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John Green and Tim Springer developed a one‐day train-
ing course, Design and Analysis of Ecotox Experiments, 
for the Society for Environmental Toxicology and 
Chemistry (SETAC) and delivered it for the first time at the 
SETAC Europe 13th Annual Meeting in Hamburg, 
Germany, in 2003. Since then, in many years we have 
taught this course at the annual SETAC conferences in 
Europe and North America, updating it each time to stay 
abreast of the evolving regulatory requirements. In 2011, 
Henrik Holbech joined us and has made valuable contribu-
tions ever since. In 2014, Michael Leventhal of Wiley 
approached us with the idea of turning the training course 
into a textbook. The result is the current book, and we 
appreciate the opportunity to reach a wider audience.

This book covers the statistical methods in all current 
OECD test guidelines related to ecotoxicity. Most of these 
have counterparts in the United States Environmental 
Protection Agency (USEPA) guidelines. In addition, statis-
tical methods in several WHO and UN guidelines are also 
covered, as are guidelines in development or that have been 
proposed. Chapter 11 provides a good coverage of all the 
test guidelines covered in this book with reference to the 
chapters in which guideline‐specific statistical methods are 
developed. With very few exceptions, the data used in the 
examples and exercises are from studies done for product 
submissions or in developing some regulatory test guide-
line. The authors have been members for a combined total 
of more than 30 years of the OECD validation management 
group for ecotoxicity (VMG‐eco) responsible for develop-
ment and update of significant portions of numerous cur-
rent test guidelines including OECD TG 210, 229, 230, 
234, 236, 240, 241, 242, and 243. We have also been 
actively involved in designing and analyzing ecotoxicity 
studies for more than a combined total of 60 years. One or 
more of us were also members of the expert groups that 
developed (i) the European Framework for Probabilistic 
Risk Assessment (Chapman et al., 2007), (ii) OECD Fish 

Toxicity Testing Framework (OECD, 2014c), (iii) Current 
Approaches in the Statistical Analysis of Ecotoxicity Data: 
A Guidance to Application (OECD, 2014a, 2006a), (iv) 
OECD test guideline 223 that describes a sequential test 
designed to measure mortality in avian acute tests, (v) 
OECD Guidance Document on Standardised Test 
Guidelines for Evaluating Chemicals for Endocrine 
Disruption (OECD, 2012a) and (vi) OECD test guideline 
305 for assessing bioaccumulation in fish.

Our intent is to provide an understanding of the statis-
tical methods used in the regulatory context of ecotoxicity. 
However, the coverage and treatment of the topics should 
appeal to a much wider audience. A mathematical appen-
dix is included to provide technical issues, but the focus is 
on the practical aspects of model fitting and hypothesis 
tests. There are numerous exercises based on real studies to 
help the reader enhance his or her understanding of the top-
ics. Ample references are provided to allow the interested 
reader to pursue topics in greater depth. We have not shied 
away from controversies in the field. We think it important 
that the reader understand that statistics is not free of con-
troversy and should be well‐informed on these issues. 
Nonetheless, while we have points of view on these topics 
and express them, we have tried to take an even‐handed 
approach in describing the different points of view and pro-
vide references to allow the reader to more fully appreciate 
the arguments on these issues.

A frequent question from participants in the training 
course was where one could find software to carry out the 
methods of analysis we taught and were required or at least 
recommended in regulatory test guidelines. While we have 
developed in‐house proprietary SAS‐based software for 
this purpose, it has not been possible to share it. One of the 
benefits of this textbook is the availability of a website cre-
ated by Wiley where we are providing SAS and R programs 
for almost all methods presented. In some instances, rather 
than present programs, we provide a link to free online 
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software that has been developed for specific guidelines or 
for a more general use. In some cases, we have been unable 
to find R programs to carry out the recommended methods. 
For those cases especially, we invite the readers of this 
book to develop and send such programs to us. In a few 
cases, no SAS program is provided. In all cases, a program 
or link is provided for all analyses discussed. After we test 
programs supplied by readers, we will put them on the 
website with appropriate acknowledgments. Also, if any 
shortcomings are found in the initially provided programs, 
we encourage the readers to bring them to our attention and 
we will post corrections or improvements. As regulatory 
requirements change or methods improve, we will update 
the website.

We have had support from numerous people over the 
years in developing the training material and the material 
for this book. Colleagues too numerous to name from 
DuPont, Wildlife International/EAG, USEPA, OECD, and 
other companies, universities, and CROs have contributed 
ideas and data that have been very helpful in improving our 
understanding of ecotoxicology. Two instructors joined us, 
Michael Newman of Virginia Institute of Marine Science, 
School of Marine Science, The College of William and 
Mary, and Chen Teel of DuPont, each for one offering of 
the course and both added value. In addition, we have SAS 
expertise, but more limited experience with R. As a conse-
quence, while we developed some R programs ourselves, 
several very capable people were engaged to develop most 
R programs for the website. Several deserve special 
acknowledgment. We have modified their programs in 
minor ways to fit the needs of the website and accept 
responsibility for any errors.

Joe Swintek is a statistician working with the Duluth 
office of the USEPA. He was a contributor to one of our 
publications (Green et al., 2014) and turned the SAS ver-
sion of the StatCHARRMS software John and Amy 
Saulnier developed under contract for the USEPA into an R 
package. The SAS version is provided in Appendix 1 (the 
website) and the R version is now in the CRAN library. A 
link is provided in the references (Swintek, 2016). In addi-
tion to the RSCABS program for histopathology severity 
scores (Chapter 9), StatCHARRMS contains the Dunnett 
and Dunn tests, the step‐down trend tests Jonckheere–
Terpstra (Chapter 3), Cochran–Armitage and Fisher’s exact 
tests (Chapter 6), Shapiro–Wilk and Levene tests for nor-
mality and variance homogeneity (Chapter 3), and repeated 
measures ANOVA for multi‐generation medaka reproduc-
tion studies (Chapter 5). Several of these tests are provided 
in Appendix 1 in stand‐alone versions, as well as in the full 
CRAN version. In addition, Joe developed a versatile R 
program for the important Williams’ test, and that is in 
Appendix 1 and has been added to the StatCHARRMS 
package. We were surprised to find that this test had not 

previously been released in an R package, so far as we are 
aware. There is an R package, multcomp, that refers to 
Williams’ type contrasts within the function mcp, but the 
results deviate substantially from Williams’ test. We have 
verified with the developer, Ludwig Hothorn, that package 
mcp does not provide Williams’ test. More discussion on 
this is provided in Chapter 3. Joe also provided numerous 
other R programs for several chapters as well as pointing 
out a simple R function based on the package sas7bdat for 
reading a SAS dataset into R without the need to have SAS 
installed or converting the dataset to excel or text first. We 
are very grateful for his contributions.

Chapter 13 leans heavily on discussions of the expert 
group that developed guidance on implementation of 
OECD test guideline 305 on bioaccumulation in fish. In 
particular, Tom Aldenberg of RIVM has provided invalua-
ble communications to us concerning the R program, 
bcmfR, that he has provided to OECD for analysis of bio-
concentration and biomagnification studies.

Georgette Asherman also deserves special mention, 
primarily for her R programming work for Chapter  5. 
Among her notable contributions were versatile and robust 
versions of the Shapiro–Wilk and Levene tests, the Shirley 
nonparametric ANCOVA program, two parametric 
ANCOVA programs, programs to add confidence bounds 
to the graphic output for nonlinear regression, and zero‐
inflated binomial and beta‐binomial models.

Erand Smakaj provided training in the use of R‐Studio 
and contributed programs for survival analysis and for sev-
eral topics in Chapter  13 and was very accommodating 
throughout the text and code development.

Xiaopei Jin made important contributions to the R pro-
grams for Chapter 8 and demonstrated useful capabilities 
of R that can be applied to programs in all chapters.

Finally, we would be remiss not to acknowledge the 
many contributions Amy Saulnier has made to SAS pro-
gramming used in this book and elsewhere. John has 
worked with Amy over the entire 29+ years of his 
DuPont career. In addition to turning his SAS programs 
into the user‐friendly StatCHARRMS program, she has 
done the same for two other heavily used SAS‐based 
in‐house software packages routinely used for our toxi-
cology and ecotoxicology analyses for regulatory sub-
missions. She has maintained these programs, updated 
them as needed to stay current with regulatory require-
ments and changes in the computing environment, and 
has been an essential contributor to DuPont’s work for 
over three decades.

