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Preface

J ohn Green and Tim Springer developed a one-day train-
ing course, Design and Analysis of Ecotox Experiments,
for the Society for Environmental Toxicology and
Chemistry (SETAC) and delivered it for the first time at the
SETAC Europe 13th Annual Meeting in Hamburg,
Germany, in 2003. Since then, in many years we have
taught this course at the annual SETAC conferences in
Europe and North America, updating it each time to stay
abreast of the evolving regulatory requirements. In 2011,
Henrik Holbech joined us and has made valuable contribu-
tions ever since. In 2014, Michael Leventhal of Wiley
approached us with the idea of turning the training course
into a textbook. The result is the current book, and we
appreciate the opportunity to reach a wider audience.

This book covers the statistical methods in all current
OECD test guidelines related to ecotoxicity. Most of these
have counterparts in the United States Environmental
Protection Agency (USEPA) guidelines. In addition, statis-
tical methods in several WHO and UN guidelines are also
covered, as are guidelines in development or that have been
proposed. Chapter 11 provides a good coverage of all the
test guidelines covered in this book with reference to the
chapters in which guideline-specific statistical methods are
developed. With very few exceptions, the data used in the
examples and exercises are from studies done for product
submissions or in developing some regulatory test guide-
line. The authors have been members for a combined total
of more than 30 years of the OECD validation management
group for ecotoxicity (VMG-eco) responsible for develop-
ment and update of significant portions of numerous cur-
rent test guidelines including OECD TG 210, 229, 230,
234, 236, 240, 241, 242, and 243. We have also been
actively involved in designing and analyzing ecotoxicity
studies for more than a combined total of 60 years. One or
more of us were also members of the expert groups that
developed (i) the European Framework for Probabilistic
Risk Assessment (Chapman et al., 2007), (ii)) OECD Fish

Toxicity Testing Framework (OECD, 2014c), (iii) Current
Approaches in the Statistical Analysis of Ecotoxicity Data:
A Guidance to Application (OECD, 2014a, 2006a), (iv)
OECD test guideline 223 that describes a sequential test
designed to measure mortality in avian acute tests, (V)
OECD Guidance Document on Standardised Test
Guidelines for Evaluating Chemicals for Endocrine
Disruption (OECD, 2012a) and (vi) OECD test guideline
305 for assessing bioaccumulation in fish.

Our intent is to provide an understanding of the statis-
tical methods used in the regulatory context of ecotoxicity.
However, the coverage and treatment of the topics should
appeal to a much wider audience. A mathematical appen-
dix is included to provide technical issues, but the focus is
on the practical aspects of model fitting and hypothesis
tests. There are numerous exercises based on real studies to
help the reader enhance his or her understanding of the top-
ics. Ample references are provided to allow the interested
reader to pursue topics in greater depth. We have not shied
away from controversies in the field. We think it important
that the reader understand that statistics is not free of con-
troversy and should be well-informed on these issues.
Nonetheless, while we have points of view on these topics
and express them, we have tried to take an even-handed
approach in describing the different points of view and pro-
vide references to allow the reader to more fully appreciate
the arguments on these issues.

A frequent question from participants in the training
course was where one could find software to carry out the
methods of analysis we taught and were required or at least
recommended in regulatory test guidelines. While we have
developed in-house proprietary SAS-based software for
this purpose, it has not been possible to share it. One of the
benefits of this textbook is the availability of a website cre-
ated by Wiley where we are providing SAS and R programs
for almost all methods presented. In some instances, rather
than present programs, we provide a link to free online

ix
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software that has been developed for specific guidelines or
for a more general use. In some cases, we have been unable
to find R programs to carry out the recommended methods.
For those cases especially, we invite the readers of this
book to develop and send such programs to us. In a few
cases, no SAS program is provided. In all cases, a program
or link is provided for all analyses discussed. After we test
programs supplied by readers, we will put them on the
website with appropriate acknowledgments. Also, if any
shortcomings are found in the initially provided programs,
we encourage the readers to bring them to our attention and
we will post corrections or improvements. As regulatory
requirements change or methods improve, we will update
the website.

We have had support from numerous people over the
years in developing the training material and the material
for this book. Colleagues too numerous to name from
DuPont, Wildlife International/EAG, USEPA, OECD, and
other companies, universities, and CROs have contributed
ideas and data that have been very helpful in improving our
understanding of ecotoxicology. Two instructors joined us,
Michael Newman of Virginia Institute of Marine Science,
School of Marine Science, The College of William and
Mary, and Chen Teel of DuPont, each for one offering of
the course and both added value. In addition, we have SAS
expertise, but more limited experience with R. As a conse-
quence, while we developed some R programs ourselves,
several very capable people were engaged to develop most
R programs for the website. Several deserve special
acknowledgment. We have modified their programs in
minor ways to fit the needs of the website and accept
responsibility for any errors.

Joe Swintek is a statistician working with the Duluth
office of the USEPA. He was a contributor to one of our
publications (Green et al., 2014) and turned the SAS ver-
sion of the StatCHARRMS software John and Amy
Saulnier developed under contract for the USEPA into an R
package. The SAS version is provided in Appendix 1 (the
website) and the R version is now in the CRAN library. A
link is provided in the references (Swintek, 2016). In addi-
tion to the RSCABS program for histopathology severity
scores (Chapter 9), StatCHARRMS contains the Dunnett
and Dunn tests, the step-down trend tests Jonckheere—
Terpstra (Chapter 3), Cochran—Armitage and Fisher’s exact
tests (Chapter 6), Shapiro—Wilk and Levene tests for nor-
mality and variance homogeneity (Chapter 3), and repeated
measures ANOVA for multi-generation medaka reproduc-
tion studies (Chapter 5). Several of these tests are provided
in Appendix 1 in stand-alone versions, as well as in the full
CRAN version. In addition, Joe developed a versatile R
program for the important Williams’ test, and that is in
Appendix 1 and has been added to the StatCHARRMS
package. We were surprised to find that this test had not

previously been released in an R package, so far as we are
aware. There is an R package, multcomp, that refers to
Williams’ type contrasts within the function mcp, but the
results deviate substantially from Williams’ test. We have
verified with the developer, Ludwig Hothorn, that package
mcp does not provide Williams’ test. More discussion on
this is provided in Chapter 3. Joe also provided numerous
other R programs for several chapters as well as pointing
out a simple R function based on the package sas7bdat for
reading a SAS dataset into R without the need to have SAS
installed or converting the dataset to excel or text first. We
are very grateful for his contributions.

Chapter 13 leans heavily on discussions of the expert
group that developed guidance on implementation of
OECD test guideline 305 on bioaccumulation in fish. In
particular, Tom Aldenberg of RIVM has provided invalua-
ble communications to us concerning the R program,
bemfR, that he has provided to OECD for analysis of bio-
concentration and biomagnification studies.

Georgette Asherman also deserves special mention,
primarily for her R programming work for Chapter 5.
Among her notable contributions were versatile and robust
versions of the Shapiro-Wilk and Levene tests, the Shirley
nonparametric ANCOVA program, two parametric
ANCOVA programs, programs to add confidence bounds
to the graphic output for nonlinear regression, and zero-
inflated binomial and beta-binomial models.

Erand Smakaj provided training in the use of R-Studio
and contributed programs for survival analysis and for sev-
eral topics in Chapter 13 and was very accommodating
throughout the text and code development.

Xiaopei Jin made important contributions to the R pro-
grams for Chapter 8 and demonstrated useful capabilities
of R that can be applied to programs in all chapters.

Finally, we would be remiss not to acknowledge the
many contributions Amy Saulnier has made to SAS pro-
gramming used in this book and elsewhere. John has
worked with Amy over the entire 29+ years of his
DuPont career. In addition to turning his SAS programs
into the user-friendly StatCHARRMS program, she has
done the same for two other heavily used SAS-based
in-house software packages routinely used for our toxi-
cology and ecotoxicology analyses for regulatory sub-
missions. She has maintained these programs, updated
them as needed to stay current with regulatory require-
ments and changes in the computing environment, and
has been an essential contributor to DuPont’s work for
over three decades.

