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Supervisors’ Foreword

Even a century after its birth, we are still challenged by fundamental questions
posed by quantum mechanics and learning how to use its striking features for
practical applications. The field of quantum information explores the computational
power of quantum systems, which can greatly outperform classical computers;
entanglement can be used to secure communications; the high sensitivity of
quantum superpositions to external parameters is being used to design new sensors.
Quantum computation, quantum communication, quantum sensing, and metrology
are examples of the new technologies that make use of genuine quantum effects,
like coherence and entanglement.

In recent years, a new field has been added to these attempts to exploiting
quantum effects: quantum thermodynamics. Furthermore, the progress toward
systems composed of several elementary units with increasing complexity requires
the study of emergent phenomena, such as quantum synchronization. These timely
topics are treated in the thesis of Gonzalo Manzano within the common theoretical
framework of open quantum systems. Manzano’s original contributions lead to a
better understanding of a number of basic phenomena: synchronization, decoher-
ence, thermalization, and irreversibility in open systems, whose control is crucial to
implement the aforementioned quantum technologies. The thesis also includes the
design and analysis of quantum thermal machines that can achieve higher effi-
ciencies than classical engines and refrigerators.

As known, isolated systems are a useful idealization to start with, but only a
more realistic approach considering interactions with the environment can explain
most physical phenomena, taking into account the effects of exchanges of energy,
matter, and information. In the classical regime, the interaction with the environ-
ment is necessary for basic tasks that require friction, such as walking, as well as to
relax toward equilibrium, like when ice melts in our drink, and plays a prominent
role in emergent phenomena and dissipative structures, ranging from synchro-
nization of heart pacemaker cells to cyclones. Therefore, the study of open systems
is a well-established topic intersecting with most research fields including, but not
limited to, thermodynamics.
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Still, it is in the quantum regime where the study of open systems becomes even
more relevant and powerful, since open quantum systems play a fundamental role
in establishing the conditions for the emergence of a classical world out of fun-
damental quantum laws valid in the microscopic regime. Superposition of states is
at the heart of quantum physics, and the process of decoherence provides a
mechanism for the transition to classical mixed states, with prominent experimental
demonstrations in atomic systems known from the 1990s.

This thesis explores the behavior of open quantum systems in a variety of
contexts. Its first part is a very valuable, self-contained, and exhaustive introduction
(Part I) that covers the main aspects of (a) basic quantum theory, including several
quantities to assess the correlation between quantum systems, (b) the theory of
quantum open systems, including the formalism of quantum maps and stochastic
trajectories, and (c) the more recent framework of stochastic thermodynamics and
quantum thermodynamics.

The rest of the Gonzalo Manzano’s thesis is devoted to his original contributions
to these fields. Part II focuses on synchronization of quantum oscillators. Among
complex phenomena, mutual synchronization is a paradigmatic one, reported in
physical, biological, chemical, and social contexts, allowing for the adjustments
of the rhythms of different systems. A natural question addressed in recent years is
about the persistence of this phenomenon in the quantum regime, as well as its
connection with quantum correlations. The thesis contains the first study in which
mutual synchronization is actually found to witness the presence of quantum
discord and entanglement, in a fundamental model of coupled oscillators (Chap. 4).
Furthermore, it addresses the intriguing possibility that synchronization not only
persists in the presence of quantum noise, but is also induced by dissipation into the
environment. Quantum synchronization is discussed in bosonic models allowing for
more complex forms of interaction with the environment, acting not only inde-
pendently and identically on different system components, but also collectively or
locally (Chaps. 4 and 5). Spontaneous synchronization can arise either during a
pre-thermalization transient or also in the stationary state, when more than two
detuned oscillators are considered. The last case is studied in connection with
persistent decoherence-free subspaces (Chap. 5).

Can mesoscopic systems like quantum complex networks synchronize? In
Chap. 6, it is shown that bosonic networks not only can display mutual synchro-
nization induced by dissipation, but also have the possibility to be tuned locally
(only at one node) to make the whole network synchronous, and therefore also
strongly quantum correlated, or to select synchronous clusters. Furthermore, the
conditions to synchronize and entangle two nodes through a network are also
established. These results provide a comprehensive description of quantum syn-
chronization in the framework of bosonic networks.