The term GLMM is used for generalized linear models 
regardless of whether there is a random term. This encom-
passes both generalized linear mixed models and fixed 
effects models. The term GLM is reserved to the classic 
general linear model with normal errors.
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This book is accompanied by a companion website:

www.wiley.com/go/Green/StatAnalysEcotoxicStudy

About the Companion Website

The companion website contains programs in SAS and R 
to carry out the analyses that are described in the text. 
These programs will be updated as improvements are 
identified or regulations change. Readers are invited to 
send corrections or improvements to the authors through 
Wiley. Once these are verified and judged appropriate, they 
will be added to the website with appropriate acknowledg-
ment. Also on the website are datasets referenced in the 

text but too large to include there. These are in the form of 
excel files or SAS datasets. An R program is provided to 
convert SAS datasets to R without the need to have access 
to SAS. In a few instances noted in the text, links are given 
to specialized programs developed specifically for some 
regulatory test guideline when there seemed no purpose in 
creating a new program.
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1

Chapter 1

This chapter introduces some basic concepts that apply to 
all chapters. It begins with a discussion of the nature of 
toxicology or ecotoxicology studies that distinguish 
them from experiments more generally. Then some basic 
experimental design issues are discussed, such as types of 
control groups, replicates and pseudo‐replicates, and units 
of analysis. The various types of responses that occur are 
introduced, with pointers to chapters in which methods 
of statistical analysis of the various types of response are 
developed. An introduction is given to the use of historical 
controls and how these studies relate to regulatory risk 
assessment of chemicals in the environment. Then a hierarchy 
of statistical models is provided that, in broad terms, defines 
the statistics used in this field of study and, specifically, in 
this text. Finally, a topic is introduced that is the cause of 
considerable tension in ecotoxicology and biological 
analysis of data in general, namely the difference between 
biological and statistical significance.

1.1  NATURE AND PURPOSE 
OF TOXICITY EXPERIMENTS

The purpose of a toxicity experiment is to obtain a quanti­
fiable measure of how toxic a given substance is to a group 
of organisms or community of organisms. The primary 
purpose of this book is to describe the design and statistical 
analysis of laboratory experiments on groups of organisms 
of a single species exposed to controlled levels of a sub­
stance thought to have the potential to produce an adverse 
effect on the test organisms. Such experiments have the 
goal of quantifying the level of exposure to the substance 
that has an adverse effect of biological concern. Some con­
sideration is also given to how information from multiple 
toxicity experiments on different species can be combined 

to assess the adverse effect of the test substance on an 
ecological community. This chapter is intended to provide 
a general overview of toxicity studies and an introduction 
to the topics covered in this book.

1.1.1  Designed Experiments  
Compared to Observational Studies
Historically, the toxicity of chemicals has been studied 
using experiments performed under carefully controlled 
conditions in the laboratory and by observation of responses 
in uncontrolled settings such as the environment. Obser­
vational studies that gather information by survey or 
monitoring have the advantage of providing insight into 
toxicological responses under real‐world conditions. Such 
studies are valuable in alerting researchers to potential 
problems resulting from chemical exposure. However, in 
surveys and monitoring studies, many uncontrolled factors 
can affect responses, and exposure of organisms to a 
chemical of interest (e.g. dose and concentration) usually 
cannot be estimated accurately. As a result, conclusions 
concerning the relationship between possible toxicological 
responses and exposure to the chemical are difficult to 
establish with certainty.

On the other hand, designed experiments typically 
control most of the factors that affect response, and dose 
or exposure concentration can be accurately measured. 
Designed experiments performed in a laboratory are 
usually performed at constant temperature with constant 
exposure to a test substance. Control of test substance 
exposure and other experimental factors allow the relation­
ship between exposure and response to be modeled.

Exposure to the test substance in these experiments 
may be: via food or water ingested, air breathed, from 
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2 Chapter 1  An Introduction to Toxicity Experiments

contact with the soil or sediment or contact with spray 
application or spray drift on plants, through gavage or 
intravenous injection, or by direct application to the skin or 
eyes. The measure of exposure can be the concentration in 
the food or water or air, the quantity of chemical per unit of 
body weight, the quantity of chemical per unit of land area, 
or the concentration of the chemical in the blood.

Toxicity experiments are generally classified as acute, if 
the exposure is of short duration relative to the life span of the 
organism; or subchronic, if the exposure is of medium dura­
tion relative to a full life time; or chronic, if the exposure is 
for approximately a normal life span of the test substance.

Toxicity is measured in many ways. In its simplest 
form, it refers to the exposure level that kills the whole 
organism (e.g. laboratory rat or fish or tomato plant). 
Many sublethal responses are measured and the types of 
measurements are varied. The types of response encoun­
tered in toxicology fall broadly into one of the following 
categories: Continuous, quantal, count, and ordinal. Below 
is an introduction to each of these types of responses 
together with an indication of some of the challenges and 
methods associated with each type. Later chapters will 
discuss in detail all the points mentioned here.

1.1.1.1  Continuous Response

This class includes measurements such as plant yield, 
growth rate, weight and length of a plant or animal, the 
amount of some hormone in the blood, egg shell thickness, 
and bioconcentration of some chemical in the flesh, blood, 
or feathers. Typical continuous response data are shown 
in Tables 7.6 and 7.7 and Figures 7.2 and 7.3.

Continuous responses also include responses that 
exist in theory on a continuous scale, but are measured 
very crudely, such as days to first or last hatch or swim‐up 
or reproduction, or time to tumor development or death, 

which are observed (i.e. “measured” only once per day). 
Hypothesis testing methods of analyzing continuous data 
are presented in Chapter  3 and regression models are 
presented in Chapters 4 and 5.

1.1.1.2  Quantal Response

Quantal measures are binary (0–1 or yes/no) measurements. 
A subject is classified as having or not having some 
characteristic. For each subject, the possible values of the 
response can be recorded as 0 (does not have the character­
istic of interest) or 1 (has the characteristic of interest). The 
quintessential example is mortality. Outside Hollywood 
films about zombies and vampires, each subject at a given 
point in time is either alive (value 0) or dead (value 1). 
Other quantal responses include immobility, the presence 
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7 Reps/Conc
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R
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Figure 1.1  First day of daphnid reproduction. Diamonds, replicate means; solid line, joins treatment means.

Example 1.1  Daphnia magna reproduction

The experimental design is seven daphnid individually 
housed in beakers in each of six test concentrations and 
a water control. Once each day, it is recorded whether 
or not each daphnid has reproduced. Ties in first day of 
reproduction are very common. In this typical dataset, 
there were a total of six distinct values across the study. 
While in theory, time to reproduction is continuous, the 
measurement is very crude and, as will be seen in 
Chapters 3 and 4, analysis will be different from that 
for responses measured on a continuous scale.

See Figure  1.1. The solid curve connects the 
mean  responses in the treatment groups with line 
segments. Recall that there are seven beakers per 
treatment, but many beakers have the same first day 
of reproduction, so each diamond can represent from 
1 to 6 observations. See Table 1.1 for the actual data.
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of matted fur, pregnant, lethargic, and the presence of liver 
tumor. Hypothesis testing methods of analyzing quantal 
data are presented in Chapter 6 and regression models are 
presented in Chapter 7. See Table 1.2 for an example of 
survival data for mites.

The data in Table 1.2 are from an experiment on mites. 
Mites were exposed to varying levels of a pesticide as part of 
a risk assessment for product registration. Each housing unit 
consists of a frame with a glass plate at the top and bottom of 

the frame. Pesticide residue is sprayed on the inner side of 
each glass plate. For the control, water is sprayed on the inner 
plate surface. After the plates dry, mite protonymphs are 
placed between the plates. Fresh air is circulated within the 
frame by an air pump. The mites are examined 7 days after 
exposure begins. Risk is the number of mites in each housing 
unit. Alive is the number alive at the end of the experimental 
period. The concentrations were in ppm. There were nomi­
nally five mites per unit, including control. Due to initial 
counting problems two units actually included six mites. 
Chapters 6 and 7 will discuss how to analyze such data.

1.1.1.3  Count Response

While quantal responses involve counts of the number of 
animals with the characteristic of interest, as we use the 
term, counts are the number of occurrences in a single 
subject or housing unit of some property. These include 
the number of eggs laid or hatched, the number of cracked 
eggs, the number of fetuses in a litter, the number of kidney 
adenomas, and the number of micronucleated cells. See 
Table 1.3 for an example dataset from Hackett et al. (1987) 
showing variable litter sizes and sex ratios.

Methods for analyzing count data will be presented 
in Chapter 8. As will be discussed there, count data can 
sometimes be analyzed as though it were continuous 
(usually after a transformation). Count data can also be 
analyzed through specialized distributions, such as Poisson 

Table 1.1  Daphnid First Day of Reproduction Data for Example 1.1

Conc Rep RepDay Conc Rep RepDay Conc Rep RepDay

−1 1 9 0.001 6 6 10 0.012 4 10
−1 2 9 0.001 6 7 12 0.012 5 11
−1 3 11 0.003 1 1 10 0.012 6 10
−1 4 9 0.003 1 2 11 0.012 7 10
−1 5 10 0.003 1 3 10 0.027 1 10
−1 6 9 0.003 1 4 10 0.027 2 10
−1 7 9 0.003 1 5 10 0.027 3 10
0 1 9 0.003 1 6   9 0.027 4 10
0 2 11 0.003 1 7 10 0.027 5 11
0 3 10 0.006 6 1 10 0.027 6 10
0 4 11 0.006 6 2 10 0.027 7 10
0 5 10 0.006 6 3 11 0.05 1 14
0 6 10 0.006 6 4 11 0.05 2 13
0 7 10 0.006 6 5 10 0.05 3 13
0.001 6 1 10 0.006 6 6 10 0.05 4 13
0.001 6 2 12 0.006 6 7 10 0.05 5 14
0.001 6 3 10 0.012 1 10 0.05 6 14
0.001 6 4 12 0.012 2 11 0.05 7 14
0.001 6 5 0.012 3 11

Conc = −1 is water control. Conc = 0 is solvent control. Controls should be combined (with Rep numbers altered to distinguish replicates in the 
two controls) prior to further analysis, or else one control should be discarded (see Sections 1.3.1 and 1.3.2). RepDay, first day of reproduction 
of daphnid in the beaker.