The term GLMM is used for generalized linear models
regardless of whether there is a random term. This encom-
passes both generalized linear mixed models and fixed
effects models. The term GLM is reserved to the classic
general linear model with normal errors.
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About the Companion Website

This book is accompanied by a companion website:

www.wiley.com/go/Green/StatAnalysEcotoxicStudy

The companion website contains programs in SAS and R
to carry out the analyses that are described in the text.
These programs will be updated as improvements are
identified or regulations change. Readers are invited to
send corrections or improvements to the authors through
Wiley. Once these are verified and judged appropriate, they
will be added to the website with appropriate acknowledg-
ment. Also on the website are datasets referenced in the

text but too large to include there. These are in the form of
excel files or SAS datasets. An R program is provided to
convert SAS datasets to R without the need to have access
to SAS. In a few instances noted in the text, links are given
to specialized programs developed specifically for some
regulatory test guideline when there seemed no purpose in
creating a new program.
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Chapter 1

An Introduction to Toxicity Experiments

This chapter introduces some basic concepts that apply to
all chapters. It begins with a discussion of the nature of
toxicology or ecotoxicology studies that distinguish
them from experiments more generally. Then some basic
experimental design issues are discussed, such as types of
control groups, replicates and pseudo-replicates, and units
of analysis. The various types of responses that occur are
introduced, with pointers to chapters in which methods
of statistical analysis of the various types of response are
developed. An introduction is given to the use of historical
controls and how these studies relate to regulatory risk
assessment of chemicals in the environment. Then a hierarchy
of statistical models is provided that, in broad terms, defines
the statistics used in this field of study and, specifically, in
this text. Finally, a topic is introduced that is the cause of
considerable tension in ecotoxicology and biological
analysis of data in general, namely the difference between
biological and statistical significance.

1.1 NATURE AND PURPOSE
OF TOXICITY EXPERIMENTS

The purpose of a toxicity experiment is to obtain a quanti-
fiable measure of how toxic a given substance is to a group
of organisms or community of organisms. The primary
purpose of this book is to describe the design and statistical
analysis of laboratory experiments on groups of organisms
of a single species exposed to controlled levels of a sub-
stance thought to have the potential to produce an adverse
effect on the test organisms. Such experiments have the
goal of quantifying the level of exposure to the substance
that has an adverse effect of biological concern. Some con-
sideration is also given to how information from multiple
toxicity experiments on different species can be combined

to assess the adverse effect of the test substance on an
ecological community. This chapter is intended to provide
a general overview of toxicity studies and an introduction
to the topics covered in this book.

1.1.1 Designed Experiments
Compared to Observational Studies

Historically, the toxicity of chemicals has been studied
using experiments performed under carefully controlled
conditions in the laboratory and by observation of responses
in uncontrolled settings such as the environment. Obser-
vational studies that gather information by survey or
monitoring have the advantage of providing insight into
toxicological responses under real-world conditions. Such
studies are valuable in alerting researchers to potential
problems resulting from chemical exposure. However, in
surveys and monitoring studies, many uncontrolled factors
can affect responses, and exposure of organisms to a
chemical of interest (e.g. dose and concentration) usually
cannot be estimated accurately. As a result, conclusions
concerning the relationship between possible toxicological
responses and exposure to the chemical are difficult to
establish with certainty.

On the other hand, designed experiments typically
control most of the factors that affect response, and dose
or exposure concentration can be accurately measured.
Designed experiments performed in a laboratory are
usually performed at constant temperature with constant
exposure to a test substance. Control of test substance
exposure and other experimental factors allow the relation-
ship between exposure and response to be modeled.

Exposure to the test substance in these experiments
may be: via food or water ingested, air breathed, from

Statistical Analysis of Ecotoxicity Studies, First Edition. John W. Green, Timothy A. Springer, and Henrik Holbech.

© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.
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2 Chapter 1 An Introduction to Toxicity Experiments

contact with the soil or sediment or contact with spray
application or spray drift on plants, through gavage or
intravenous injection, or by direct application to the skin or
eyes. The measure of exposure can be the concentration in
the food or water or air, the quantity of chemical per unit of
body weight, the quantity of chemical per unit of land area,
or the concentration of the chemical in the blood.

Toxicity experiments are generally classified as acute, if
the exposure is of short duration relative to the life span of the
organism; or subchronic, if the exposure is of medium dura-
tion relative to a full life time; or chronic, if the exposure is
for approximately a normal life span of the test substance.

Toxicity is measured in many ways. In its simplest
form, it refers to the exposure level that kills the whole
organism (e.g. laboratory rat or fish or tomato plant).
Many sublethal responses are measured and the types of
measurements are varied. The types of response encoun-
tered in toxicology fall broadly into one of the following
categories: Continuous, quantal, count, and ordinal. Below
is an introduction to each of these types of responses
together with an indication of some of the challenges and
methods associated with each type. Later chapters will
discuss in detail all the points mentioned here.

1.1.1.1 Continuous Response

This class includes measurements such as plant yield,
growth rate, weight and length of a plant or animal, the
amount of some hormone in the blood, egg shell thickness,
and bioconcentration of some chemical in the flesh, blood,
or feathers. Typical continuous response data are shown
in Tables 7.6 and 7.7 and Figures 7.2 and 7.3.

Continuous responses also include responses that
exist in theory on a continuous scale, but are measured
very crudely, such as days to first or last hatch or swim-up
or reproduction, or time to tumor development or death,

which are observed (i.e. “measured” only once per day).
Hypothesis testing methods of analyzing continuous data
are presented in Chapter 3 and regression models are
presented in Chapters 4 and 5.

Example 1.1 Daphnia magna reproduction

The experimental design is seven daphnid individually
housed in beakers in each of six test concentrations and
a water control. Once each day, it is recorded whether
or not each daphnid has reproduced. Ties in first day of
reproduction are very common. In this typical dataset,
there were a total of six distinct values across the study.
While in theory, time to reproduction is continuous, the
measurement is very crude and, as will be seen in
Chapters 3 and 4, analysis will be different from that
for responses measured on a continuous scale.

See Figure 1.1. The solid curve connects the
mean responses in the treatment groups with line
segments. Recall that there are seven beakers per
treatment, but many beakers have the same first day
of reproduction, so each diamond can represent from
1 to 6 observations. See Table 1.1 for the actual data.

1.1.1.2 Quantal Response

Quantal measures are binary (0—1 or yes/no) measurements.
A subject is classified as having or not having some
characteristic. For each subject, the possible values of the
response can be recorded as O (does not have the character-
istic of interest) or 1 (has the characteristic of interest). The
quintessential example is mortality. Outside Hollywood
films about zombies and vampires, each subject at a given
point in time is either alive (value 0) or dead (value 1).
Other quantal responses include immobility, the presence

7 Reps/Conc

15 1

Rep Day

Conc

Figure 1.1 First day of daphnid reproduction. Diamonds, replicate means; solid line, joins treatment means.
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1.1 Nature and Purpose of Toxicity Experiments

Table 1.1 Daphnid First Day of Reproduction Data for Example 1.1

Conc Rep RepDay Conc Rep RepDay Conc Rep RepDay
-1 1 9 0.0016 6 10 0.012 4 10
-1 2 9 0.0016 7 12 0.012 5 11
-1 3 11 0.003 1 1 10 0.012 6 10
-1 4 9 0.003 1 2 11 0.012 7 10
-1 5 10 0.003 1 3 10 0.027 1 10
-1 6 9 0.003 1 4 10 0.027 2 10
-1 7 9 0.003 1 5 10 0.027 3 10
0 1 9 0.003 1 6 9 0.027 4 10
0 2 11 0.003 1 7 10 0.027 5 11
0 3 10 0.0066 1 10 0.027 6 10
0 4 11 0.0066 2 10 0.027 7 10
0 5 10 0.0066 3 11 0.05 1 14
0 6 10 0.0066 4 11 0.05 2 13
0 7 10 0.0066 5 10 0.05 3 13
0.0016 1 10 0.0066 6 10 0.05 4 13
0.0016 2 12 0.0066 7 10 0.05 5 14
0.0016 3 10 0.012 1 10 0.05 6 14
0.0016 4 12 0.012 2 11 0.05 7 14
0.0016 5 0.012 3 11

Conc=-1 is water control. Conc=0 is solvent control. Controls should be combined (with Rep numbers altered to distinguish replicates in the
two controls) prior to further analysis, or else one control should be discarded (see Sections 1.3.1 and 1.3.2). RepDay, first day of reproduction

of daphnid in the beaker.