Part III is devoted to quantum fluctuation theorems (QFTs) that characterize the
fluctuations of work, heat, and other quantities related to entropy production, along
arbitrary nonequilibrium processes. Chapter 7 introduces a QFT for quantum maps
and operations, a generic formalism that describes the evolution of open systems.
The novelty of this QFT is that it is independent of the details of the environment
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and can be applied when the physical mechanism behind a phenomenon is not fully
understood, such as decoherence and the collapse of the wave function. Another
general QFT, in this case for bipartite systems, is derived in Chap. 8. This theorem
helps to clarify some aspects of the previous QFT for maps and also allows one to
split the entropy production along nonequilibrium processes into two terms that
obey respective “second laws”: the adiabatic entropy production, which quantifies
the entropy production due to nonequilibrium constraints, such as temperature
gradients, and the nonadiabatic entropy production, which accounts for the local
irreversible relaxation due to driving. All those results are illustrated in a number of
relevant physical examples.

The last part of the thesis (Part IV) focuses on quantum thermal machines,
that is, quantum systems that are in contact with thermal baths at different tem-
peratures and are able to perform different tasks, like converting heat into work
(motors) or pumping heat from cold to hot reservoirs (refrigerators). Over the
last decade, a vast literature has developed on these machines, which is reviewed in
the introduction, whereas Part IV of the thesis contains the original contributions to
the field. Chapter 11 analyzes how the efficiency of these machines depends on the
dimension of the Hilbert space. Another interesting aspect is the consideration
of nonequilibrium reservoirs. In quantum mechanics, one can modify the state of
an equilibrium thermal bath, by squeezing or adding coherences, to obtain a
nonequilibrium reservoir. Then, we can imagine a thermal machine working with
those reservoirs. In fact, there are already experimental realizations of thermal
motors working with squeezed baths. Chapter 10 analyzes in detail several ther-
modynamic cycles between squeezed thermal baths using QFTs and shows that one
can have motors and refrigerators that greatly outperform cycles with equilibrium
reservoirs.

Summarizing, here you will find a number of relevant and original contributions
that help to better understand the collective and thermodynamic properties of open
quantum systems. Gonzalo Manzano has also included an exhaustive and
self-contained introduction that makes the thesis an excellent resource for learning
more about all these new developments, which are crucial for understanding both
the fundamental aspects of quantum mechanics and the possibilities and limitations
of quantum technologies.

Madrid, Spain Prof. Juan M. R. Parrondo
Palma de Mallorca, Spain
April 2018

Prof. Roberta Zambrini
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Abstract

Dissipation effects have profound consequences in the behavior and properties of
quantum systems. The unavoidable interaction with the surrounding environment,
with whom systems continuously exchange information, energy, angular momen-
tum, or matter, is ultimately responsible for decoherence phenomena and the
emergence of classical behavior. However, there exists a wide intermediate regime
in which the interplay between dissipative and quantum effects gives rise to a
plethora of rich and striking phenomena that has only started to be understood. In
addition, the recent breakthrough techniques in controlling and manipulating
quantum systems in the laboratory have made this phenomenology accessible in
experiments and potentially applicable. In this thesis, we aim to explore from a
theoretical point of view some of the connections between dissipative and quantum
effects regarding two main aspects: the thermodynamical behavior of quantum
systems and the relation between dynamical and quantum correlations shared
between them.

Quantum correlations are one of the most surprising characteristics of nature,
attracting a long-standing interest from the formulation of quantum theory. The
understanding of the mechanisms creating, preserving, or destroying quantum
correlations becomes of major importance when exploring the quantum-to-classical
boundary, while being essential to designing schemes in which decoherence phe-
nomena can be avoided in practical applications. An important type of dynamical
correlations with a more classical flavor is synchronization phenomena, which have
been studied in a broad range of physical, chemical, and biological systems.
Synchronization may arise as a spontaneous cooperative behavior of different
oscillatory units that, when coupled, adapt their rhythms to a common frequency.
This mutual synchronization phenomenon has been recently considered in the
quantum regime, mostly from a classical point of view, while genuine quantum
traits of synchronization are now starting to be investigated.