Table 1.2  Mite Survival Data

Conc Unit Risk Alive Conc Unit Risk Alive

0 1 5 3 75 1 5 4
0 2 5 5 75 2 6 2
0 3 5 5 75 3 5 3
0 4 5 5 75 4 5 2
18.75 1 5 5 150 1 5 1
18.75 2 5 5 150 2 5 1
18.75 3 5 5 150 3 5 0
18.75 4 5 3 150 4 5 0
37.5 1 5 5 300 1 5 0
37.5 2 6 6 300 2 5 0
37.5 3 5 5 300 3 5 0
37.5 4 5 2 300 4 5 0

Unit, replicate vessel; Risk, number of mites placed in vessel at study 
start; Alive, number of mites alive at the end of the study period.
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or zero‐inflated Poisson, in the context of what are called 
generalized linear models (GLMM). We will present and 
compare these methods in Chapter 8.

1.1.1.4  Ordinal Response

Ordinal responses indicate relative severity or level but not 
magnitude. Examples include amphibian developmental 
stage and histopathology severity scores. Amphibian 
developmental stages are represented by numbers 1–66 
(as derived from Nieuwkoop and Faber, 1994), but the 
difference between stage 55 and 56 is not comparable to 
the difference between 56 and 62. The larger number indi­
cates a more advanced development, but this development 
is defined by the presence or absence of specific physical 
characteristics, not otherwise quantifiable. Consider the 
following stages as examples:

1.	 Stage 56 typically occurs on day 38 post hatch. 
Forelimbs of stage 56 animals are visible beneath the 
skin of the tadpoles. The tadpoles are filter‐feeding.

2.	 Stage 57 typically occurs on day 41 post hatch. Stage 
57 animals lack emerged forelimbs, and metamor­
phosis in the alimentary canal is just beginning.

3.	 Stage 58 typically occurs on day 44 post hatch. 
Stage 58 animals have emerged forelimbs and there 
is significant histolysis of the duodenum (animals can 
no longer digest food).

4.	 Stage 59 typically occurs on day 45 post hatch. Stage 
59 animal forelimbs now reach to the base of the 
hindlimb and there is now histolysis of the non‐pyloric 
part of the stomach (animals still can no longer digest 
food).

5.	 Stage 60 typically occurs on day 46 post hatch.

In terms of development rates, a stage 57 animal is 3 days 
behind a stage 58 animal, whereas a stage 58 animal is only 
1 day behind a stage 59 animal. Also, in terms of develop­
ment rate, a stage 56 animal is 6 days behind a stage 58 
animal, whereas a stage 58 animal is only 2 days behind a 
stage 60 animal.

Table 1.3  Mouse Litter Size and Sex Ratio

Conc Dam Males Litter Conc Dam Males Litter Conc Dam Males Litter

0 1 6 9 40 27 8 16 200 53 7 12
0 2 6 10 40 28 6 11 200 54 7 15
0 3 2 3 40 29 6 12 200 55 0   2
0 4 5 13 40 30 3   6 200 56 8 16
0 5 7 12 40 31 7 13 200 57 7 15
0 6 5 13 40 32 6 11 200 58 9 11
0 7 8 15 40 33 4 10 1000 59 4   9
0 8 7 13 40 34 8 15 1000 60 5 14
0 9 4 13 40 35 7 14 1000 61 5 11
0 10 6 13 40 36 3 14 1000 62 7 12
0 11 11 12 40 37 7 13 1000 63 6 14
0 12 6 13 200 38 7 13 1000 64 9 14
0 13 3 9 200 39 8 12 1000 65 7 15
0 14 8 13 200 40 7 12 1000 66 7 12
0 15 6 9 200 41 4 13 1000 67 9 16
0 16 3 13 200 42 6 14 1000 68 10 14
0 17 7 14 200 43 9 15 1000 69 9 14
0 18 6 14 200 44 5 11 1000 70 7 11
40 19 6 11 200 45 7 14 1000 71 4 10
40 20 3 11 200 46 6 11 1000 72 7   9
40 21 3 13 200 47 6 12 1000 73 5 12
40 22 8 14 200 48 7 11 1000 74 3   8
40 23 8 13 200 49 8 11 1000 75 6 10
40 23 11 15 200 50 5 13 1000 76 9 13
40 25 6 13 200 51 6 14 1000 77 2 11
40 26 6 12 200 52 8 12 1000 78 6 15

Dam is an ID for the pregnant female mouse. Litter is the number of fetuses for that dam. Males = number of males in the litter and conc is the exposure parentage 
dosage of 1,3‐butadiene in ppm. Questions of interest include whether the chemical affects the litter size or sex ratio and whether there is an association between 
litter size and sex ratio. Fetal, placenta, and dam body weights were also included in the original dataset and other questions were also addressed.
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The biological significance of moving between two 
stages might vary greatly depending on which stages are 
being considered. For example, a stage 56 animal can 
filter‐feed. None of the animals in the other stages listed 
above can.

Developmental stage is a key endpoint in the OECD 
TG 231 Amphibian Metamorphosis Assay (AMA). The 
experimental design in the test guideline is for four tanks 
per test concentration, 20 tadpoles per tank, and three test 
concentrations plus a water control. In developing the test 
guideline, other designs were explored, including designs 
with five test concentrations plus control, two tanks per 
concentration, and 20 tadpoles per tank. See Table 1.4 for 
an example with this latter design.

In Table 1.4, there was an apparent shift right in group 
5 and perhaps in group 4, but groups 2 and 3 have increased 
frequencies of smaller stages. It is not clear what a 10% 
effects concentration would mean for this response. 
Averaging stages in a group is meaningless (i.e. Stage 57.2 
is meaningless), as stage is an ordinal, not a quantitative, 
variable. The response measure should not be based on 
simply considering the proportion of tadpoles above some 
stage (e.g. >stage 58), since calculation of the concentra­
tion causing a 10% increase in the percent of tadpoles with 
stage greater than 58 ignores the effects on the distribution 
of stages above and below 58. Analysis based on median 
stages in tanks ignores too much within‐tank information. 
Chapter 9 will describe the analysis of such data.

Clearly, the analysis of the stage data requires care, 
and it is important not to think of the stages as representing 
equal increments of development. It should be clear that a 
shift in the stage of metamorphosis of a single stage might 
be, but need not be, biologically meaningful. The analyses 

of developmental stage data will be discussed in detail 
in Chapter 9.

Histopathology severity scores are similar to develop­
mental stages in terms of being ordinal, not numeric, but 
differ in another way that requires a different type of 
analysis. Here, pathologist‐grade organ slides on a scale 
0–4, with score 0 meaning no abnormality was observed, 
score 1 meaning only a minimal abnormality, score 2 
meaning mild abnormality, and scores 4 and 5 meaning 
moderate and severe abnormalities, respectively. It would 
be more accurate to describe score 0 as meaning there was 
nothing remarkable, rather than no abnormality. A severity 
score is assigned to a tissue sample by a trained patho­
logist. These scores depend on the type of tissue damage 
found and an assessment of its importance to the health of 
the animal. See Figure  1.2 for an example tissue slide. 
Assigning severity scores to such slides is not a simple 
exercise. More discussion of this and a more detailed 
example are provided in Chapter 10.

With most toxicology severity scores, there is no 
uniform change in severity between scores, that is, the 
difference between minimal and mild is not the same as 
the difference between mild and moderate or between 
moderate and severe. See Figure 1.3 for a simple illustra­
tion that may help keep these scores in mind.

Stated this way, the nature of severity scores is straight­
forward. Few people would suggest that if half of the tissue 
samples have a minimal finding and half have a moderate 
finding, then on average, the finding is mild.

Confusion arises from the common practice of labeling a 
finding of none as 0, minimal as 1, mild as 2, moderate as 3, 

Table 1.4  Example Developmental Stage Data from 
AMA Study

Stage 56 57 58 59 60 61 62

Group Tank
1 1 2a 3 7 4 2 2

2 9 8 2 1
2 1 6 9 3 2

2 7 8 4 1
3 1 2 9 6 3

2 1 6 7 2 2 2
4 1 1 13 3 3

2 1 3 8 3 5
5 1 5 6 6 1 2

2 5 7 3 5

Stage, developmental stage reached by some tadpole in the indicated tank; 
Group, treatment group, with control = group 1; Tank, replicate vessel.
a Number in cell is the number of tadpoles in the tank at the indicated 
developmental stage.