Table 1.2 Mite Survival Data

Conc  Unit Risk Alive | Conc Unit Risk Alive
0 1 5 3 75 1 5 4
0 2 5 5 75 2 6 2
0 3 5 5 75 3 5 3
0 4 5 5 75 4 5 2
18.75 1 5 5 150 1 5 1
18.75 2 5 5 150 2 5 1
18.75 3 5 5 150 3 5 0
18.75 4 5 3 150 4 5 0
37.5 1 5 5 300 1 5 0
37.5 2 6 6 300 2 5 0
37.5 3 5 5 300 3 5 0
37.5 4 5 2 300 4 5 0

Unit, replicate vessel; Risk, number of mites placed in vessel at study
start; Alive, number of mites alive at the end of the study period.

of matted fur, pregnant, lethargic, and the presence of liver
tumor. Hypothesis testing methods of analyzing quantal
data are presented in Chapter 6 and regression models are
presented in Chapter 7. See Table 1.2 for an example of
survival data for mites.

The data in Table 1.2 are from an experiment on mites.
Mites were exposed to varying levels of a pesticide as part of
a risk assessment for product registration. Each housing unit
consists of a frame with a glass plate at the top and bottom of

the frame. Pesticide residue is sprayed on the inner side of
each glass plate. For the control, water is sprayed on the inner
plate surface. After the plates dry, mite protonymphs are
placed between the plates. Fresh air is circulated within the
frame by an air pump. The mites are examined 7 days after
exposure begins. Risk is the number of mites in each housing
unit. Alive is the number alive at the end of the experimental
period. The concentrations were in ppm. There were nomi-
nally five mites per unit, including control. Due to initial
counting problems two units actually included six mites.
Chapters 6 and 7 will discuss how to analyze such data.

1.1.1.3 Count Response

While quantal responses involve counts of the number of
animals with the characteristic of interest, as we use the
term, counts are the number of occurrences in a single
subject or housing unit of some property. These include
the number of eggs laid or hatched, the number of cracked
eggs, the number of fetuses in a litter, the number of kidney
adenomas, and the number of micronucleated cells. See
Table 1.3 for an example dataset from Hackett et al. (1987)
showing variable litter sizes and sex ratios.

Methods for analyzing count data will be presented
in Chapter 8. As will be discussed there, count data can
sometimes be analyzed as though it were continuous
(usually after a transformation). Count data can also be
analyzed through specialized distributions, such as Poisson
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Table 1.3 Mouse Litter Size and Sex Ratio

Conc Dam Males Litter Conc Dam Males Litter Conc Dam Males Litter
0 1 6 9 40 27 8 16 200 53 7 12
0 2 6 10 40 28 6 11 200 54 7 15
0 3 2 3 40 29 6 12 200 55 0 2
0 4 5 13 40 30 3 6 200 56 8 16
0 5 7 12 40 31 7 13 200 57 7 15
0 6 5 13 40 32 6 11 200 58 9 11
0 7 8 15 40 33 4 10 1000 59 4 9
0 8 7 13 40 34 8 15 1000 60 5 14
0 9 4 13 40 35 7 14 1000 61 5 11
0 10 6 13 40 36 3 14 1000 62 7 12
0 11 11 12 40 37 7 13 1000 63 6 14
0 12 6 13 200 38 7 13 1000 64 9 14
0 13 3 9 200 39 8 12 1000 65 7 15
0 14 8 13 200 40 7 12 1000 66 7 12
0 15 6 9 200 41 4 13 1000 67 9 16
0 16 3 13 200 42 6 14 1000 68 10 14
0 17 7 14 200 43 9 15 1000 69 9 14
0 18 6 14 200 44 5 11 1000 70 7 11
40 19 6 11 200 45 7 14 1000 71 4 10
40 20 3 11 200 46 6 11 1000 72 7 9
40 21 3 13 200 47 6 12 1000 73 5 12
40 22 8 14 200 48 7 11 1000 74 3 8
40 23 8 13 200 49 8 11 1000 75 6 10
40 23 11 15 200 50 5 13 1000 76 9 13
40 25 6 13 200 51 6 14 1000 77 2 11
40 26 6 12 200 52 8 12 1000 78 6 15

Dam is an ID for the pregnant female mouse. Litter is the number of fetuses for that dam. Males = number of males in the litter and conc is the exposure parentage
dosage of 1,3-butadiene in ppm. Questions of interest include whether the chemical affects the litter size or sex ratio and whether there is an association between
litter size and sex ratio. Fetal, placenta, and dam body weights were also included in the original dataset and other questions were also addressed.

or zero-inflated Poisson, in the context of what are called
generalized linear models (GLMM). We will present and
compare these methods in Chapter 8.

1.1.1.4 Ordinal Response

Ordinal responses indicate relative severity or level but not
magnitude. Examples include amphibian developmental
stage and histopathology severity scores. Amphibian
developmental stages are represented by numbers 1-66
(as derived from Nieuwkoop and Faber, 1994), but the
difference between stage 55 and 56 is not comparable to
the difference between 56 and 62. The larger number indi-
cates a more advanced development, but this development
is defined by the presence or absence of specific physical
characteristics, not otherwise quantifiable. Consider the
following stages as examples:

1. Stage 56 typically occurs on day 38 post hatch.
Forelimbs of stage 56 animals are visible beneath the
skin of the tadpoles. The tadpoles are filter-feeding.

2. Stage 57 typically occurs on day 41 post hatch. Stage
57 animals lack emerged forelimbs, and metamor-
phosis in the alimentary canal is just beginning.

3. Stage 58 typically occurs on day 44 post hatch.
Stage 58 animals have emerged forelimbs and there
is significant histolysis of the duodenum (animals can
no longer digest food).

4. Stage 59 typically occurs on day 45 post hatch. Stage
59 animal forelimbs now reach to the base of the
hindlimb and there is now histolysis of the non-pyloric
part of the stomach (animals still can no longer digest
food).

5. Stage 60 typically occurs on day 46 post hatch.

In terms of development rates, a stage 57 animal is 3 days
behind a stage 58 animal, whereas a stage 58 animal is only
1 day behind a stage 59 animal. Also, in terms of develop-
ment rate, a stage 56 animal is 6 days behind a stage 58
animal, whereas a stage 58 animal is only 2 days behind a
stage 60 animal.



The biological significance of moving between two
stages might vary greatly depending on which stages are
being considered. For example, a stage 56 animal can
filter-feed. None of the animals in the other stages listed
above can.

Developmental stage is a key endpoint in the OECD
TG 231 Amphibian Metamorphosis Assay (AMA). The
experimental design in the test guideline is for four tanks
per test concentration, 20 tadpoles per tank, and three test
concentrations plus a water control. In developing the test
guideline, other designs were explored, including designs
with five test concentrations plus control, two tanks per
concentration, and 20 tadpoles per tank. See Table 1.4 for
an example with this latter design.

In Table 1.4, there was an apparent shift right in group
5 and perhaps in group 4, but groups 2 and 3 have increased
frequencies of smaller stages. It is not clear what a 10%
effects concentration would mean for this response.
Averaging stages in a group is meaningless (i.e. Stage 57.2
is meaningless), as stage is an ordinal, not a quantitative,
variable. The response measure should not be based on
simply considering the proportion of tadpoles above some
stage (e.g. >stage 58), since calculation of the concentra-
tion causing a 10% increase in the percent of tadpoles with
stage greater than 58 ignores the effects on the distribution
of stages above and below 58. Analysis based on median
stages in tanks ignores too much within-tank information.
Chapter 9 will describe the analysis of such data.

Clearly, the analysis of the stage data requires care,
and it is important not to think of the stages as representing
equal increments of development. It should be clear that a
shift in the stage of metamorphosis of a single stage might
be, but need not be, biologically meaningful. The analyses

Table 1.4 Example Developmental Stage Data from
AMA Study

Stage 56 57 58 59 60 61 62
Group Tank
1 1 2¢ 3 7 4 2 2
2 9 8 2 1
2 1 6 9 3 2
2 7 8 4 1
3 1 2 9 6 3
2 1 6 7 2 2 2
4 1 1 13 3 3
2 1 3 8 3 5
5 1 5 6 6 1 2
2 5 7 3 5

Stage, developmental stage reached by some tadpole in the indicated tank;
Group, treatment group, with control=group 1; Tank, replicate vessel.

“ Number in cell is the number of tadpoles in the tank at the indicated
developmental stage.
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of developmental stage data will be discussed in detail
in Chapter 9.