A first main objective of this thesis is to determine the possible connections
between mutual synchronization and quantum correlations, as measured by
entanglement or quantum discord. In order to investigate this connection, we use
the machinery of open quantum systems theory. More precisely, we consider
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many-body systems consisting of interacting quantum harmonic oscillators coupled
to the environment. The environment will be modelled in two main different ways,
which will be compared. In the first case, all the units in the many-body system feel
the same dissipation modelled as a common heat bath. In the second case, each unit
is assumed to feel an independent dissipation modelled by separate thermal baths.
We start with the simplest case of two quantum harmonic oscillators in Chap. 4
which allows us to identify the basic mechanisms leading to transient synchro-
nization and its relation with the slow decay of quantum correlations. We find that
both phenomena are produced due to the presence of collective dissipation. We then
consider the case of three oscillators in Chap. 5, in which a richer phenomenology
appears while still allowing an analytical treatment in several cases of interest.
Finally, we scale the system up to complex harmonic networks in Chap. 6, where a
broader class of local/global dissipation can be addressed, and our previous findings
let us engineer the normal modes of the network. We can then obtain synchro-
nization and protection of quantum correlations in the whole network or in a
selected cluster, by simply tuning one or few parameters, such as one frequency or
certain coupling strengths. The importance of the results presented in this part of the
thesis relies on the fact that they show for the first time that synchronization is
related to genuine quantum features and that it may emerge, even in linear systems,
due to the presence of dissipation.

The remaining parts of the thesis are dedicated to explore the thermodynamic
features of open quantum systems. In particular, we explore the quantum versions
of fluctuation theorems. These theorems are universal relations which introduce
constraints in the statistics followed by quantities such as work, or entropy, defined
as stochastic fluctuating variables in processes occurring arbitrarily far from equi-
librium. They can be understood as a refined version of the second law of ther-
modynamics for small systems dominated by fluctuations where the laws
of thermodynamics are only expected to be fulfilled on average.

Work fluctuation theorems have been extensively investigated in the quantum
regime under an inclusive Hamiltonian approach. Also, fluctuation theorems for the
exchange of heat and particles in transient and steady-state regimes have been
established, as well as entropy production fluctuation theorems. Other approaches
considered specific open-system dynamics, including unital measurements, quan-
tum trajectories, or Lindblad master equations. However, the different attempts to
generalize those results to general completely positive and trace-preserving (CPTP)
maps are limited by the presence of an efficacy (correction) term. Furthermore, the
characterization of entropy production in situations going beyond the assumption of
ideal equilibrium reservoirs constitutes an open challenge.

The second main objective we pursue in this thesis is the development of
fluctuation theorems valid for quantum CPTP maps, together with the interpretation
of the quantities fulfilling them. This theoretical development may then be applied
to gain insight into the characterization of entropy production in general quantum
evolution and the thermodynamic description of specific configurations. We define
thermodynamic protocols generating trajectories by means of quantum measure-
ments and the occurrence of the quantum operations which compose the CPTP
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maps. The probabilities of such trajectories then must be compared with those
of their time-reversed twins, defined in a suitable way. The application to specific
situations will require as well an adequate modelling of the dynamical evolution.
In Chap. 7, we develop a general fluctuation theorem for a large class of quantum
CPTP maps. The theorem is based on the properties of the invariant states of the
dynamics. We discuss the meaning of the quantity fulfilling the theorem in many
situations of physical interest as different versions of the entropy production. This
interpretation is then clarified in Chap. 8, where we characterize entropy production
from first principles and explore the conditions under which it splits into adiabatic
and nonadiabatic contributions, each of them fulfilling an independent fluctuation
theorem. In Chap. 9, we illustrate our findings with some particular models of
interest in quantum thermodynamics and discuss their implications.

Thermodynamic theory was developed from the analysis of real heat engines,
such as the steam engine along the nineteenth century. Those macroscopic engines
have quantum analogues, whose analysis constitutes an important branch of
quantum thermodynamics. A quantum thermal machine is intended as a small
quantum system operating between different thermal reservoirs (or more general
reservoirs) and possibly subjected to external driving. The machine performs a
thermodynamic task such as work extraction, refrigeration, heat pumping,
or information erasure. Quantum thermal machines provide simple setups in which
quantum thermodynamics can be studied at the fundamental level, but also tested
experimentally.