Figure 1.2  Example tissue slide for histopathology grading. 
Expert judgment is used to score tissue slides such as these. 
Image from Google images altered to black and white and cropped 
using Photoshop. https://image.slidesharecdn.com/cpc‐4‐4‐2‐ren‐
bph‐pathlec‐view‐091013211114‐phpapp02/95/pathology‐of‐
prostate‐53‐728.jpg?cb=1255468480.

https://image.slidesharecdn.com/cpc-4-4-2-ren-bph-pathlec-view-091013211114-phpapp02/95/pathology-of-prostate-53-728.jpg?cb=1255468480
https://image.slidesharecdn.com/cpc-4-4-2-ren-bph-pathlec-view-091013211114-phpapp02/95/pathology-of-prostate-53-728.jpg?cb=1255468480
https://image.slidesharecdn.com/cpc-4-4-2-ren-bph-pathlec-view-091013211114-phpapp02/95/pathology-of-prostate-53-728.jpg?cb=1255468480
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and severe as 4. These labels are numbers and a simple‐
minded statistical approach is to treat them as though these 
labels behave as numbers do rather than recognizing them 
merely as labels: that is, one can average them, compute 
the standard deviation, and employ all the simple statistical 
tools one learned in an introductory course, such as the 
T‐test. However, moving from a score of 1 to 2 does not 
indicate a doubling of severity, and moving from 3 to 4 
may not indicate a change in severity equal to that in 
moving from 1 to 2.

It should be emphasized that these scores are just 
labels. To average scores 1 and 2 is the same as averaging 
minimal and mild. What is the average of minimal and mild 
or of mild and severe? These scores are arbitrary except for 
order. We could just as well use the numbers 1, 2, 5, 7, and 
12 as scores (see Figure 1.3) to emphasize that the differ­
ence between “adjacent” scores is not the same as a subject 
progresses from no effect to severe effect. So the average of 
minimal and severe could be (1 + 4)/2 = 2.5 or (2 + 12)/2 = 7. 
Neither average makes sense.

Such numerical approach is nonsensical, but it does 
highlight a real concern. If the tank in an aquatic experi­
ment is the unit of analysis, what value do we give to the 
tank? Leaving aside for now how to analyze severity 
scores, if there are five fish in a tank with severity scores 
0, 0, 3, 3, and 4, what single value do we assign to the 
tank for statistical analysis? Note that the arithmetic mean 
of these numerical labels is 2. Does 2 capture something 
meaningful about this set of scores?

While the mean score is objectionable, what about the 
median score? The median inherently treats the labels as 
equally spaced across the spectrum of severities. Think 
about where in the wide range of moderate (score 3) tissue 
damage assessments in Figure 1.3 the moderately damaged 
slide lies. As shall be discussed in Chapters 3 and 5, rank 
ordering is a basic idea in most nonparametric testing, and 
the set of all values from treatment and control are ranked 
as a whole and then the sum of the ranks in the treatment 
and control are compared. Such nonparametric tests take 
the spread of severity scores into account, not just the 
median.

One of the two approaches is typically taken in rodent 
histopathology analysis. (i) Apply a nonparametric test 
such as the Mann–Whitney (Chapter 3), which compares 
the median scores in treatment tanks to those in the control. 
But the tank median ignores the spread of the data. The 
tank with scores 0, 0, 3, 3, and 4 has the same median as a 
tank with scores 3, 3, 3, 3, and 3, but the first is much more 
dispersed than the second and this may signal a difference 

of biological importance missed by the comparison of 
medians. The need for a summary measure for each tank 
limits the appropriateness of traditional nonparametric 
procedures for severity score analysis. (ii) Some scientists 
simply do not perform a statistical analysis, either because 
they recognize the shortcomings of the above approach or 
because they have little value for statistics altogether.

Given the restricted number of possible severity scores 
and the small sample sizes typical in histopathology, at 
least in ecotoxicology studies, analysis methods for 
severity scores are different from those for developmental 
stage. See Table 1.5 for an example from a medaka multi­
generation test.

In the dataset in Table 1.5, there were no score 0 fish. 
The empty tanks (A in treatment 1 or control and C in 
treatment 2) do not represent mortality. Rather, medaka 
could not be sexed at the initiation of the study and by 
chance, these tanks contained no females. This inability to 
know the sex at study initiation leads to highly imbalanced 
experimental designs. The tank is the unit of analysis, not 
the individual fish, it is thus important to retain tank 
identification and not lose the distribution of scores within 
the tank. Also, because fish cannot be sexed at the beginning 
of the study and must be analyzed by sex at the end of the 

None Minimal Mild Moderate Severe

Figure 1.3  Example severity scale. Varying widths for different scores indicate possible differences in the range of severities given the same score.

Table 1.5  Severity Scores for Liver Basophilia in Female 
F2 Medaka at 8 Weeks

Trt

Frequency of score per tank

TotalScore Aa B C D E F

1 1 1b 1 2 2 3 9
2 3 1 4
3 1 1

2 1 2 1 1 4
2 4 2 1 1 8

3 1 1 2 4 7
2 2 2 1 1 6

4 1 1 1 1 3
2 1 1 3 3 2 10
3 1 1

5 1 1 2 1 1 1 6
2 1 1 2 4
3 1 2 1 4

Trt, treatment group, with 1=control; Total, number of fish in all tanks 
in the indicated treatment group with the indicated score.
a Tanks are labeled A, B, and F.
b Numbers in cells indicate the number of fish (ignoring tanks) in the 
treatment group with that score.
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study, tank sizes are highly variable and this complicates 
the analysis. For that reason and others, analysis of tank 
medians, for example, would discard important information.

Appropriate methods for analysis of ordinal data are 
discussed in detail in Chapter 9.

1.1.2  Analysis of Laboratory Toxicity 
Experiments
The variety of sublethal endpoints measured suggests the 
need for multiple statistical tools by which to analyze 
toxicity data. It is the objective of this book to discuss 
many of the statistical methods that have been used for this 
purpose and to indicate what additional tools could be 
brought to bear. Science is not static and advances in statis­
tical methods and computer power and software have made 
available techniques that were impossible only a few years 
ago. It is fully expected that additional advances will be 
made in the time to come that cannot be foreseen today. 
The authors will attempt to present the main statistical 
methods in use now, and to the extent possible, those likely 
to be included in the near future.

In its simplest form, a toxicity experiment is conducted 
on a single species for a fixed amount of time. Different 
groups of subjects are exposed to difference levels of the 
test substance. More complex experiments include other 
factors, such as measurements of lethal and sublethal 
effects over time, differences among the sexes of the 
subjects, different ambient conditions, and mixtures of 
chemicals. The object of the statistical analysis is to 
identify the level of exposure that causes a biologically 
meaningful adverse effect under each set of conditions in 
the experiment. Ideally, subject matter experts (e.g. toxi­
cologists or biologists) will determine what level of effect 
is biologically meaningful. Criteria for making that deter­
mination can be on the basis of the health of the individual 
animal or on the ability of the population as a whole to 
thrive. For example, it may be the scientific judgment of 
biologists that a 10% change in body weight of a Sprague‐
Dawley rat, a 3% change in the length of a Daphnia magna, 
and only a 300% or greater increase in vitellogenin (VTG) 
are of biological importance. This is not a statistical ques­
tion but it is very important to the statistician in designing 
or interpreting a toxicity study to know what size effect it is 
important to find. Without the information on what size 
effect it is important to detect, the statistician or data 
analyst can only determine what is statistically significant 
or estimate an arbitrary percent effect that may have no 
inherent value. The result is unsatisfying to the statistician, 
biologists, and risk assessor.

Ethical concerns about the use of animals in toxicity 
experiments are increasingly important and the authors 
share this concern. There is a very active worldwide effort 

underway to reduce or eliminate the number of animals for 
various species (mice, fish, birds, etc.) used in toxicity 
experiments. We will not pursue the question of the desir­
ability of animal testing. Our purpose is to provide scien­
tifically sound methods for analyzing the range of responses 
that arise from toxicity experiments. Most of these methods 
apply whether the test subject is a fathead minnow, tomato 
plant, cell, or bacterium. In all cases, experiments should 
be designed to use the minimum number of test subjects 
needed to provide scientifically sound conclusions. This 
is an instance where ethical and cost considerations 
coincide.