Histopathology severity scores are similar to develop-
mental stages in terms of being ordinal, not numeric, but
differ in another way that requires a different type of
analysis. Here, pathologist-grade organ slides on a scale
0-4, with score 0 meaning no abnormality was observed,
score 1 meaning only a minimal abnormality, score 2
meaning mild abnormality, and scores 4 and 5 meaning
moderate and severe abnormalities, respectively. It would
be more accurate to describe score 0 as meaning there was
nothing remarkable, rather than no abnormality. A severity
score is assigned to a tissue sample by a trained patho-
logist. These scores depend on the type of tissue damage
found and an assessment of its importance to the health of
the animal. See Figure 1.2 for an example tissue slide.
Assigning severity scores to such slides is not a simple
exercise. More discussion of this and a more detailed
example are provided in Chapter 10.

With most toxicology severity scores, there is no
uniform change in severity between scores, that is, the
difference between minimal and mild is not the same as
the difference between mild and moderate or between
moderate and severe. See Figure 1.3 for a simple illustra-
tion that may help keep these scores in mind.

Stated this way, the nature of severity scores is straight-
forward. Few people would suggest that if half of the tissue
samples have a minimal finding and half have a moderate
finding, then on average, the finding is mild.

Confusion arises from the common practice of labeling a
finding of none as 0, minimal as 1, mild as 2, moderate as 3,
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Figure 1.2 Example tissue slide for histopathology grading.
Expert judgment is used to score tissue slides such as these.

Image from Google images altered to black and white and cropped
using Photoshop. https://image.slidesharecdn.com/cpc-4-4-2-ren-
bph-pathlec-view-091013211114-phpapp02/95/pathology-of-
prostate-53-728.jpg?cb=1255468480.
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and severe as 4. These labels are numbers and a simple-
minded statistical approach is to treat them as though these
labels behave as numbers do rather than recognizing them
merely as labels: that is, one can average them, compute
the standard deviation, and employ all the simple statistical
tools one learned in an introductory course, such as the
T-test. However, moving from a score of 1 to 2 does not
indicate a doubling of severity, and moving from 3 to 4
may not indicate a change in severity equal to that in
moving from 1 to 2.

It should be emphasized that these scores are just
labels. To average scores 1 and 2 is the same as averaging
minimal and mild. What is the average of minimal and mild
or of mild and severe? These scores are arbitrary except for
order. We could just as well use the numbers 1, 2, 5, 7, and
12 as scores (see Figure 1.3) to emphasize that the differ-
ence between “adjacent” scores is not the same as a subject
progresses from no effect to severe effect. So the average of
minimal and severe could be (1+4)/2=2.50r 2+12)/2=7.
Neither average makes sense.

Such numerical approach is nonsensical, but it does
highlight a real concern. If the tank in an aquatic experi-
ment is the unit of analysis, what value do we give to the
tank? Leaving aside for now how to analyze severity
scores, if there are five fish in a tank with severity scores
0, 0, 3, 3, and 4, what single value do we assign to the
tank for statistical analysis? Note that the arithmetic mean
of these numerical labels is 2. Does 2 capture something
meaningful about this set of scores?

While the mean score is objectionable, what about the
median score? The median inherently treats the labels as
equally spaced across the spectrum of severities. Think
about where in the wide range of moderate (score 3) tissue
damage assessments in Figure 1.3 the moderately damaged
slide lies. As shall be discussed in Chapters 3 and 5, rank
ordering is a basic idea in most nonparametric testing, and
the set of all values from treatment and control are ranked
as a whole and then the sum of the ranks in the treatment
and control are compared. Such nonparametric tests take
the spread of severity scores into account, not just the
median.

One of the two approaches is typically taken in rodent
histopathology analysis. (i) Apply a nonparametric test
such as the Mann—Whitney (Chapter 3), which compares
the median scores in treatment tanks to those in the control.
But the tank median ignores the spread of the data. The
tank with scores 0, 0, 3, 3, and 4 has the same median as a
tank with scores 3, 3, 3, 3, and 3, but the first is much more
dispersed than the second and this may signal a difference

of biological importance missed by the comparison of
medians. The need for a summary measure for each tank
limits the appropriateness of traditional nonparametric
procedures for severity score analysis. (ii)) Some scientists
simply do not perform a statistical analysis, either because
they recognize the shortcomings of the above approach or
because they have little value for statistics altogether.

Given the restricted number of possible severity scores
and the small sample sizes typical in histopathology, at
least in ecotoxicology studies, analysis methods for
severity scores are different from those for developmental
stage. See Table 1.5 for an example from a medaka multi-
generation test.

In the dataset in Table 1.5, there were no score O fish.
The empty tanks (A in treatment 1 or control and C in
treatment 2) do not represent mortality. Rather, medaka
could not be sexed at the initiation of the study and by
chance, these tanks contained no females. This inability to
know the sex at study initiation leads to highly imbalanced
experimental designs. The tank is the unit of analysis, not
the individual fish, it is thus important to retain tank
identification and not lose the distribution of scores within
the tank. Also, because fish cannot be sexed at the beginning
of the study and must be analyzed by sex at the end of the

Table 1.5 Severity Scores for Liver Basophilia in Female
F2 Medaka at 8 Weeks

Frequency of score per tank

Trt Score A B C D E F Total
1 1 1° 1 2 2 3 9
2 3 1 4
3 1 1
2 1 2 1 1 4
2 4 2 1 1 8
3 1 1 2 4 7
2 2 2 1 1 6
4 1 1 1 1 3
2 1 1 3 3 2 10
3 1 1
5 1 1 2 1 1 1 6
2 1 1 2 4
3 1 2 1 4

Trt, treatment group, with 1=control; Total, number of fish in all tanks
in the indicated treatment group with the indicated score.

¢ Tanks are labeled A, B, and F.

® Numbers in cells indicate the number of fish (ignoring tanks) in the
treatment group with that score.

None| Minimal Mild | Moderate

Severe

Figure 1.3 Example severity scale. Varying widths for different scores indicate possible differences in the range of severities given the same score.



study, tank sizes are highly variable and this complicates
the analysis. For that reason and others, analysis of tank
medians, for example, would discard important information.

Appropriate methods for analysis of ordinal data are
discussed in detail in Chapter 9.

1.1.2 Analysis of Laboratory Toxicity
Experiments

The variety of sublethal endpoints measured suggests the
need for multiple statistical tools by which to analyze
toxicity data. It is the objective of this book to discuss
many of the statistical methods that have been used for this
purpose and to indicate what additional tools could be
brought to bear. Science is not static and advances in statis-
tical methods and computer power and software have made
available techniques that were impossible only a few years
ago. It is fully expected that additional advances will be
made in the time to come that cannot be foreseen today.
The authors will attempt to present the main statistical
methods in use now, and to the extent possible, those likely
to be included in the near future.

In its simplest form, a toxicity experiment is conducted
on a single species for a fixed amount of time. Different
groups of subjects are exposed to difference levels of the
test substance. More complex experiments include other
factors, such as measurements of lethal and sublethal
effects over time, differences among the sexes of the
subjects, different ambient conditions, and mixtures of
chemicals. The object of the statistical analysis is to
identify the level of exposure that causes a biologically
meaningful adverse effect under each set of conditions in
the experiment. Ideally, subject matter experts (e.g. toxi-
cologists or biologists) will determine what level of effect
is biologically meaningful. Criteria for making that deter-
mination can be on the basis of the health of the individual
animal or on the ability of the population as a whole to
thrive. For example, it may be the scientific judgment of
biologists that a 10% change in body weight of a Sprague-
Dawley rat, a 3% change in the length of a Daphnia magna,
and only a 300% or greater increase in vitellogenin (VTG)
are of biological importance. This is not a statistical ques-
tion but it is very important to the statistician in designing
or interpreting a toxicity study to know what size effect it is
important to find. Without the information on what size
effect it is important to detect, the statistician or data
analyst can only determine what is statistically significant
or estimate an arbitrary percent effect that may have no
inherent value. The result is unsatisfying to the statistician,
biologists, and risk assessor.

Ethical concerns about the use of animals in toxicity
experiments are increasingly important and the authors
share this concern. There is a very active worldwide effort
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underway to reduce or eliminate the number of animals for
various species (mice, fish, birds, etc.) used in toxicity
experiments. We will not pursue the question of the desir-
ability of animal testing. Our purpose is to provide scien-
tifically sound methods for analyzing the range of responses
that arise from toxicity experiments. Most of these methods
apply whether the test subject is a fathead minnow, tomato
plant, cell, or bacterium. In all cases, experiments should
be designed to use the minimum number of test subjects
needed to provide scientifically sound conclusions. This
is an instance where ethical and cost considerations
coincide.