Clarifying the impact of quantumness in the operation and properties of the
machines represents a major challenge. Quantum effects may be incorporated, e.g.,
by means of nonequilibrium reservoirs. There have been different works in the
literature pointing that nonequilibrium quantum reservoirs may be used to increase
both power and efficiency. Nevertheless, a solid understanding of this enhancement
and their optimization has remained elusive, as it requires a precise formulation
of the second law of thermodynamics in such nonequilibrium situations.
Furthermore, the sole fact that energy levels are discretized may also introduce
limitations when trying to improve the performance of machines by means of
increasing the number of levels. Indeed, the scaling properties of small thermal
machines have not been yet established.

A final general objective of this thesis is to provide insight into the role played
by quantumness in the performance and operation of quantum thermal machines.
We perform a thermodynamic analysis of the quantum Otto cycle for a single
bosonic mode in the presence of a nonequilibrium squeezed thermal reservoir.
Equipped with the findings about entropy production in quantum processes and the
generalized formulation of the second law previously developed, we will perform
an entropic analysis of this setup in Chap. 10. We identify nonequilibrium features
introduced by the squeezed thermal reservoir in the operation of the engine, opti-
mize it, and discuss its many striking consequences such as the appearance of
multitask regimes in which the heat engine may extract work and refrigerate a cold
reservoir at the same time. Finally, we study the performance of multi-level
autonomous thermal machines in terms of the number of levels in Chap. 11. We
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first identify the primitive operation of autonomous machines and then characterize
the different elements determining their performance. This allows us to compare
different ways of scaling the system by adding extra levels. Fundamental limitations
to improve the performance of the machine then naturally arise, leading to a novel
statement about the third law of thermodynamics in terms of the Hilbert space
dimension of the machine.
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Part I
Introduction to Open Quantum Systems

and Quantum Thermodynamics



Chapter 1
Basic Concepts

Any realistic quantum system cannot be completely isolated. In general, it is
unavoidably coupled to a larger environment and thus, even if this interaction isweak,
needs to be regarded as an open system, just like happens when one considers small
classical particles. The environment, which is frequently (but not only) regarded as
a thermal reservoir or bath, influences the quantum system under consideration in a
non-negligible way, whichmust be taken into account when describing its dynamical
evolution and properties. System and environment are continuously sharing infor-
mation, which is manifested in the building up of correlations between them. This
information is no longer available in general, as it involves a huge number of uncon-
trollable degrees of freedom. Indeed, obtaining a complete microscopic description
of the whole ensemble involved in the problem is both intractable and generally not
needed from a practical point of view, but a rather simpler probabilistic approach
is highly desirable. The theory of open quantum systems provides such an effective
description, allowing the treatment of complex systems by means of a small number
of relevant variables. The irrelevant degrees of freedom are instead described only
approximately, which results in the appearance of dissipative and stochastic terms
in the final form of the effective equations of motion, a characteristic feature of an
irreversible evolution [1, 2].

Open quantum systems theory has been widely studied and applied by many sci-
entists fromdifferent communities in the last half-century. Nowadays it constitutes an
everyday tool inmodern quantumoptics, atomic physics, condensedmatter, chemical
physics, quantum information science or the novel field of quantum thermodynam-
ics. A more rigorous treatment of open quantum systems from a mathematical point
of view complements this heterogeneity and provides consistency to the theory (see
e.g. [3] and references therein).

The study of open quantum systems is also of special importance for fundamental
questions about the quantum description of nature. One example is quantum mea-
surement theory, as long as any measurement requires a description in terms of the
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4 1 Basic Concepts

interaction of the system to be measured with an apparatus (a second quantum sys-
tem), which records the result and leads to fundamental back-action on the former.
Another example comes from the fact that the interaction of a quantum system with
its environment leads to thewell-known phenomenon of decoherence, throughwhich
superpositions of quantum states are irreversibly lost producing the emergence of
classical behavior [4]. It is thus clear that the detailed study of open quantum systems
constitutes a key point if one wants to benefit from quantum phenomena in practical
applications, as become patent in modern quantum computation, quantummetrology
or quantum cryptography [5, 6].

