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Preface

We are living in a period of history that will certainly be remembered as one
where information began to be instantaneously obtainable, services were tai-
lored to individual criteria, and people did what made them feel good (if it did
not put their lives at risk). Every year, machines are able to do more and more
things that improve our quality of life. More data is available than ever before,
and will become even more so. This is a time when we can extract more infor-
mation from data than ever before, and benefit more from it.

In different areas of business and in different institutions, new ways to collect
data are continuously being created. Old documents are being digitized, new
sensors count the number of cars passing along motorways and extract use-
ful information from them, our smartphones are informing us where we are at
each moment and what new opportunities are available, and our favorite social
networks register to whom we are related or what things we like.

Whatever area we work in, new data is available: data on how students evalu-
ate professors, data on the evolution of diseases and the best treatment options
per patient, data on soil, humidity levels and the weather, enabling us to produce
more food with better quality, data on the macro economy, our investments
and stock market indicators over time, enabling fairer distribution of wealth,
data on things we purchase, allowing us to purchase more effectively and at
lower cost.

Students in many different domains feel the need to take advantage of the
data they have. New courses on data analytics have been proposed in many
different programs, from biology to information science, from engineering to
economics, from social sciences to agronomy, all over the world.

The first books on data analytics that appeared some years ago were written
by data scientists for other data scientists or for data science students. The
majority of the people interested in these subjects were computing and
statistics students. The books on data analytics were written mainly for them.
Nowadays, more and more people are interested in learning data analytics.
Students of economics, management, biology, medicine, sociology, engineer-
ing, and some other subjects are willing to learn about data analytics. This book



xiv Preface

intends not only to provide a new, more friendly textbook for computing and
statistics students, but also to open data analytics to those students who may
know nothing about computing or statistics, but want to learn these subjects
in a simple way. Those who have already studied subjects such as statistics
will recognize some of the content described in this book, such as descriptive
statistics. Students from computing will be familiar with a pseudocode.

After reading this book, it is not expected that you will feel like a data scientist
with ability to create new methods, but it is expected that you might feel like a
data analytics practitioner, able to drive a data analytics project, using the right
methods to solve real problems.

João Mendes Moreira
University of Porto, Porto, Portugal

André C. P. L. F. de Carvalho
University of São Paulo, São Carlos, Brazil

Tomáš Horváth
Eötvös Loránd University in Budapest

Pavol Jozef Šafárik University in Košice
October, 2017
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Presentational Conventions

Definition The definitions are presented in the format shown here.

Special sections and formats Whenever a method is described, three different
sections are presented:

• Assessing and evaluating results: how can we assess the results of a method?
How to interpret them? This section is all about answering these questions.

• Setting the hyper-parameters: each method has its own hyper-parameters
that must be set. This section explains how to set them.

• Advantages and disadvantages: a table summarizes the positive and negative
characteristics of a given method.
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1

What Can We Do With Data?

Until recently, researchers working with data analysis were struggling to obtain
data for their experiments. Recent advances in the technology of data process-
ing, data storage and data transmission, associated with advanced and intelli-
gent computer software, reducing costs and increasing capacity, have changed
this scenario. It is the time of the Internet of Things, where the aim is to have
everything or almost everything connected. Data previously produced on paper
are now on-line. Each day, a larger quantity of data is generated and consumed.
Whenever you place a comment in your social network, upload a photograph,
some music or a video, navigate through the Internet, or add a comment to
an e-commerce web site, you are contributing to the data increase. Addition-
ally, machines, financial transactions and sensors such as security cameras, are
increasingly gathering data from very diverse and widespread sources.

In 2012, it was estimated that, each year, the amount of data available in
the world doubles [1]. Another estimate, from 2014, predicted that by 2020
all information will be digitized, eliminated or reinvented in 80% of processes
and products of the previous decade [2]. In a third report, from 2015, it was
predicted that mobile data traffic will be almost 10 times larger in 2020 [3]. The
result of all these rapid increases of data is named by some the “data explosion”.

Despite the impression that this can give – that we are drowning in
data – there are several benefits from having access to all these data. These
data provide a rich source of information that can be transformed into new,
useful, valid and human-understandable knowledge. Thus, there is a growing
interest in exploring these data to extract this knowledge, using it to support
decision making in a wide variety of fields: agriculture, commerce, education,
environment, finance, government, industry, medicine, transport and social
care. Several companies around the world are realizing the gold mine they
have and the potential of these data to support their work, reduce waste and
dangerous and tedious work activities, and increase the value of their products
and their profits.