1.2 REGULATORY CONTEXT
FOR TOXICITY EXPERIMENTS

Many toxicity studies are done to meet a regulatory require-
ment needed to obtain permission to use a chemical that
may lead to an environmental exposure. Such toxicity
experiments are used by regulatory authorities, such as the
United States Department of Agriculture (USDA), Animal
and Plant Health Inspection Service (APHIS), United
States Environmental Protection Agency (USEPA), Office
of Pesticide Programs (OPP), European Food Safety
Association (EFSA), the European Chemicals Bureau
(ECHA), The Institute for Health and Consumer Protection
(IHCP), or one of the European country environmental
agencies, including the Danish Environmental Protection
Agency (DK-EPA) and Umweltbundesamt (UBA) follow-
ing standardized test guidelines issued by the Organization
for Economic Co-operation and Development (OECD) or
the USEPA to assess the likelihood of adverse impacts
on populations and communities of organisms in the
environment.

To minimize data requirements and avoid unnecessary
tests, regulatory risk assessments in the US have a tiered
structure. Tier I studies estimate hazard and exposure under
“worst-case” conditions. If no adverse effects are found
under these conditions, there may be no need for further
data. In its simplest form, a so-called limit test may be done
with a single very high concentration of the test chemical
and a control. In other instances, there may be several
exposure levels. In either case, except for determining
lethal exposure levels, the emphasis is on testing hypothe-
ses regarding whether an adverse effect exists, but there is
no need for a precise quantification of the size effect at
each exposure level. If a higher tier test is needed, the focus
of such tests is usually on sublethal effects, so it is impor-
tant for the tier I tests to establish exposure levels that are
lethal to a substantial portion of the exposed subjects. Early
tier tests tend to be simple in design and may indicate that
there is no need for the more detailed information that can
come from higher tiered tests. Higher tier tests are designed
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either to assess risk under more realistic conditions or to
obtain more precise quantification of the exposure—effect
relationship.

In the European Union (EU) chemicals expected to enter
the environment are mainly regulated by three regulations:
(i) REACH (Registration, Evaluation, Authorization, and
Restriction of Chemicals) covering industrial chemicals,
(2) PPPR (Plant Protection Products Regulation) covering
pesticides, and (3) BPR (Biocidal Products Regulation)
covering biocides. The test information requirements in
REACH are driven by tonnage, i.e. the yearly volume
produced in or imported to the EU. Test requirements start
when more than 1 ton of a chemical is produced or imported
yearly. The most test requirements are applied to chemicals
exceeding 1000ton year™.

Chapters 2—10 and 13 will develop methods appropriate
for all levels of this tiered process. Much more information
on the regulatory process will be provided in Chapter 11.
Chapter 12 will develop an important tool for combining
the information from individual studies into a single sum-
mary distribution useful for risk assessment. References
that can be explored now and returned to throughout a
course based on this text include http://www.epa.gov/
pesticides/biopesticides/pips/non-target-arthropods.pdf,
http://www.epa.gov/oppefedl/ecorisk_ders/toera_
analysis_eco.htm, http://www.epa.gov/pesticides/health/
reducing.htm, and http://www.eea.europa.eu/publications/
GH-07-97-595-EN-C2/riskindex.html.

1.3 EXPERIMENTAL DESIGN BASICS

While observational studies of animals or plants captured
in the wild are valuable to environmental impact studies,
such studies can be quite frustrating in that routes and
conditions of exposure are often unknown, sample sizes
are often inadequate, and measurements are all too often
non-standardized, so that comparisons among studies are
very difficult. This book is not concerned with observa-
tional studies, even though one of the authors has been
very actively involved in several such studies, including
one major study lasting for more than 12 years. We will
restrict ourselves to designed experiments.

Considerations of study objectives should include
what and how measurements will be taken to address the
objectives. For a study of fish, for example, how is death to
be determined? It may be difficult to know with certainty
whether a fish floating upside down at the top of the tank is
dead or just immobile. How long should it be allowed to
float before deciding it is dead or near death and should
be euthanized to prevent suffering? If a fish or plant is
weighed, is it weighed wet or first blotted dry or desic-
cated? Specific protocols should be provided to address
such questions.

Experiments intended for regulatory submissions of
new pharmaceuticals or crop protection products or food
stuffs will receive special attention in this book. In studies
done to meet regulatory requirements, objectives are gen-
erally very detailed in test guidelines that must be followed.
What is often unclear in test guidelines is the size of effect
it is important to detect or estimate. Guidelines, especially
older guidelines, simply refer to effects that are statistically
significant. As a result, it has often been argued, with some
merit, that such guidelines reward poor experimentation,
since the more variable the data, the less likely an observed
effect will be found statistically significant. A good study
should state explicitly what size effect is important to
detect or estimate for each measured response and the
power to detect that size effect or the maximum acceptable
uncertainty for that estimate in the proposed study. Detailed
discussion of statistical power is introduced in Chapter 2
and discussed in detail in Chapters 3, 5, 6, 8, and 9 in the
context of specific tests. There has been increasing interest
in the last 15 years or so in replacing the use of hypothesis
tests to determine a NOEC by regression models to esti-
mate a specific percent effects concentration, ECx. One
goal of the regression approach is to replace the ill-defined
connection between biological and statistical significance
with an estimate of the exposure level that produces an
effect of a specific size. Such methods are introduced in
Chapter 2 and explored in depth in Chapters 4, 6, 7, and 8.
A hypothesis testing method with the same goal is dis-
cussed in Chapter 13.

The basic toxicity experiment has a negative control,
where subjects are not exposed to the test substance, and
one or more treatment groups. Treatment groups differ
only in the amount of the test substance to which the
subjects are exposed, with all other conditions as nearly
equal as possible. For example, treatment groups might
be tanks of fish exposed to different concentrations of
the test substance, or pots or rows of plants exposed to
different application rates of the test chemical, or cages
of mice with different amounts of the test substance
administered by gavage. Apart from the amount of chem-
ical exposure, the same species, strain, age, sex, ambient
conditions, and diets should be the same in all treatment
groups and control.

1.3.1

It is common in aquatic and certain other types of experi-
ments that the chemical under investigation cannot be
administered successfully without the addition of a solvent
or vehicle. In such experiments, it is customary to include
two control groups. One of these control groups receives
only what is in the natural laboratory environment (e.g.
dilution water in an aquatic experiment, a water spray in a

Multiple Controls
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pesticide application experiment, and unadulterated food
in a feeding study), while the other group receives the
dilution water with added solvent but no test chemical, a
spray with surfactant but no test chemical, or an oral gavage
with corn oil but no test substance. In ecotoxicity experi-
ments, these are often termed negative or dilution water
(non-solvent) and solvent controls. OECD recommends
limiting the use of solvents (OECD, 2000); however, appro-
priate use of solvents should be evaluated on a case-by-
case basis. Details regarding the use of solvents (e.g.
recommended chemicals and maximum concentrations) are
discussed in the relevant guideline documents for a specific
ecotoxicity test. In addition, regulatory guidelines must be
followed by both controls with regard to the range of accept-
able values (e.g. minimum acceptable percent survival or
mean oyster shell deposition rate). Multiple control groups
can be utilized regardless of whether the experiment was
intended for hypothesis testing or regression analysis.

In rodent studies where the chemical is administered by
oral gavage using a corn oil vehicle (or some other vehicle),
one control group should be given just the corn oil by gavage.
The intention is to rule out a gavage effect or separate it
from any effect from the test chemical. Not all such rodent
experiments include a control group that is simply fed a
standard diet with no gavage administered. The statistical
treatment of multiple controls will be addressed in Chapter 2
and in specific types of analyses in later chapters.

In some experiments, a positive control group is also
used. Here a different compound known to have an effect
is given to one group of subjects. The purpose is to dem-
onstrate that the experimental design and statistical test
method are adequate to find an effect if one is present.
If the positive control is not found to be significantly
different from the control, the experiment will generally
have to be repeated. More information on how to analyze
experiments with a positive control group will be given in
subsequent chapters. There are other ways to demonstrate
the sensitivity of the design and analysis method, includ-
ing power analysis and computer modeling. These topics
will also be addressed later.