This chapter aims to provide an introduction to some of the most important con-
cepts employed when dealing with open quantum systems. In particular, we review
and illustrate the essential concepts and methods which are going to be used in this
thesis, while skipping rigorous demonstrations and referring to more specific books
or reviews on this topic. We organized the chapter as follows. In Sect. 1.1 we start
by reviewing the necessary elements of quantum theory needed for the description
of open quantum systems, the dynamical evolution of closed (completely isolated)
quantum systems, and its relation with the open system dynamics experienced by
one of its constituents in the case of many-body systems. Next, in Sect. 1.2, we focus
on the case of qubits and harmonic oscillators, as they are two prototypical sys-
tems where the basic elements of the theory can be well illustrated. In Sect. 1.3 we
review the basics of quantum measurement theory, its general mathematical formu-
lation in terms of operations and effects, and introduce the most important classes
of measurements. Finally, in Sect. 1.4, we define classical and quantum correlations,
introducing different quantifiers such as entanglement, mutual information, and dis-
cord, discussing their main physical interpretations.

1.1 Quantum Mechanics

In the general framework of quantum mechanics, each state of an isolated quan-
tum system can be represented by a normalized state vector |ψ〉 in an associated
Hilbert vectorial space H. Any measurable quantity on this system is represented
by an hermitian (or self-adjoint) operator, Ô = Ô†, in the same space, whose eigen-
values represent possible results (or outcomes) of a quantum measurement, as we
will see in more detail in Sect. 1.3. Quantum theory is intrinsically random and the
pure state |ψ〉 contains all the information one can know about the probability of
obtaining different outcomes for all different observables of the system. To illustrate
this point let us decompose the operator Ô = ∑

n on|on〉〈on| where {|on〉} is the set
of eigenvectors (or eigenstates) of Ô providing a basis of H, and on its correspond-
ing (non-degenerate) eigenvalues. The probability of obtaining the result on in a
measurement of the observable Ô is the scalar product 0 � |〈ψ |on〉|2 � 1, as given
by Born rule [7]. Moreover the mean value of some observable in the state |ψ〉 is
given by the quantum mechanical expectation value 〈Ô〉 = 〈ψ |Ô|ψ〉, representing



1.1 Quantum Mechanics 5

the mean of different results when the observable is measured, weighted with their
different probabilities to occur. In the same manner the variance of Ô on |ψ〉 reads
σ 2(Ô) = 〈Ô2〉 − 〈Ô〉2. The latter is zero if and only if the state |ψ〉 is an eigenstate of
the operator, that is, when Ô|ψ〉 = α|ψ〉, being α a real number (then |ψ〉 = |on〉 and
α = on for some n). At difference from classical physics, σ(Ô) cannot be simultane-
ously zero for all observables Ô, as the Heisenberg uncertainty principle asserts [8].
Indeed for any quantum system, non-commuting observables such as position and
momentum, [x̂, p̂] ≡ x̂ p̂ − p̂x̂ = i�1 being 1 the identity operator, cannot share
any common eigenstate. A general form of the Heisenberg uncertainty principle for
arbitrary observables Ô and Ô′ is the Robertson uncertainty relation [9] Robertson
uncertainty relation.

σ(Ô)σ (Ô′) � 1

2
|〈ψ |[Ô, Ô′]|ψ〉|, (1.1)

which unravels the connection between the commutativity of observables and the
complementarity of their uncertainties [10].

1.1.1 The Density Operator

When considering open quantum systems we need to incorporate in the description
new sources of randomness other than the intrinsic uncertainty of quantum states,
coming e.g. from our lack of knowledge about the specific state of the environment,
the preparation procedure, or the correlations built up in the interaction between
system and surroundings. In this case we represent the state of our open system by
a density operator (or density matrix) ρ,1 firstly introduced by von Neumann [11]
and Landau [12] in 1927. It characterizes our state of knowledge about the system
and represents the quantum analogue to the phase-space probability distribution of
classical statistical mechanics. The use of the density operator allows us to work with
statistical mixtures of state vectors:

ρ =
∑

k

pk |ψk〉〈ψk |, with k = 1, 2, . . . , N , (1.2)

where pk are the probabilities
(
0 � pk � 1,

∑
k pk = 1

)
of being our microscopic

system in each of the N pure states |ψk〉, and the operators |ψk〉〈ψk | are projec-
tors onto the state |ψk〉. The density operator is self-adjoint (ρ = ρ†), positive-
semidefinite (ρ � 0), and has unit trace (Tr[ρ] = 1).