1.2  REGULATORY CONTEXT 
FOR TOXICITY EXPERIMENTS

Many toxicity studies are done to meet a regulatory require­
ment needed to obtain permission to use a chemical that 
may lead to an environmental exposure. Such toxicity 
experiments are used by regulatory authorities, such as the 
United States Department of Agriculture (USDA), Animal 
and Plant Health Inspection Service (APHIS), United 
States Environmental Protection Agency (USEPA), Office 
of Pesticide Programs (OPP), European Food Safety 
Association (EFSA), the European Chemicals Bureau 
(ECHA), The Institute for Health and Consumer Protection 
(IHCP), or one of the European country environmental 
agencies, including the Danish Environmental Protection 
Agency (DK‐EPA) and Umweltbundesamt (UBA) follow­
ing standardized test guidelines issued by the Organization 
for Economic Co‐operation and Development (OECD) or 
the USEPA to assess the likelihood of adverse impacts 
on populations and communities of organisms in the 
environment.

To minimize data requirements and avoid unnecessary 
tests, regulatory risk assessments in the US have a tiered 
structure. Tier I studies estimate hazard and exposure under 
“worst‐case” conditions. If no adverse effects are found 
under these conditions, there may be no need for further 
data. In its simplest form, a so‐called limit test may be done 
with a single very high concentration of the test chemical 
and a control. In other instances, there may be several 
exposure levels. In either case, except for determining 
lethal exposure levels, the emphasis is on testing hypothe­
ses regarding whether an adverse effect exists, but there is 
no need for a precise quantification of the size effect at 
each exposure level. If a higher tier test is needed, the focus 
of such tests is usually on sublethal effects, so it is impor­
tant for the tier I tests to establish exposure levels that are 
lethal to a substantial portion of the exposed subjects. Early 
tier tests tend to be simple in design and may indicate that 
there is no need for the more detailed information that can 
come from higher tiered tests. Higher tier tests are designed 
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either to assess risk under more realistic conditions or to 
obtain more precise quantification of the exposure–effect 
relationship.

In the European Union (EU) chemicals expected to enter 
the environment are mainly regulated by three regulations: 
(i) REACH (Registration, Evaluation, Authorization, and 
Restriction of Chemicals) covering industrial chemicals, 
(2) PPPR (Plant Protection Products Regulation) covering 
pesticides, and (3) BPR (Biocidal Products Regulation) 
covering biocides. The test information requirements in 
REACH are driven by tonnage, i.e. the yearly volume 
produced in or imported to the EU. Test requirements start 
when more than 1 ton of a chemical is produced or imported 
yearly. The most test requirements are applied to chemicals 
exceeding 1000 ton year−1.

Chapters 2–10 and 13 will develop methods appropriate 
for all levels of this tiered process. Much more information 
on the regulatory process will be provided in Chapter 11. 
Chapter 12 will develop an important tool for combining 
the information from individual studies into a single sum­
mary distribution useful for risk assessment. References 
that can be explored now and returned to throughout a 
course based on this text include http://www.epa.gov/
pesticides/biopesticides/pips/non‐target‐arthropods.pdf, 
http://www.epa.gov/oppefed1/ecorisk_ders/toera_
analysis_eco.htm, http://www.epa.gov/pesticides/health/
reducing.htm, and http://www.eea.europa.eu/publications/
GH‐07‐97‐595‐EN‐C2/riskindex.html.

1.3  EXPERIMENTAL DESIGN BASICS

While observational studies of animals or plants captured 
in the wild are valuable to environmental impact studies, 
such studies can be quite frustrating in that routes and 
conditions of exposure are often unknown, sample sizes 
are often inadequate, and measurements are all too often 
non‐standardized, so that comparisons among studies are 
very difficult. This book is not concerned with observa­
tional studies, even though one of the authors has been 
very actively involved in several such studies, including 
one major study lasting for more than 12 years. We will 
restrict ourselves to designed experiments.

Considerations of study objectives should include 
what and how measurements will be taken to address the 
objectives. For a study of fish, for example, how is death to 
be determined? It may be difficult to know with certainty 
whether a fish floating upside down at the top of the tank is 
dead or just immobile. How long should it be allowed to 
float before deciding it is dead or near death and should 
be euthanized to prevent suffering? If a fish or plant is 
weighed, is it weighed wet or first blotted dry or desic­
cated? Specific protocols should be provided to address 
such questions.

Experiments intended for regulatory submissions of 
new pharmaceuticals or crop protection products or food 
stuffs will receive special attention in this book. In studies 
done to meet regulatory requirements, objectives are gen­
erally very detailed in test guidelines that must be followed. 
What is often unclear in test guidelines is the size of effect 
it is important to detect or estimate. Guidelines, especially 
older guidelines, simply refer to effects that are statistically 
significant. As a result, it has often been argued, with some 
merit, that such guidelines reward poor experimentation, 
since the more variable the data, the less likely an observed 
effect will be found statistically significant. A good study 
should state explicitly what size effect is important to 
detect or estimate for each measured response and the 
power to detect that size effect or the maximum acceptable 
uncertainty for that estimate in the proposed study. Detailed 
discussion of statistical power is introduced in Chapter 2 
and discussed in detail in Chapters 3, 5, 6, 8, and 9 in the 
context of specific tests. There has been increasing interest 
in the last 15 years or so in replacing the use of hypothesis 
tests to determine a NOEC by regression models to esti­
mate a specific percent effects concentration, ECx. One 
goal of the regression approach is to replace the ill‐defined 
connection between biological and statistical significance 
with an estimate of the exposure level that produces an 
effect of a specific size. Such methods are introduced in 
Chapter 2 and explored in depth in Chapters 4, 6, 7, and 8. 
A hypothesis testing method with the same goal is dis­
cussed in Chapter 13.

The basic toxicity experiment has a negative control, 
where subjects are not exposed to the test substance, and 
one or more treatment groups. Treatment groups differ 
only in the amount of the test substance to which the 
subjects are exposed, with all other conditions as nearly 
equal as possible. For example, treatment groups might 
be tanks of fish exposed to different concentrations of 
the test substance, or pots or rows of plants exposed to 
different application rates of the test chemical, or cages 
of mice with different amounts of the test substance 
administered by gavage. Apart from the amount of chem­
ical exposure, the same species, strain, age, sex, ambient 
conditions, and diets should be the same in all treatment 
groups and control.

1.3.1  Multiple Controls
It is common in aquatic and certain other types of experi­
ments that the chemical under investigation cannot be 
administered successfully without the addition of a solvent 
or vehicle. In such experiments, it is customary to include 
two control groups. One of these control groups receives 
only what is in the natural laboratory environment (e.g. 
dilution water in an aquatic experiment, a water spray in a 

http://www.epa.gov/pesticides/biopesticides/pips/non-target-arthropods.pdf
http://www.epa.gov/pesticides/biopesticides/pips/non-target-arthropods.pdf
http://www.epa.gov/oppefed1/ecorisk_ders/toera_analysis_eco.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_analysis_eco.htm
http://www.epa.gov/pesticides/health/reducing.htm
http://www.epa.gov/pesticides/health/reducing.htm
http://www.eea.europa.eu/publications/GH-07-97-595-EN-C2/riskindex.html
http://www.eea.europa.eu/publications/GH-07-97-595-EN-C2/riskindex.html
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pesticide application experiment, and unadulterated food 
in a feeding study), while the other group receives the 
dilution water with added solvent but no test chemical, a 
spray with surfactant but no test chemical, or an oral gavage 
with corn oil but no test substance. In ecotoxicity experi­
ments, these are often termed negative or dilution water 
(non‐solvent) and solvent controls. OECD recommends 
limiting the use of solvents (OECD, 2000); however, appro­
priate use of solvents should be evaluated on a case‐by‐
case basis. Details regarding the use of solvents (e.g. 
recommended chemicals and maximum concentrations) are 
discussed in the relevant guideline documents for a specific 
ecotoxicity test. In addition, regulatory guidelines must be 
followed by both controls with regard to the range of accept­
able values (e.g. minimum acceptable percent survival or 
mean oyster shell deposition rate). Multiple control groups 
can be utilized regardless of whether the experiment was 
intended for hypothesis testing or regression analysis.

In rodent studies where the chemical is administered by 
oral gavage using a corn oil vehicle (or some other vehicle), 
one control group should be given just the corn oil by gavage. 
The intention is to rule out a gavage effect or separate it 
from any effect from the test chemical. Not all such rodent 
experiments include a control group that is simply fed a 
standard diet with no gavage administered. The statistical 
treatment of multiple controls will be addressed in Chapter 2 
and in specific types of analyses in later chapters.

In some experiments, a positive control group is also 
used. Here a different compound known to have an effect 
is given to one group of subjects. The purpose is to dem­
onstrate that the experimental design and statistical test 
method are adequate to find an effect if one is present. 
If  the positive control is not found to be significantly 
different from the control, the experiment will generally 
have to be repeated. More information on how to analyze 
experiments with a positive control group will be given in 
subsequent chapters. There are other ways to demonstrate 
the sensitivity of the design and analysis method, includ­
ing power analysis and computer modeling. These topics 
will also be addressed later.