1.3.2 Replication

In almost all toxicity experiments, each treatment group
and control is replicated, so that there are multiple subjects
exposed to each treatment. The need for replication arises
from the inherent variability in measurements on living
creatures. Two animals or plants exposed to the same
chemical need not have the same sensitivity to that chemical,
so replication is needed to separate the inherent variability
among subjects from the effects, if any, of the test substance.
The number of replicates and the number of subjects per
replicate influence the power in hypothesis testing and
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the confidence limits of parameter estimates and other
model evaluation measures in regression models and will
be discussed in depth in later chapters.

It is important to understand what constitutes a replicate
and the requirements of statistical methods that will be
used to analyze the data from an experiment. A replicate, or
experimental unit, is the basic unit of organization of test
subjects that have the same ambient conditions and expo-
sure to the test substance. To paraphrase Hurlbert (1984),
different replicates are capable of receiving different treat-
ments and the assignment of treatments to replicates can be
randomized. The ideal is that each replicate should capture
all the sources of variability in the experiment other than
the level of chemical exposure. Two plants in the same pot
will not be considered replicates, since they will receive
the same application of the test chemical and water and
sunlight and other ambient conditions at the same time and
in the same manner. Different pots of plants in different
locations in the greenhouse will generally be considered
replicates if they receive water, test compound, and the
like through different means, for example, by moving the
applicator and water hose. If 25 fish are housed together
in a single tank and the chemical exposure is through the
concentration in the water in that tank and the ambient
conditions and chemical exposure in that tank are set up
uniquely for that tank, then the tank constitutes one repli-
cate, not 25. Furthermore, if two tanks sit in the same bath
and receive chemical from a simple splitter attached to a
single reservoir of the test substance so that the chemical
exposure levels in the two tanks are the same and do not
capture all the sources of variability in setting up an expo-
sure scenario, then the two tanks are not true replicates.

Hurlbert (1984) describes at some length the notion of
pseudoreplication, “defined as the use of inferential statis-
tics to test for treatment effects with data from experiments
where either treatments are not replicated (though samples
may be) or replicates are not statistically independent.
In ANOVA terminology, it is the testing for treatment
effects with an error term inappropriate to the hypothesis
being considered.” Hurlbert defines the rather colorful
term nondemonic intrusion as “the impingement of chance
events on an experiment in progress” and considers inter-
spersion of treatments as an essential ingredient in good
experimental design. Oksanen (2004) extends the idea of
spatial interspersion to interspersion along all potentially
relevant environmental axes so that nondemonic intrusions
cannot contribute to the apparent treatment effects. The
primary requirements of good experimental design, according
to Hurlbert, are replication, randomization, interspersion of
treatments, and concomitant observations. Many designed
experiments fail to meet these ideals to some degree. For
example, in an aquatic experiment, tanks of subjects in the
same nominal treatment group may receive their chemical
concentrations from a common source through a physical
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splitter arrangement. Rodents may be housed throughout
a chronic study in the same rack. The latter is usually
compensated for by the rack frame that rotates positions of
the racks to equalize air flow, light, room temperature vari-
ations, and other ambient conditions across the experiment
as a whole. Furthermore, it is sometimes impossible to
make concomitant measurements on all subjects in a large
experiment, so that a staggered experimental design may
be necessary in which subjects are measured at equivalent
times relative to their exposure. For Oksanen (2004), “the
proper interpretation of an experiment of a demonstrated
contrast between two statistical populations hinges on the
opinion of scientists concerning the plausibility of different
putative causes.” Oksanen (2001, 2004) would accept the
results of an experiment if the scientific judgment was
that the observed treatment effects could not be plausibly
explained by the shortcomings of the experimental design,
even if it was possible to imagine some form of nonde-
monic intrusion (Hurlbert, 2004) that could account for
the observed effect. However, it must be stated that true
replication, randomization, concomitant observation, and
interspersion of treatments is the goal.

In some toxicity experiments, subjects are individually
housed, such as one bird per cage, one daphnid per beaker,
or one plant per pot. In these experiments, the replicate is
usually the test vessel, which is the same as the subject,
unless there are larger restrictions on clusters of vessels,
such as the position in the lab. In other experiments, multi-
ple subjects are housed together in the same cage or vessel
and there are also multiple vessels per treatment. In these
latter experiments, the replicate or experimental unit is the
test vessel, not the individual subject.

In a well-designed study, one should investigate the
trade-off between the number of replicates per treatment
and the number of subjects per replicate. Decisions on the
number of subjects per subgroup and number of subgroups
per group should be based on power calculations, or in
the case of regression modeling, sensitivity analyses, using
historical control data to estimate the relative magnitude
of within- and among-subgroup variation and correlation.
If there are no subgroups (i.e. replicates), then there is no
way to distinguish housing effects from concentration
effects and neither between- and within-group variances
nor correlations can be estimated, nor is it possible to apply
any of the statistical tests to be described to subgroup means.
Thus, a minimum of two subgroups per concentration is
recommended; three subgroups are much better than two;
and four subgroups are better than three. The improvement
in modeling falls off substantially as the number of subgroups
increases beyond four. (This can be understood on the fol-
lowing grounds. The modeling is improved if we get better
estimates of both among- and within-subgroup variances.
The quality of a variance estimate improves as the number
of observations on which it is based increases. Either sample

variance will have, at least approximately, a chi-squared
distribution. The quality of a variance estimate can be
measured by the width of its confidence interval and a look
at a chi-squared table will verify the statements made.)

The number of subgroups per concentration and sub-
jects per subgroup should be chosen to provide adequate
power to detect an effect of magnitude judged important to
detect or to yield a slope or ECx estimate with acceptably
tight confidence bounds. These determinations should
be based on historical control data for the species and
endpoint being studied. There are two areas of general
guidance. If the variance between subjects greatly exceeds
the variance between replicates, then greater power or
sensitivity is usually gained by increasing the number of
subjects per replicate, even at the expense of reducing the
number of replicates, but almost never less than two per
treatment. Otherwise, greater power or sensitivity gener-
ally comes from increasing the number of replicates and
reducing the number of subjects per replicate. This claim
will be developed more fully in the context of specific
types of data in Chapter 3. The second generality is that
for hypothesis testing (NOEC determination), generally
there need to be more replicates per treatment and fewer
treatments, whereas with regression analysis, it is generally
better to have more treatments, and there is less need for
replicates. As will be illustrated in Chapter 4, the quality of
regression estimates is affected by the number of replicates
unless there are a large number of treatments.

Since the control group is used in every comparison of
treatment to control, it is advisable to consider allocating
more subjects to the control group than to the treatment
groups in order to optimize power for a given total number
of subjects and thoroughly base the control against which
all estimates or comparisons are to be made. The optimum
allocation depends on the statistical method to be used.
A widely used allocation rule for hypothesis testing was
given by Dunnett (1955), which states that for a total of N
subjects and k treatments to be compared to a common
control, if the same number, n, of subjects are allocated
to every positive treatment group, then the number, n, to
allocate to the control to optimize power is determined by
the so-called square-root rule. By this rule, the value
of n is (the integer part of) the solution of the equation
N=kn+ n\/%, and n,=N —kn. (It is almost equivalent to
say n, = n\/%.) Dunnett showed this to optimize power of
his test. It is used, often without formal justification, for
other pairwise tests, such as the Mann—Whitney and Fisher
exact test. Williams (1972) showed that the square-root
rule may be somewhat suboptimal for his test and optimum
power is achieved when Jk in the above equation is
replaced by something between 1.1Jk and 1.4k. The
square-root allocation rule will be explored in more detail
in Chapter 2 and in subsequent chapters in the context of
specific tests or regression models.



1.3.3 Choice and Spacing of Test
Concentrations/Doses

Factors that must be considered when developing experi-
mental designs include the number and spacing of doses or
exposure levels, the number of subjects per dose group, and
the nature and number of subgroups within dose groups.
Decisions concerning these factors are made so as to provide
adequate power to detect effects that are of a magnitude
deemed biologically important.

The choice of test substance concentrations or doses or
rates is one aspect of experimental design that must be
evaluated for each individual study. The goal is to bracket
the concentration/dose/rate' at which biologically important
effects appear and to space the levels of the test compound
as closely as practical. If limited information on the toxicity
of a test material is available, exposure levels can be selected
to cover a range somewhat greater than the range of expo-
sure levels expected to be encountered in the field and
should include at least one concentration expected not to
have a biologically important effect. If more information
is available this range may be reduced, so that doses can
be more closely spaced. Effects are usually expected to
increase approximately in proportion to the log of con-
centration, so concentrations are generally approximately
equally spaced on a log scale. Three to seven concentra-
tions plus concomitant controls are suggested, with the
smaller experiment size typical for acute tests and larger
experiment sizes most appropriate when preliminary dose-
finding information is limited.