In principle any mixed state ρ can be decomposed into a mixture of pure states
in an infinite number of ways,2 but there is only one in which the states |ψk〉 in

1We omit the hat symbol ˆused to distinguish between operators and scalars for the density operator.
2All of them related by a unitary transformation. Furthermore the same density operator can be also
decomposed in a mixture of mixed states in an infinite number of ways.
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the decomposition are mutually orthogonal between them, i. e. for which they verify
〈ψk |ψl〉 = δk,l . This is guaranteed by the spectral theory of density operators, as long
as ρ has only a countable set of strictly positive eigenvalues [1]. In such case, wemay
call Eq. (1.2) the spectral decomposition of ρ, the probabilities pk and the states |ψk〉
being respectively the eigenvalues and eigenstates of the ρ, and N the dimension of
the Hilbert space H (which may be infinite). Given a density operator, ρ, the most
likely pure state the system is in, is given by the eigenstate |ψk〉 corresponding to the
largest eigenvalue pk [13].

It is worth mentioning that the density operator ρ is sufficient to describe all
the possible results of measurements on the system for any observable. Indeed the
expression for the mean value introduced earlier, can be now rewritten for the case
of a mixed state as

〈Ô〉 = Tr[Ôρ] =
∑

k

pk〈ψk |Ô|ψk〉, (1.3)

In a similar waywemay use the trace to rewrite the expression for the variance σ 2(Ô)

in terms of ρ, or the general uncertainty relation in Eq. (1.1).
Another important property of the density operator is that it always verifyTr[ρ2] �

Tr[ρ] = 1, where the equality is only reached in the case of a pure state ρ = |ψ〉〈ψ |,
when the information about the state of the microscopic system is complete. On the
opposite side, the maximally mixed state reads ρ = 1/N , where N again denotes
the dimension of the system Hilbert spaceH. This corresponds to the case in which
all the possible physical pure states of the microscopic system are equally probable.
Hence we may define the quantity P(ρ) ≡ Tr[ρ2], called the purity of a state, in
order to quantify its degree of mixedness. This quantity takes values in the range
1/N 2 � P(ρ) � 1, with the upper bound reached for pure states and the lower bound
reached for maximally mixed states.

It is however important to distinguish amixture of pure states, as given in Eq. (1.2),
from a superposition of the form

|ψ〉 =
∑

k

ck |ψk〉, with k = 1, 2, . . . , N , (1.4)

where ck = 〈ψk |ψ〉 are a set of complex numbers such that
∑

k |ck |2 = 1. The exis-
tence of such states, as motivated by the superposition principle, lies at the heart
of quantum theory. The differences between mixture and superposition states are
fundamental. While the former simply describes our lack of knowledge in the spe-
cific pure state the system is in, the latter corresponds to a single pure state. Hence
we can no longer interpret the system being in different states |ψk〉 with certain
probability, but we have to really consider that the system is in all those states at
once. Let us assume the set of states {|ψk〉} to form a basis of the Hilbert space of
the system with dimension N , and compare the density operator ρ = |ψ〉〈ψ | for
the superposition state (1.4) with the one of the mixed state in Eq. (1.2). The state
(1.2) has only diagonal elements (using the basis {|ψk〉}) given by the probabilities
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Fig. 1.1 Interference pattern for stochastically arriving single PcH2 molecules in a modern double-
slit experiment. The images correspond to selected frames from a false-color movie recorded with
an EMCCD camera. Obtained from Ref. [15]

pk , while the state (1.4) gets diagonal elements ρkk = 〈ψk |ρ|ψk〉 = |ck |2, but also
off-diagonal ones ρkl = 〈ψk |ρ|ψl〉 = c∗

k cl for k �= l. Off-diagonal terms are called
coherences between the states {|ψk〉}, and are responsible of the interference effects
due to the wave-particle complementarity of quantized matter, just as in Young’s
famous double-slit experiment [14]. Modern which-path experiments within differ-
ent setups have considerably evolved from the 90s [2], being nowadays able to test
some of the most famous thought-experiments formulated from the very beginning
of the quantum theory for larger and larger systems (electrons, atoms, molecules),
testing in the laboratory the connections between complementarity and decoherence
(see Fig. 1.1).