1.3.2  Replication
In almost all toxicity experiments, each treatment group 
and control is replicated, so that there are multiple subjects 
exposed to each treatment. The need for replication arises 
from the inherent variability in measurements on living 
creatures. Two animals or plants exposed to the same 
chemical need not have the same sensitivity to that chemical, 
so replication is needed to separate the inherent variability 
among subjects from the effects, if any, of the test substance. 
The number of replicates and the number of subjects per 
replicate influence the power in hypothesis testing and 

the confidence limits of parameter estimates and other 
model evaluation measures in regression models and will 
be discussed in depth in later chapters.

It is important to understand what constitutes a replicate 
and the requirements of statistical methods that will be 
used to analyze the data from an experiment. A replicate, or 
experimental unit, is the basic unit of organization of test 
subjects that have the same ambient conditions and expo­
sure to the test substance. To paraphrase Hurlbert (1984), 
different replicates are capable of receiving different treat­
ments and the assignment of treatments to replicates can be 
randomized. The ideal is that each replicate should capture 
all the sources of variability in the experiment other than 
the level of chemical exposure. Two plants in the same pot 
will not be considered replicates, since they will receive 
the same application of the test chemical and water and 
sunlight and other ambient conditions at the same time and 
in the same manner. Different pots of plants in different 
locations in the greenhouse will generally be considered 
replicates if they receive water, test compound, and the 
like through different means, for example, by moving the 
applicator and water hose. If 25 fish are housed together 
in a single tank and the chemical exposure is through the 
concentration in the water in that tank and the ambient 
conditions and chemical exposure in that tank are set up 
uniquely for that tank, then the tank constitutes one repli­
cate, not 25. Furthermore, if two tanks sit in the same bath 
and receive chemical from a simple splitter attached to a 
single reservoir of the test substance so that the chemical 
exposure levels in the two tanks are the same and do not 
capture all the sources of variability in setting up an expo­
sure scenario, then the two tanks are not true replicates.

Hurlbert (1984) describes at some length the notion of 
pseudoreplication, “defined as the use of inferential statis­
tics to test for treatment effects with data from experiments 
where either treatments are not replicated (though samples 
may be) or replicates are not statistically independent. 
In  ANOVA terminology, it is the testing for treatment 
effects with an error term inappropriate to the hypothesis 
being considered.” Hurlbert defines the rather colorful 
term nondemonic intrusion as “the impingement of chance 
events on an experiment in progress” and considers inter­
spersion of treatments as an essential ingredient in good 
experimental design. Oksanen (2004) extends the idea of 
spatial interspersion to interspersion along all potentially 
relevant environmental axes so that nondemonic intrusions 
cannot contribute to the apparent treatment effects. The 
primary requirements of good experimental design, according 
to Hurlbert, are replication, randomization, interspersion of 
treatments, and concomitant observations. Many designed 
experiments fail to meet these ideals to some degree. For 
example, in an aquatic experiment, tanks of subjects in the 
same nominal treatment group may receive their chemical 
concentrations from a common source through a physical 
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splitter arrangement. Rodents may be housed throughout 
a chronic study in the same rack. The latter is usually 
compensated for by the rack frame that rotates positions of 
the racks to equalize air flow, light, room temperature vari­
ations, and other ambient conditions across the experiment 
as a whole. Furthermore, it is sometimes impossible to 
make concomitant measurements on all subjects in a large 
experiment, so that a staggered experimental design may 
be necessary in which subjects are measured at equivalent 
times relative to their exposure. For Oksanen (2004), “the 
proper interpretation of an experiment of a demonstrated 
contrast between two statistical populations hinges on the 
opinion of scientists concerning the plausibility of different 
putative causes.” Oksanen (2001, 2004) would accept the 
results of an experiment if the scientific judgment was 
that the observed treatment effects could not be plausibly 
explained by the shortcomings of the experimental design, 
even if it was possible to imagine some form of nonde­
monic intrusion (Hurlbert, 2004) that could account for 
the observed effect. However, it must be stated that true 
replication, randomization, concomitant observation, and 
interspersion of treatments is the goal.

In some toxicity experiments, subjects are individually 
housed, such as one bird per cage, one daphnid per beaker, 
or one plant per pot. In these experiments, the replicate is 
usually the test vessel, which is the same as the subject, 
unless there are larger restrictions on clusters of vessels, 
such as the position in the lab. In other experiments, multi­
ple subjects are housed together in the same cage or vessel 
and there are also multiple vessels per treatment. In these 
latter experiments, the replicate or experimental unit is the 
test vessel, not the individual subject.

In a well‐designed study, one should investigate the 
trade‐off between the number of replicates per treatment 
and the number of subjects per replicate. Decisions on the 
number of subjects per subgroup and number of subgroups 
per group should be based on power calculations, or in 
the case of regression modeling, sensitivity analyses, using 
historical control data to estimate the relative magnitude 
of within‐ and among‐subgroup variation and correlation. 
If there are no subgroups (i.e. replicates), then there is no 
way to distinguish housing effects from concentration 
effects and neither between‐ and within‐group variances 
nor correlations can be estimated, nor is it possible to apply 
any of the statistical tests to be described to subgroup means. 
Thus, a minimum of two subgroups per concentration is 
recommended; three subgroups are much better than two; 
and four subgroups are better than three. The improvement 
in modeling falls off substantially as the number of subgroups 
increases beyond four. (This can be understood on the fol­
lowing grounds. The modeling is improved if we get better 
estimates of both among‐ and within‐subgroup variances. 
The quality of a variance estimate improves as the number 
of observations on which it is based increases. Either sample 

variance will have, at least approximately, a chi‐squared 
distribution. The quality of a variance estimate can be 
measured by the width of its confidence interval and a look 
at a chi‐squared table will verify the statements made.)

The number of subgroups per concentration and sub­
jects per subgroup should be chosen to provide adequate 
power to detect an effect of magnitude judged important to 
detect or to yield a slope or ECx estimate with acceptably 
tight confidence bounds. These determinations should 
be based on historical control data for the species and 
endpoint being studied. There are two areas of general 
guidance. If the variance between subjects greatly exceeds 
the variance between replicates, then greater power or 
sensitivity is usually gained by increasing the number of 
subjects per replicate, even at the expense of reducing the 
number of replicates, but almost never less than two per 
treatment. Otherwise, greater power or sensitivity gener­
ally comes from increasing the number of replicates and 
reducing the number of subjects per replicate. This claim 
will be developed more fully in the context of specific 
types of data in Chapter 3. The second generality is that 
for hypothesis testing (NOEC determination), generally 
there need to be more replicates per treatment and fewer 
treatments, whereas with regression analysis, it is generally 
better to have more treatments, and there is less need for 
replicates. As will be illustrated in Chapter 4, the quality of 
regression estimates is affected by the number of replicates 
unless there are a large number of treatments.

Since the control group is used in every comparison of 
treatment to control, it is advisable to consider allocating 
more subjects to the control group than to the treatment 
groups in order to optimize power for a given total number 
of subjects and thoroughly base the control against which 
all estimates or comparisons are to be made. The optimum 
allocation depends on the statistical method to be used. 
A widely used allocation rule for hypothesis testing was 
given by Dunnett (1955), which states that for a total of N 
subjects and k treatments to be compared to a common 
control, if the same number, n, of subjects are allocated 
to every positive treatment group, then the number, n0

, to 
allocate to the control to optimize power is determined by 
the so‐called square‐root rule. By this rule, the value 
of n is (the integer part of) the solution of the equation 
N kn n k , and n

0
 = N − kn. (It is almost equivalent to 

say n n k0 .) Dunnett showed this to optimize power of 
his test. It is used, often without formal justification, for 
other pairwise tests, such as the Mann–Whitney and Fisher 
exact test. Williams (1972) showed that the square‐root 
rule may be somewhat suboptimal for his test and optimum 
power is achieved when k  in the above equation is 
replaced by something between 1 1. k  and 1 4. k . The 
square‐root allocation rule will be explored in more detail 
in Chapter 2 and in subsequent chapters in the context of 
specific tests or regression models.
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1.3.3  Choice and Spacing of Test 
Concentrations/Doses
Factors that must be considered when developing experi­
mental designs include the number and spacing of doses or 
exposure levels, the number of subjects per dose group, and 
the nature and number of subgroups within dose groups. 
Decisions concerning these factors are made so as to provide 
adequate power to detect effects that are of a magnitude 
deemed biologically important.

The choice of test substance concentrations or doses or 
rates is one aspect of experimental design that must be 
evaluated for each individual study. The goal is to bracket 
the concentration/dose/rate1 at which biologically important 
effects appear and to space the levels of the test compound 
as closely as practical. If limited information on the toxicity 
of a test material is available, exposure levels can be selected 
to cover a range somewhat greater than the range of expo­
sure levels expected to be encountered in the field and 
should include at least one concentration expected not to 
have a biologically important effect. If more information 
is available this range may be reduced, so that doses can 
be more closely spaced. Effects are usually expected to 
increase approximately in proportion to the log of con­
centration, so concentrations are generally approximately 
equally spaced on a log scale. Three to seven concentra­
tions plus concomitant controls are suggested, with the 
smaller experiment size typical for acute tests and larger 
experiment sizes most appropriate when preliminary dose‐
finding information is limited.