Of course, the idea of bracketing the concentration/
dose/rate at which biologically important effects appear is
much simpler to state than to execute, for if we knew what
that concentration was, there would no longer be a need to
conduct an experiment to determine what it is. To that end,
it is common to do experiments in stages. Conceptually,
a small range-finding study is done to give an idea of the
exposure levels likely to produce effects of interest.
Based on that, a larger definitive study is done. Experience
indicates that this process is not fail proof, so exposure
levels generally start well below the expected level and
extend well beyond. There are practical issues as well.
If concentration levels are too small, analytical chemistry
methods may not be sufficiently sensitive to measure
these levels and it sometimes happens that there is an
inversion, where some mean measured concentrations are
in reverse order to the planned nominal concentrations. This
complicates the interpretation of results and brings into

1 To avoid repeated awkward phrases such as concentration/dose/rate,
the text will frequently use only one of these terms, usually concentration
when the context clearly requires an aquatic environment, but commonly
dose regardless of context. The terms will be used interchangeably in this
text except in rare instances that are clear from context.
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question the entire experiment. Another issue is involved
in the intended use of the test substance. For example, a
pesticide or pharmaceutical product has to be administered
at a high-enough level to be effective. Testing much below
the effective level may only make sense if the concern is of
environmental exposure that might arise from dilution in a
stream or from rainfall.

At the other extreme, in aquatic experiments, chemicals
have a solubility limit that cannot be exceeded and this
obviously restricts the range of exposure levels that can be
included. In all types of studies aimed at determining suble-
thal effects, the exposure levels must be below the level that
produces high mortality. Generally, separate studies are done
to determine lethality and that information is used in both
the range finder and definitive tests for sublethal effects.

1.3.4 Randomization

Variability (often called noise) is inherent in any biological
dataset. The following factors affect the level of noise in an
experiment:

1. the variation between the individual animals, due to
genetic differences,

2. the differences in the conditions under which the
animals grew up prior to the experiment, resulting in
epigenetic differences between animals,

3. the heterogeneity of the experimental conditions
among the animals during the experiment,

4. variation within subjects (i.e. fluctuations in time, such
as female hormones, which may be substantial for
some endpoints), and

5. measurement errors.

Randomization is used in designing experiments to eliminate
bias in estimates of treatment effects and to ensure independ-
ence of error terms in statistical models. Ideally, randomiza-
tion should be used at every stage of the experimental process,
from selection of experimental material and application of
treatments to measurement of responses. To minimize the
effects of the first two factors, animals need to be randomly
distributed into concentration groups. To minimize the effects
of the third factor (both intended and unintended, such as
location in the room), application of treatments should be
randomized as much as possible. To minimize the effects
of the fourth factor, the measurement of responses should
be randomized in time (e.g. although all responses will be
recorded at 24 h, the order in which the experimental units
are measured should be randomized). With good scientific
methods, measurement errors can be minimized.

If any experimental processes are carried out in a non-
random way, then statistical analysis of the experimental
data should include a phase in which the potential effect of
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not randomizing on the experimental results is examined
and modifications are made to the model to account for this
restriction on randomization.

1.3.5 Species Used for Experiments

Many species are used in ecotoxicity experiments. In aquatic
toxicology, rainbow trout, fathead minnow, zebrafish,
Japanese medaka, sheepshead minnow, and silverside are
common fish species tested. In addition, Daphnia magna,
various species of algae, macrophytes, lemna, and sediment
dwelling chironomid and endobenthic species round out the
common aquatic species used in laboratory experiments.
To the aquatic species must be added earthworms, honey-
bees, mites, numerous avian species, and many non-target
crop plants and wild plant species. Mammalian toxicity studies
are most often done on some rat and mouse species, plus
rabbits and guinea pigs. Other species are also used. With rare
exceptions, humans are not test subjects for toxicity experi-
ments. Humans are, of course, used to test pharmaceuticals in
clinical trials and sublethal toxic effects may be observed in
these trials. Clinical trials are not considered in this text.

Some statistical methods apply across species. There
is no widely accepted specific fish statistical test or model
used in toxicity studies. There is, on the other hand, much
variety in the types of responses that arise and while
these are sometimes linked to specific species, it is the
nature of the response that determines the statistical
method to be used, not the species per se.

1.3.6 Extrapolation to Human Toxicity

Given that humans are not subjects for experiments, but
are exposed to various chemicals in the course of work or
in food consumption, wearing apparel, and use of home
products, the risk assessor needs some mechanism for
extrapolating from animal studies to human exposure. It is
not the purpose of this text to explore the ways in which
such extrapolations are done, other than to indicate that
generally this involves some uncertainty factor to apply to the
animal studies. For example, the lowest level found to have
a toxic effect on a rodent may be divided by 100 or 1000 in
assessing the safe level of human exposure. Further discus-
sion of such extrapolations and human risk assessment can
be found in Brock et al. (2014), Vose (2000), Warren-Hicks
and Moore (1998), and Hubert (1996, pp. 401ff).

1.4 HIERARCHY OF MODELS
FOR SIMPLETOXICITY EXPERIMENTS

There is a model underlying every statistical test used to
derive a NOEC or estimate an ECx. A basic experimental
design in ecotoxicity is one in which independent groups of

subjects of common species, age, and sex are exposed to
varying concentrations of a single test chemical for the
same length of time, so that the only non-random source of
difference among these subjects is the level of chemical
exposure. It is expected for most species, chemicals, and
responses to be analyzed that if there is an effect of the
chemical it will tend to increase as the chemical concentra-
tion increases. The basic statistical model for this simple
toxicity experiment is given by
Y, =p +e; (1.1)

where . is the expected mean response in the ith concen-
tration, and e, are independent identically distributed
random errors, often assumed to be normally distributed
with homogeneous variances, though that is not by any
means an absolute requirement. What distinguishes one
model from another is what additional restrictions or
assumptions are placed on the treatment means, ..

The simplest model that is used for hypothesis
testing is usually stated in terms of null and alternative
hypotheses as

Hy, o =4, =, =---=p, vs. H,:u, # . for somei, (1.2)

where y is the control mean.

This model implies no relationship among the treat-
ment means and one merely tests each treatment against
the control. In the contest of toxicology, Model (1.2)
ignores the expected relationship between the exposure
concentration and the response. A more appropriate model
is given by

Hopipg 2y = 4y 22, vs. H ;i > p, for somed.  (1.3)

This model assumes a non-increasing concentration—
response, which is what is expected biologically for most
responses from ecotoxicity experiments. It should also be
evident that if y >y, for some i, then p > K, for all j>i. Of
course, the inequalities can be reversed where an increased
response is expected with increasing concentrations.
A two-sided version of this model is also possible for those
situations where the researcher is confident that the sub-
jects will respond to the chemical insult in a monotone
dose-response fashion, but they are unsure for the com-
pound and endpoint in question whether the direction of
effect will be an increase or a decrease. For either Model
(1.2) or (1.3), one would estimate the y, from the data.

Do we expect a monotone dose-response? If not,
then tests based on monotonicity should not be used and,
of course, regression models are likewise inappropriate.
An exception exists for the case of hormesis where a special-
ized model can be employed to capture that phenomenon.
Hormesis, or more generally, low-dose stimulation, is the
presence of an apparently beneficial effect at low exposure



levels followed by an adverse effect at higher exposure lev-
els. Such effects are observed in many testing laboratories
throughout the world and can arise from several causes.
Pharmaceuticals are used because they are beneficial at
low dosages but they can be toxic at high dosages. Duke
et al. (2014) reported that allellochemicals, which are
phytotoxins released from plants, are known to induce
hormesis and some chemicals stimulate the production of
allellochemicals. They speculate that some mechanisms
producing hormetic responses could represent physiologi-
cal attempts to compensate for chemical stress. For exam-
ple, plants could produce more seeds, thereby increasing
the chance of the next generation to germinate under more
favorable conditions. In rodent studies, animals are often
fed ad libitum. Since there is little opportunity for exercise
or other physical stimulation, control animals sometimes
get grossly overweight, which has health implications for
those species as it does for humans. At low doses, the
chemical can make the animals slightly ill so their appetite
is reduced and they maintain a more healthy body weight
and do not suffer the adverse weight-related health effects
of the control animals. At higher dose levels, the adverse
effects of the test compound overwhelm any benefit from
reduced weight. In an aquatic experiment, the low dose of
the test compound may stimulate the growth of algae
because of a mild increase in nutrients in the chemical, but
higher concentrations inhibit growth because the toxic
effect overwhelms the nutrient effect. In a pesticide spray
application, a low application rate may inhibit pests with-
out damaging the plants, but at higher applications, plant
damage may occur.