1.1.2 Liouville–von Neumann Equation

The time evolution of a (non-relativistic) isolated quantum system in terms of its
density operator, ρ, is given by the Liouville–von Neumann equation

i�
d

dt
ρ(t) = [Ĥ(t), ρ(t)], (1.5)

being Ĥ(t) the Hamilton operator representing the energy of the system. Notice
that we have included the possibility of time-dependent Hamilton operators, allow-
ing for the description of external driving. The Liouville–von Neumann equation
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describes the reversible evolution of the quantum system and when ρ is a pure
state it is equivalent to the usual Scrödinger equation, first introduced in 1926
[16]. The formal solution of Eq. (1.5), given the initial state ρ(t0) at time t0, reads
ρ(t) = Û (t, t0)ρ(t0)Û (t, t0)†, with

Û (t, t0) ≡ T̂+ exp

(

− i

�

∫ t

t0

ds H(s)

)

, (1.6)

the unitary evolution operator, ÛÛ † = Û †Û = 1, fulfilling

i�
d

dt
Û (t, t0) = Ĥ(t)Û (t, t0), (1.7)

and with initial condition Û (t0, t0) = 1. It fulfills the chain rule Û (t, t0) = Û (t, t1)
Û (t1, t0) for t � t1 � t0. Due to the fact that the Hamilton operator may not commute
with itself at different times, we introduced in the integral above the time-ordering
operator, T̂+, implying that in general the unitary evolution operator can be only
calculated from an infinite series in the form

Û (t, t0) = 1 +
∞∑

n=1

(−i

�

)n ∫ t

t0

dsn Ĥ(sn)

∫ sn

t0

dsn−1 Ĥ(sn−1) . . .

. . .

∫ s3

t0

ds2 Ĥ(s2)
∫ s2

t0

ds1 Ĥ(s1), (1.8)

where time ordering implies t > sn > sn−1 > · · · > s2 > s1, an expression known
as the Dyson series. When the Hamilton operator in Eq. (1.6) is independent of time
the unitary evolution operator reduces to

Û (t, t0) = Û (t − t0) = exp

(

− i

�
Ĥ(t − t0)

)

, (1.9)

and then Û †(t − t0) = Û (t0 − t), corresponding to the evolution operator when time
is reversed.

1.1.3 Heisenberg and Interaction Pictures

The above Eq. (1.5) gives us the evolution of the density operator ρ(t) in the
Schrödinger picture. An equivalent formulation, the so-called Heisenberg picture, is
obtained by assuming the state of the system fixed and letting the observables evolve
in time. Then the equation of motion for an arbitrary observable Ô(t), can be written
as
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d

dt
Ô(t) = i

�
[Ĥ(t), Ô(t)] +

(
∂Ô

∂t

)

H

, (1.10)

whose solution is given by Ô(t) = Û †(t, t0) Ô Û (t, t0), Ô being the initial

(Schrödinger picture) observable and Û given byEq. (1.6).Herewe denote
(

∂Ô
∂t

)

H
=

Û †(t, t0)
(

∂Ô
∂t

)
Û (t, t0). It’s straightforward to check that both pictures produce iden-

tical expectation values for all observables.
A third frame, the interaction picture, can be also introduced by splitting the

Hamiltonian into time-independent and time-dependent parts, which we denote as
Ĥ = Ĥ0 + V̂ (t). Typically Ĥ0 is easy to deal with, and represents the Hamilton
operator of two or more non-interacting systems, while V̂ (t) usually represents a
time-dependent interaction term. In this case we split the evolution operator into a
product of two unitary operators

Û (t, t0) = Û0(t − t0) × ÛI (t, t0), (1.11)

where Û0(t − t0) ≡ exp (− i
�

Ĥ0(t − t0)) is generated by the time-independent part

of the Hamiltonian, and ÛI (t, t0) is given by Eq. (1.6) replacing Ĥ(t) by Û †
0 V̂ (t)Û0.