Of course, the idea of bracketing the concentration/
dose/rate at which biologically important effects appear is 
much simpler to state than to execute, for if we knew what 
that concentration was, there would no longer be a need to 
conduct an experiment to determine what it is. To that end, 
it is common to do experiments in stages. Conceptually, 
a small range‐finding study is done to give an idea of the 
exposure levels likely to produce effects of interest. 
Based on that, a larger definitive study is done. Experience 
indicates that this process is not fail proof, so exposure 
levels generally start well below the expected level and 
extend well beyond. There are practical issues as well. 
If concentration levels are too small, analytical chemistry 
methods may not be sufficiently sensitive to measure 
these levels and it sometimes happens that there is an 
inversion, where some mean measured concentrations are 
in reverse order to the planned nominal concentrations. This 
complicates the interpretation of results and brings into 

1  To avoid repeated awkward phrases such as concentration/dose/rate, 
the text will frequently use only one of these terms, usually concentration 
when the context clearly requires an aquatic environment, but commonly 
dose regardless of context. The terms will be used interchangeably in this 
text except in rare instances that are clear from context.

question the entire experiment. Another issue is involved 
in the intended use of the test substance. For example, a 
pesticide or pharmaceutical product has to be administered 
at a high‐enough level to be effective. Testing much below 
the effective level may only make sense if the concern is of 
environmental exposure that might arise from dilution in a 
stream or from rainfall.

At the other extreme, in aquatic experiments, chemicals 
have a solubility limit that cannot be exceeded and this 
obviously restricts the range of exposure levels that can be 
included. In all types of studies aimed at determining suble­
thal effects, the exposure levels must be below the level that 
produces high mortality. Generally, separate studies are done 
to determine lethality and that information is used in both 
the range finder and definitive tests for sublethal effects.

1.3.4  Randomization
Variability (often called noise) is inherent in any biological 
dataset. The following factors affect the level of noise in an 
experiment:

1.	 the variation between the individual animals, due to 
genetic differences,

2.	 the differences in the conditions under which the 
animals grew up prior to the experiment, resulting in 
epigenetic differences between animals,

3.	 the heterogeneity of the experimental conditions 
among the animals during the experiment,

4.	 variation within subjects (i.e. fluctuations in time, such 
as female hormones, which may be substantial for 
some endpoints), and

5.	 measurement errors.

Randomization is used in designing experiments to eliminate 
bias in estimates of treatment effects and to ensure independ­
ence of error terms in statistical models. Ideally, randomiza­
tion should be used at every stage of the experimental process, 
from selection of experimental material and application of 
treatments to measurement of responses. To minimize the 
effects of the first two factors, animals need to be randomly 
distributed into concentration groups. To minimize the effects 
of the third factor (both intended and unintended, such as 
location in the room), application of treatments should be 
randomized as much as possible. To minimize the effects 
of the fourth factor, the measurement of responses should 
be randomized in time (e.g. although all responses will be 
recorded at 24 h, the order in which the experimental units 
are measured should be randomized). With good scientific 
methods, measurement errors can be minimized.

If any experimental processes are carried out in a non‐
random way, then statistical analysis of the experimental 
data should include a phase in which the potential effect of 
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not randomizing on the experimental results is examined 
and modifications are made to the model to account for this 
restriction on randomization.

1.3.5  Species Used for Experiments
Many species are used in ecotoxicity experiments. In aquatic 
toxicology, rainbow trout, fathead minnow, zebrafish, 
Japanese medaka, sheepshead minnow, and silverside are 
common fish species tested. In addition, Daphnia magna, 
various species of algae, macrophytes, lemna, and sediment 
dwelling chironomid and endobenthic species round out the 
common aquatic species used in laboratory experiments. 
To the aquatic species must be added earthworms, honey­
bees, mites, numerous avian species, and many non‐target 
crop plants and wild plant species. Mammalian toxicity studies 
are most often done on some rat and mouse species, plus 
rabbits and guinea pigs. Other species are also used. With rare 
exceptions, humans are not test subjects for toxicity experi­
ments. Humans are, of course, used to test pharmaceuticals in 
clinical trials and sublethal toxic effects may be observed in 
these trials. Clinical trials are not considered in this text.

Some statistical methods apply across species. There 
is no widely accepted specific fish statistical test or model 
used in toxicity studies. There is, on the other hand, much 
variety in the types of responses that arise and while 
these are sometimes linked to specific species, it is the 
nature of the response that determines the statistical 
method to be used, not the species per se.

1.3.6  Extrapolation to Human Toxicity
Given that humans are not subjects for experiments, but 
are exposed to various chemicals in the course of work or 
in food consumption, wearing apparel, and use of home 
products, the risk assessor needs some mechanism for 
extrapolating from animal studies to human exposure. It is 
not the purpose of this text to explore the ways in which 
such extrapolations are done, other than to indicate that 
generally this involves some uncertainty factor to apply to the 
animal studies. For example, the lowest level found to have 
a toxic effect on a rodent may be divided by 100 or 1000 in 
assessing the safe level of human exposure. Further discus­
sion of such extrapolations and human risk assessment can 
be found in Brock et al. (2014), Vose (2000), Warren‐Hicks 
and Moore (1998), and Hubert (1996, pp. 401ff).

1.4  HIERARCHY OF MODELS 
FOR SIMPLE TOXICITY EXPERIMENTS

There is a model underlying every statistical test used to 
derive a NOEC or estimate an ECx. A basic experimental 
design in ecotoxicity is one in which independent groups of 

subjects of common species, age, and sex are exposed to 
varying concentrations of a single test chemical for the 
same length of time, so that the only non‐random source of 
difference among these subjects is the level of chemical 
exposure. It is expected for most species, chemicals, and 
responses to be analyzed that if there is an effect of the 
chemical it will tend to increase as the chemical concentra­
tion increases. The basic statistical model for this simple 
toxicity experiment is given by

	 Y eij i ij ,
	 (1.1)

where μ
i
 is the expected mean response in the ith concen­

tration, and e
ij
 are independent identically distributed 

random errors, often assumed to be normally distributed 
with homogeneous variances, though that is not by any 
means an absolute requirement. What distinguishes one 
model from another is what additional restrictions or 
assumptions are placed on the treatment means, μ

i
.

The simplest model that is used for hypothesis 
testing is usually stated in terms of null and alternative 
hypotheses as

H : H : for somea202 0 1 2 0 k i ivs. ,	 (1.2)

where μ
0
 is the control mean.

This model implies no relationship among the treat­
ment means and one merely tests each treatment against 
the control. In the contest of toxicology, Model (1.2) 
ignores the expected relationship between the exposure 
concentration and the response. A more appropriate model 
is given by

H : H : for somea303 0 1 2 0 k i ivs. .	 (1.3)

This model assumes a non‐increasing concentration–
response, which is what is expected biologically for most 
responses from ecotoxicity experiments. It should also be 
evident that if μ

0
 > μ

i
 for some i, then μ

0
 > μ

j
 for all j > i. Of 

course, the inequalities can be reversed where an increased 
response is expected with increasing concentrations. 
A two‐sided version of this model is also possible for those 
situations where the researcher is confident that the sub­
jects will respond to the chemical insult in a monotone 
dose–response fashion, but they are unsure for the com­
pound and endpoint in question whether the direction of 
effect will be an increase or a decrease. For either Model 
(1.2) or (1.3), one would estimate the μ

i
 from the data.

Do we expect a monotone dose–response? If not, 
then tests based on monotonicity should not be used and, 
of course, regression models are likewise inappropriate. 
An exception exists for the case of hormesis where a special­
ized model can be employed to capture that phenomenon. 
Hormesis, or more generally, low‐dose stimulation, is the 
presence of an apparently beneficial effect at low exposure 
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levels followed by an adverse effect at higher exposure lev­
els. Such effects are observed in many testing laboratories 
throughout the world and can arise from several causes. 
Pharmaceuticals are used because they are beneficial at 
low dosages but they can be toxic at high dosages. Duke 
et  al. (2014) reported that allellochemicals, which are 
phytotoxins released from plants, are known to induce 
hormesis and some chemicals stimulate the production of 
allellochemicals. They speculate that some mechanisms 
producing hormetic responses could represent physiologi­
cal attempts to compensate for chemical stress. For exam­
ple, plants could produce more seeds, thereby increasing 
the chance of the next generation to germinate under more 
favorable conditions. In rodent studies, animals are often 
fed ad libitum. Since there is little opportunity for exercise 
or other physical stimulation, control animals sometimes 
get grossly overweight, which has health implications for 
those species as it does for humans. At low doses, the 
chemical can make the animals slightly ill so their appetite 
is reduced and they maintain a more healthy body weight 
and do not suffer the adverse weight‐related health effects 
of the control animals. At higher dose levels, the adverse 
effects of the test compound overwhelm any benefit from 
reduced weight. In an aquatic experiment, the low dose of 
the test compound may stimulate the growth of algae 
because of a mild increase in nutrients in the chemical, but 
higher concentrations inhibit growth because the toxic 
effect overwhelms the nutrient effect. In a pesticide spray 
application, a low application rate may inhibit pests with­
out damaging the plants, but at higher applications, plant 
damage may occur.