Calabrese and Baldwin (2002) have a very interesting
discussion of hormesis in which they interpret it an “adap-
tive response with distinguishing dose-response character-
istics that is induced by either direct acting or
overcompensation-induced stimulatory processes at low
doses. In biological terms, hormesis represents an organis-
mal strategy for optimal resource allocation that ensures
homeostasis is maintained.” van der Woude et al. (2005)
and Carelli and Iavicoli (2002) contain further discussion
of hormesis. Lloyd (1987) discusses this in connection
with mixtures of chemicals. Dixon and Sprague (1981) and
Stebbing (1982) discuss this for a variety of phyla.

Even if we expect a monotone dose-response, it is
important to assess the data for consistency with that
judgment. There are several reasons for this. Bauer (1997)
has shown that certain tests based on a monotone dose—
response can have poor power properties or error rates
when the monotone assumption is wrong. While our expe-
rience does not substantiate the idea, Davis and Svendsgaard
(1990) and others have suggested that departures from
monotonicity may be more common than previously
thought. These concerns suggest that a need for caution
exists. We advocate both formal tests and visual inspection
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to determine whether there is significant monotonicity or
significant departure from monotonicity. Further discus-
sion of this issue will be presented in Chapter 3.

Regression models assume a specific mathematical
form for the relationship between treatment mean and con-
centration, for example, when modeling length or weight
of fish from an aquatic experiment or shoot height from a
non-target plant study, one might hypothesize

u = ae™ (1.4)

where X, is the concentration in the ith treatment, and a and
b are positive parameters to be estimated from the data. The
essential difference between Model (1.3) and models of the
type illustrated by Model (1.4) is the specific mathematical
relationship assumed between concentration and response.
It is rare in ecotoxicology to have a priori models based on
biological principles, so the regression approach becomes
an exercise in curve fitting and evaluation. An advantage of
Model (1.3) is that there is no need to specify an exact
form. An advantage of Model (1.4) is the ability to predict
the mean response at a range of chemical concentrations by
interpolating between the x,. The typical goal in a regula-
tory setting is to estimate the concentration or rate that
produces a specific percent change (increase or decrease,
as appropriate) in the measured response compared to the
control mean response. The label ECx is used for the con-
centration that produces an x% change from the control and
is referred to as the x-percent effects concentration. There
are other differences that will be addressed later.

Biologically-based models are mathematical models
having the form of regression models, such as Model (1.4),
but derived from, or based on, concepts observed in biol-
ogy that encompass much more than just the concentration
of test chemical. The Dynamic Energy Budget (DEB)
theory developed by S.A.L.M. Kooijman and colleagues
(e.g. Kooijman and Bedaux, 1996) is built on the idea that
the hazard rate and the parameters that quantify the energy
budget of the individual are proportional to the concen-
tration of the test substance in the animal. DEB theory
“specifies the rules that organisms use for the energy uptake
of resources (food) and the ensuing allocations to mainte-
nance, growth, development and propagation.”

1.5 BIOLOGICAL VS. STATISTICAL
SIGNIFICANCE

Statistical analysis of toxicity data, especially the hypothesis
testing or NOEC approach, is often criticized for finding
treatment means statistically significantly different from
the control mean that are not biologically important. On the
other hand, in some experiments, differences are found that
are thought to be biologically important but are not found
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statistically significant. The difference between biological
and statistical significance is real and should be appreci-
ated. Moreover, an ideal study should be designed to have
high power to find biologically important treatment effects
and low likelihood of finding significant a treatment
“effect” that is not biologically important. In terms of esti-
mating an x% effects concentration, ECx, from a regression
model, the percent effect, x, to be used should be biologi-
cally determined, not an arbitrary value selected purely to
satisfy some legislation or convenience.

There are several factors that make it difficult or
impossible to design such an ideal experiment. First, it is
unusual for an experiment to have a single endpoint or
response of interest. This means that while it may be pos-
sible to design the experiment to be optimal in some sense
for one response, the experiment may be decidedly subop-
timal for another response. Second, it has proved very dif-
ficult to find agreement within the ecotoxicity scientific
community to reach agreement on the size effect for a
given response that is biologically important to detect, or
even the basis for making such a determination. Is it more
important to judge biological importance on the health of
the individual subject, as is usually the case in assessing the
carcinogenic risk in rodent experiments (and by inference,
to humans), or on the ability of population as a whole to
thrive, as suggested by Iwasaki and Hanson (2014) and
Mebane (2012)? Third, when there is, say, 90% power to
detect, i.e. found to be significant, a 10% change in some
response, there may also be a 50% chance of detecting a
5% change and 25% power to detect a 3% change. In plain
language, then, sometimes very small effects will be found
statistically significant. If a regression model can be fit to
the data to try to eliminate this problem, then it might turn
out that the 95% confidence interval for EC10 spans the
entire range of tested concentrations including the control.
(Examples will be given in Chapter 4.) This hardly seems
informative. Data may be highly variable, given practical
limitations on the size experiment than can be run and the
inherent variability of the subjects and sensitivity of the
measuring equipment, and will mean a 50% effect cannot
be detected or no model can be fit or the aforementioned
wide confidence bounds on EC10 estimates encountered.

One should also question the idea that 10% is some
universally applicable size effect. The measurement of
VTG in fish to evaluate possible endocrine effects is
extremely variable and effects of 1000% or higher increases
are observed. There also frequently very high inter-lab and
even intra-lab variability in this measurement. The data are
continuous but by no means normally distributed or homo-
geneous in variance. For hypothesis testing purposes, a
log-transform or even a rank-order transform might be
used to deal with the huge spread in the data. Regression
models, even on log-transformed responses, are often very
poor and generate very wide confidence bounds. It is totally

pointless to estimate EC10 with such data, so what size
effect should be estimated? Furthermore, do we estimate
an x% effect based on the untransformed control mean or
on the log-transform? If the former, the model-fitting
algorithm will usually not converge. If the latter, the
meaning of ECx will vary from experiment to experiment
in a much bigger way than with more well-behaved data.
For example, if the mean control response is 10, 100, 1000,
or 10000, then a 10% increase in the logarithm corresponds
to a 26, 58, 100, or 151% effect in the untransformed
values.

Isnard et al. (2001) note the problem of determining an
appropriate choice of x, noting ‘“Biological arguments are
scarce to help in defining a negligible level of effect x for
the ECx.” An insightful presentation by C. Mebane of the
US Geological Survey/NOAA Fisheries Liaison at the
SETAC conference in Long Beach, California in 2012
(Mebane, 2012) reported on a review of early-life stage
toxicity testing with aquatic organisms (reduced growth,
fecundity, and survival) in the context of responses of wild
fish populations to disturbances associated with changes in
mortality or growth rates. The review suggested that differ-
ent ECx values would be appropriate for different end-
points and for species with different life histories. Under
some conditions and for some species, differences in length
of as little as 5% can disproportionately determine survival.
Growth reductions of the magnitude of 20% could predict
extremely high indirect mortalities for juvenile fish. For
some other populations, where juveniles have to compete
for limited shelter to survive their first winter, much greater
than 20% loss of the young-of-year is routinely absorbed.
These observations suggested to Mebane that an EC20 for
fecundity or first-year survival in density-dependent fish
populations would conceptually be sustainable, yet for
reduced growth (as length of juvenile fish) an EC5 would
be a more appropriate endpoint.

These findings and others suggest a real need to iden-
tify the size effects of biological importance across a wide
spectrum of measured endpoints. In any event, to design
properly an experiment, it is critical to know what size
effects are of interest for each response to be analyzed.
This must be tempered by the understanding mentioned
above that an experiment well designed for one response
may be over- or under-sensitive for other responses. One
practical workaround is to design around the most impor-
tant responses. It is also important to maintain a working
historical control database within the testing laboratory for
each type of study, species, and response, and then inter-
pret the results of each new study in light of the distribution
of control responses. This can be done informally or
through Bayesian methodology applied to incorporate such
information formally in the analysis.

Before leaving this topic, it is appropriate to discuss
how statistical significance is decided and to appreciate a



