1

1The wavefunctions are assumed to already be normalised here 〈Ψk|Ψk〉 = 1.
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�E =〈Ψk|V |Ψk〉 (1.5)

=
∑

n

∑

m

eik·(Rn−Rm )

∫
φ∗(r − Rm)Vφ(r − Rn)dV (1.6)

=
∑

m

e−ik·am
∫

φ∗(r − am)Vφ(r)dV (1.7)

where am = Rm − Rn . The integral is dominated by the on-site terms, am = 0, and
the six nearest neighbour terms, am = ±ax̂, ±aŷ, ±aẑ. We can drop all other terms
because the atomic orbital overlap will be negligible. Thus we end up with

E(k) = Eφ − B − 2t (cos(kxa) + cos(kya) + cos(kza)) , (1.8)

where

B = −
∫

φ∗(r)Vφ(r)dV (1.9)

t = −
∫

φ∗(r − a)Vφ(r)dV . (1.10)

The parameter t is known as the transfer integral, a measure of the ease of hopping
from one atom to the next. In general, starting from n atomic levels on each atom,
these will combine to form n separate bands. The bandwidth of the band is directly
related to the transfer integral. A smaller atomic overlap, with a correspondingly
smaller transfer integral, has a narrower bandwidth and a higher effective mass. In
this way the effects of the real-space crystal structure are seen in the band structure;
if in a certain direction the atoms are further apart, the bandwidth will be narrower
for motion along that direction as is expected. The shape of the bands will also reflect
the character of atomic orbitals they are made up from [5].

We have just seen two extreme cases for electrons in a metal; a scenario where
the periodic potential is only a very weak perturbation to otherwise free electrons
and the opposite extreme where the potential is so strong the electrons can hardly
hop from one atom to the next. Both cases give rise to bands with corresponding
gaps between them but crucially they are qualitatively similar. This implies that real
materials, which will fall somewhere in between these two extremes, must also have
qualitatively similar band structures.

1.2 Landau’s Fermi Liquid

Up until now we have been ignoring the electron-electron Coulomb interaction but
without foresight this should not have seemed like a sensible thing to do. By nomeans
is theCoulomb interactionweak. Justmaking a quick back of the envelope calculation
we can compare the scale of the Coulomb interaction with the kinetic energy of the



1.2 Landau’s Fermi Liquid 7

electrons, which is the other important energy scale. From the electron densitywe can
define a characteristic length, the radius of a sphere occupied by one electron, which
sets the approximate kinetic energy EK ≈ �

2/8mer2s and the Coulomb repulsion
between two electrons EC ≈ e2/8πε0rs . The ratio gives us the importance of the
electron-electronCoulomb interaction EC/EK ≈ rsmee2/πε0�

2 = 4rs/a0, where a0
is the Bohr radius. For typical metallic densities rs is order Ångströms [3] whereas
a0 is half an Ångström. The electron-electron Coulomb interaction is not weak so
how did we get on so well when we ignored it? The answer comes from Landau
and his notion of a Fermi liquid [8–10]. If we start from a Fermi gas and turn on a
mutual repulsion between all the electrons the Fermi gas turns into a Fermi liquid.
The naming is in analogy to classical gases and liquids whereby introducing inter-
particle interactions condenses the gas to a liquid. The beauty is that the Fermi liquid
retains some of the key properties of the Fermi gas.

By allowing the electrons to interact and exchange momentum the Fermi sur-
face, in its original state, is no longer stable [11]. The insight of Landau was rather
than caring about the individual electron states, to instead see what happens to the
excitations of the Fermi gas as the electron-electron interaction is ‘turned on’. An
electron excited above the Fermi level can now Coulomb scatter with another below
the Fermi level resulting in an additional electron-hole pair. This process can con-
tinue creating additional electron-hole pairs until some equilibrium is reached. This
original excitation can now be described as the superposition of the bare electron,
the bare electron and an electron-hole pair, the bare electron and two electron-hole
pairs, and so forth [12].

|Ψqp〉 = √
Z |φel〉 + |particle-hole excitations〉 + . . . (1.11)

The insight of Landau was that if we turn on the interaction slowly enough we
can evolve smoothly from one picture to the other as the strength of the Coulomb
interaction is increased. This concept is referred to as adiabatic continuity andwe call
the excited states of the interacting systemLandau quasiparticles to remind us that the
wavefunctions and energies are different from the corresponding electrons in the non-
interacting problem. The quasiparticles do however retain the same charge and spin
as the bare electron but neither the mass nor the interactions between quasiparticles
need to remain the same. This one-to-onemapping of the interacting states with those
of the non-interacting Fermi gas retains the picture of Fermi particles and a Fermi
surface but one that is now stable since the Coulomb interaction has already been
taken into account.

By producing the quasiparticles in this way they are made out of states which
are no longer exact eigenstates of the system. Thus they cannot be infinitely long
lived and the quasiparticles can scatter off one another. Their inverse lifetime can be
calculated from Fermi’s golden rule. Making reference to Fig. 1.3, a quasiparticle at
energy ε scatters off one in the Fermi sea and looses energy ω. The total decay rate
1/τε for these processes is
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Fig. 1.3 Quasiparticle scattering. A quasiparticle with energy ε above the Fermi surface can
scatter off another from within the Fermi sea to create an additional particle-hole pair

1

τε
= 2π

�

∑

f

∣∣Vi f

∣∣2 δ(ε − ε f ) (1.12)

where the sum is over all possible final states. We assume the scattering matrix
elements

∣∣Vi f

∣∣ are constant and make use of conservation of energy and momentum
to restrict the possible final states. The Pauli exclusion principle also puts strict phase
space restraints on the possible scatterings. There must be an unoccupied final state
for the electron to scatter into so ω must be less than ε and the second electron must
be within ω of the Fermi energy such that is can also reach an unoccupied state with
the promotion of energy ω. Using the density of states at the Fermi level, gF, to turn
this into an integral

1

τε
∼ 2π

�
|V |2

∫ ε

0
gFdω

∫ ω

0
gFdε′

∫ ∞

−∞
δ(ε − ω − ε′ + ε′′)gFdε′′ (1.13)

1

τε
∝ g3Fε

2 . (1.14)

We can now see that at sufficiently small energies close to the Fermi surface the
quasiparticle is well defined. Here the quasiparticle’s decay rate, ∝ ε2, is much less
than its excitation energy ε. Further from the Fermi surface adiabatic continuity no
longer holds, i.e. the quasiparticles scatter before the interaction can be completely
turned on. Quasiparticles are therefore only well defined around the Fermi energy.

We are now in a position to see why the non-interacting case worked so well. The
same phenomenology of electron-hole excitations from an electron Fermi sea applies
for the Fermi liquid, but now the excitations are quasiparticle-quasihole excitations
from the quasiparticle Fermi sea, and we recover the same qualitative predictions
as those of the Sommerfeld model. Figure1.4 shows how we can schematically
think of this transformation. The electron probability distribution is modified under
the presence of a weak mutual interaction but the sharp discontinuity at the Fermi
wavevector survives. If instead we talk of the quasiparticles we recover the ordinary
Fermi-Dirac distribution but as the quasiparticles are onlywell defined near the Fermi
surface, we can only talk of small excitations from the Fermi energy.