Calabrese and Baldwin (2002) have a very interesting 
discussion of hormesis in which they interpret it an “adap­
tive response with distinguishing dose‐response character­
istics that is induced by either direct acting or 
overcompensation‐induced stimulatory processes at low 
doses. In biological terms, hormesis represents an organis­
mal strategy for optimal resource allocation that ensures 
homeostasis is maintained.” van der Woude et  al. (2005) 
and Carelli and Iavicoli (2002) contain further discussion 
of hormesis. Lloyd (1987) discusses this in connection 
with mixtures of chemicals. Dixon and Sprague (1981) and 
Stebbing (1982) discuss this for a variety of phyla.

Even if we expect a monotone dose–response, it is 
important to assess the data for consistency with that 
judgment. There are several reasons for this. Bauer (1997) 
has shown that certain tests based on a monotone dose–
response can have poor power properties or error rates 
when the monotone assumption is wrong. While our expe­
rience does not substantiate the idea, Davis and Svendsgaard 
(1990) and others have suggested that departures from 
monotonicity may be more common than previously 
thought. These concerns suggest that a need for caution 
exists. We advocate both formal tests and visual inspection 

to determine whether there is significant monotonicity or 
significant departure from monotonicity. Further discus­
sion of this issue will be presented in Chapter 3.

Regression models assume a specific mathematical 
form for the relationship between treatment mean and con­
centration, for example, when modeling length or weight 
of fish from an aquatic experiment or shoot height from a 
non‐target plant study, one might hypothesize

	 i
bxae i 	 (1.4)

where x
i
 is the concentration in the ith treatment, and a and 

b are positive parameters to be estimated from the data. The 
essential difference between Model (1.3) and models of the 
type illustrated by Model (1.4) is the specific mathematical 
relationship assumed between concentration and response. 
It is rare in ecotoxicology to have a priori models based on 
biological principles, so the regression approach becomes 
an exercise in curve fitting and evaluation. An advantage of 
Model (1.3) is that there is no need to specify an exact 
form. An advantage of Model (1.4) is the ability to predict 
the mean response at a range of chemical concentrations by 
interpolating between the x

i
. The typical goal in a regula­

tory setting is to estimate the concentration or rate that 
produces a specific percent change (increase or decrease, 
as appropriate) in the measured response compared to the 
control mean response. The label ECx is used for the con­
centration that produces an x% change from the control and 
is referred to as the x‐percent effects concentration. There 
are other differences that will be addressed later.

Biologically‐based models are mathematical models 
having the form of regression models, such as Model (1.4), 
but derived from, or based on, concepts observed in biol­
ogy that encompass much more than just the concentration 
of test chemical. The Dynamic Energy Budget (DEB) 
theory developed by S.A.L.M. Kooijman and colleagues 
(e.g. Kooijman and Bedaux, 1996) is built on the idea that 
the hazard rate and the parameters that quantify the energy 
budget of the individual are proportional to the concen­
tration of the test substance in the animal. DEB theory 
“specifies the rules that organisms use for the energy uptake 
of resources (food) and the ensuing allocations to mainte­
nance, growth, development and propagation.”

1.5  BIOLOGICAL VS. STATISTICAL 
SIGNIFICANCE

Statistical analysis of toxicity data, especially the hypothesis 
testing or NOEC approach, is often criticized for finding 
treatment means statistically significantly different from 
the control mean that are not biologically important. On the 
other hand, in some experiments, differences are found that 
are thought to be biologically important but are not found 
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statistically significant. The difference between biological 
and statistical significance is real and should be appreci­
ated. Moreover, an ideal study should be designed to have 
high power to find biologically important treatment effects 
and low likelihood of finding significant a treatment 
“effect” that is not biologically important. In terms of esti­
mating an x% effects concentration, ECx, from a regression 
model, the percent effect, x, to be used should be biologi­
cally determined, not an arbitrary value selected purely to 
satisfy some legislation or convenience.

There are several factors that make it difficult or 
impossible to design such an ideal experiment. First, it is 
unusual for an experiment to have a single endpoint or 
response of interest. This means that while it may be pos­
sible to design the experiment to be optimal in some sense 
for one response, the experiment may be decidedly subop­
timal for another response. Second, it has proved very dif­
ficult to find agreement within the ecotoxicity scientific 
community to reach agreement on the size effect for a 
given response that is biologically important to detect, or 
even the basis for making such a determination. Is it more 
important to judge biological importance on the health of 
the individual subject, as is usually the case in assessing the 
carcinogenic risk in rodent experiments (and by inference, 
to humans), or on the ability of population as a whole to 
thrive, as suggested by Iwasaki and Hanson (2014) and 
Mebane (2012)? Third, when there is, say, 90% power to 
detect, i.e. found to be significant, a 10% change in some 
response, there may also be a 50% chance of detecting a 
5% change and 25% power to detect a 3% change. In plain 
language, then, sometimes very small effects will be found 
statistically significant. If a regression model can be fit to 
the data to try to eliminate this problem, then it might turn 
out that the 95% confidence interval for EC10 spans the 
entire range of tested concentrations including the control. 
(Examples will be given in Chapter 4.) This hardly seems 
informative. Data may be highly variable, given practical 
limitations on the size experiment than can be run and the 
inherent variability of the subjects and sensitivity of the 
measuring equipment, and will mean a 50% effect cannot 
be detected or no model can be fit or the aforementioned 
wide confidence bounds on EC10 estimates encountered.

One should also question the idea that 10% is some 
universally applicable size effect. The measurement of 
VTG in fish to evaluate possible endocrine effects is 
extremely variable and effects of 1000% or higher increases 
are observed. There also frequently very high inter‐lab and 
even intra‐lab variability in this measurement. The data are 
continuous but by no means normally distributed or homo­
geneous in variance. For hypothesis testing purposes, a 
log‐transform or even a rank‐order transform might be 
used to deal with the huge spread in the data. Regression 
models, even on log‐transformed responses, are often very 
poor and generate very wide confidence bounds. It is totally 

pointless to estimate EC10 with such data, so what size 
effect should be estimated? Furthermore, do we estimate 
an x% effect based on the untransformed control mean or 
on the log‐transform? If the former, the model‐fitting 
algorithm will usually not converge. If the latter, the 
meaning of ECx will vary from experiment to experiment 
in a much bigger way than with more well‐behaved data. 
For example, if the mean control response is 10, 100, 1000, 
or 10 000, then a 10% increase in the logarithm corresponds 
to a 26, 58, 100, or 151% effect in the untransformed 
values.

Isnard et al. (2001) note the problem of determining an 
appropriate choice of x, noting “Biological arguments are 
scarce to help in defining a negligible level of effect x for 
the ECx.” An insightful presentation by C. Mebane of the 
US Geological Survey/NOAA Fisheries Liaison at the 
SETAC conference in Long Beach, California in 2012 
(Mebane, 2012) reported on a review of early‐life stage 
toxicity testing with aquatic organisms (reduced growth, 
fecundity, and survival) in the context of responses of wild 
fish populations to disturbances associated with changes in 
mortality or growth rates. The review suggested that differ­
ent ECx values would be appropriate for different end­
points and for species with different life histories. Under 
some conditions and for some species, differences in length 
of as little as 5% can disproportionately determine survival. 
Growth reductions of the magnitude of 20% could predict 
extremely high indirect mortalities for juvenile fish. For 
some other populations, where juveniles have to compete 
for limited shelter to survive their first winter, much greater 
than 20% loss of the young‐of‐year is routinely absorbed. 
These observations suggested to Mebane that an EC20 for 
fecundity or first‐year survival in density‐dependent fish 
populations would conceptually be sustainable, yet for 
reduced growth (as length of juvenile fish) an EC5 would 
be a more appropriate endpoint.

These findings and others suggest a real need to iden­
tify the size effects of biological importance across a wide 
spectrum of measured endpoints. In any event, to design 
properly an experiment, it is critical to know what size 
effects are of interest for each response to be analyzed. 
This must be tempered by the understanding mentioned 
above that an experiment well designed for one response 
may be over‐ or under‐sensitive for other responses. One 
practical workaround is to design around the most impor­
tant responses. It is also important to maintain a working 
historical control database within the testing laboratory for 
each type of study, species, and response, and then inter­
pret the results of each new study in light of the distribution 
of control responses. This can be done informally or 
through Bayesian methodology applied to incorporate such 
information formally in the analysis.

Before leaving this topic, it is appropriate to discuss 
how statistical significance is decided and to appreciate a 