Hence the operator Û0 governs the evolution of observables, while the density opera-
tor evolves accordingly with ÛI . By redefining the density operator and observables,
we have the following time-evolution equations:

ρI (t) = ÛI ρ(0) Û †
I , with ρI (t) ≡ Û †

0 ρ(t) Û0,

ÔI (t) = Û †
0 Ô Û0, with ÔI (t) ≡ ÛI Ô(t) Û †

I , (1.12)

where we call ρI (t) and ÔI (t) the interaction frame density operator and observables
respectively. The interaction picture has proven very useful in deriving and solving
the dynamics for open quantum systems, as we will see in the next sections. It allows
to split the effects of the interaction between a system and its surroundings from the
(isolated) free-evolution, simplifying considerably the mathematical treatment.

1.1.4 The Microreversibility Principle

The microreversibility principle is a crucial symmetry of time evolution in isolated
quantum systems. It relates the unitary evolution operator of a non-autonomous
quantum system, as introduced in Eq. (1.6), with the one describing the time-reversed
evolution [17, 18]. Let us assume a quantum system evolving from time t = 0 to time
τ under the action of someHamiltonian Ĥ (λ(t)), whose time-dependence arises from
external manipulation through a control parameter λ(t). Consider that this parameter
vary in time according to some prescribed protocol 
 = {λ(t) for 0 � t � τ }. The
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unitary time evolution operator for the system, Û (t, 0)[
], obeys

i�
d

dt
Û (t, 0)[
] = Ĥ(λ(t))Û (t, 0)[
], (1.13)

in the interval t ∈ [0, τ ] where the protocol 
 is defined.
Now we compare this evolution with the one generated by the time-reversed

protocol 
̃ = {λ̃(t) for 0 � t � τ }, where λ̃(t) = λ(τ − t), i.e. the control parameter
takes on exactly the inverse sequence of values. The corresponding time-evolution
operator Û (t, 0)[
̃] generated by the Hamiltonian Ĥ(λ̃(t)) now reads:

i�
d

dt
Û (t, 0)[
̃] = Ĥ(λ̃(t))Û (t, 0)[
̃] (1.14)

where again t ∈ [0, τ ]. Themicroreversibility principle ensures the following relation
between forward and backward evolutions [18]:

Û †(τ, t)[
] = �̂† Û (τ − t, 0)[
̃] �̂, (1.15)

where �̂ is the anti-unitary time-reversal operator in quantum mechanics, ��† =
�†� = 1 and �̂(a|ψ〉 + b|φ〉) = a∗�̂|ψ〉 + b∗�̂|φ〉.3 It is responsible of sign inver-
sion of odd variables under time-reversal such as linear and angular momenta, spin
or magnetic field, while leaving even variables, such as position, unaltered [19]. The
microreversibility principle in Eq. (1.15) is always fulfilled provided the Hamilton
operator is invariant under time-reversal, �̂† Ĥ(λ(t))�̂ = Ĥ(λ(t)) (for a proof see
[18]). Otherwise the Hamiltonian governing the time-reversed evolution can be set
as

ĤR(λ̃(t)) ≡ �̂Ĥ(λ̃(t))�̂†, (1.16)

in Eq. (1.14) [instead of Ĥ(λ̃(t))]. The latter implies the change in sign of the odd
variables appearing in Ĥ , such as external magnetic fields [17]. We provide a proof
of this claim in Appendix.

The microreversibility principle relates the evolution from some arbitrary ini-
tial state ρ(0) to ρ(τ) = Û (t, 0)[
] ρ(0) Û †(t, 0)[
], to the evolution from the
time-reversed final state ρ̃(0) = �̂ ρ(τ) �̂† to the time reversed initial state ρ̃(τ ) =
�̂ ρ(0) �̂† as:

ρ̃(τ ) = Û (τ, 0)[
̃] ρ̃(0) Û †(τ, 0)[
̃], (1.17)

as is illustrated in Fig. 1.2. It is worth noticing that the notion of time-reversal here
corresponds to an operational point of view, as it is defined via the time-reversed
protocol for the external drive controlling the parameter λ(t). We finally stress that

3This antilinearity property is what differentiates anti-unitary from unitary operators. Unitary
operators fulfills linearity, while anti-unitary ones fulfills anti-linearity, and for both of them
�̂�̂† = �̂†�̂ = 1.