A General Introduction to Data Analytics, First Edition. João Mendes Moreira,
André C. P. L. F. de Carvalho, and Tomáš Horváth.
© 2019 John Wiley & Sons, Inc. Published 2019 by John Wiley & Sons, Inc.
Companion website: www.wiley.com/go/moreira/dataanalytics
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The analysis of these data to extract such knowledge is the subject of a vibrant
area known as data analytics, or simply “analytics”. You can find several defini-
tions of analytics in the literature. The definition adopted here is:

Analytics The science that analyze crude data to extract useful knowledge
(patterns) from them.

This process can also include data collection, organization, pre-processing,
transformation, modeling and interpretation.

Analytics as a knowledge area involves input from many different areas.
The idea of generalizing knowledge from a data sample comes from a branch
of statistics known as inductive learning, an area of research with a long
history. With the advances of personal computers, the use of computational
resources to solve problems of inductive learning become more and more
popular. Computational capacity has been used to develop new methods. At
the same time, new problems have appeared requiring a good knowledge of
computer sciences. For instance, the ability to perform a given task with more
computational efficiency has become a subject of study for people working in
computational statistics.

In parallel, several researchers have dreamed of being able to reproduce
human behavior using computers. These were people from the area of arti-
ficial intelligence. They also used statistics for their research but the idea of
reproducing human and biological behavior in computers was an important
source of motivation. For instance, reproducing how the human brain works
with artificial neural networks has been studied since the 1940s; reproducing
how ants work with ant colony optimization algorithm since the 1990s. The
term machine learning (ML) appeared in this context as the “field of study that
gives computers the ability to learn without being explicitly programmed,”
according to Arthur Samuel in 1959 [4].

In the 1990s, a new term appeared with a different slight meaning: data min-
ing (DM). The 1990s was the decade of the appearance of business intelligence
tools as consequence of the data facilities having larger and cheaper capac-
ity. Companies start to collect more and more data, aiming to either solve or
improve business operations, for example by detecting frauds with credit cards,
by advising the public of road network constraints in cities, or by improving
relations with clients using more efficient techniques of relational marketing.
The question was of being able to mine the data in order to extract the knowl-
edge necessary for a given task. This is the goal of data mining.

1.1 Big Data and Data Science

In the first years of the 20th century, the term big data has appeared. Big data, a
technology for data processing, was initially defined by the “three Vs”, although
some more Vs have been proposed since. The first three Vs allow us to define
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a taxonomy of big data. They are: volume, variety and velocity. Volume is con-
cerned with how to store big data: data repositories for large amounts of data.
Variety is concerned with how to put together data from different sources.
Velocity concerns the ability to deal with data arriving very fast, in streams
known as data streams. Analytics is also about discovering knowledge from
data streams, going beyond the velocity component of big data.

Another term that has appeared and is sometimes used as a synonym for
big data is data science. According to Provost and Fawcett [5], big data are data
sets that are too large to be managed by conventional data-processing technolo-
gies, requiring the development of new techniques and tools for data storage,
processing and transmission. These tools include, for example, MapReduce,
Hadoop, Spark and Storm. But data volume is not the only characterization of
big data. The word “big” can refer to the number of data sources, to the impor-
tance of the data, to the need for new processing techniques, to how fast data
arrive, to the combination of different sets of data so they can be analyzed in real
time, and its ubiquity, since any company, nonprofit organization or individual
has access to data now.

Thus big data is more concerned with technology. It provides a computing
environment, not only for analytics, but also for other data processing tasks.
These tasks include finance transaction processing, web data processing and
georeferenced data processing.

Data science is concerned with the creation of models able to extract patterns
from complex data and the use of these models in real-life problems. Data sci-
ence extracts meaningful and useful knowledge from data, with the support of
suitable technologies. It has a close relationship to analytics and data mining.
Data science goes beyond data mining by providing a knowledge extraction
framework, including statistics and visualization.

Therefore, while big data gives support to data collection and management,
data science applies techniques to these data to discover new and useful
knowledge: big data collects and data science discovers. Other terms such as
knowledge discovery or extraction, pattern recognition, data analysis, data
engineering, and several others are also used. The definition we use of data
analytics covers all these areas that are used to extract knowledge from data.

1.2 Big Data Architectures

As data increase in size, velocity and variety, new computer technologies
become necessary. These new technologies, which include hardware and
software, must be easily expanded as more data are processed. This property
is known as scalability. One way to obtain scalability is by distributing the
data processing tasks into several computers, which can be combined into
clusters of computers. The reader should not confuse clusters of computers
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with clusters produced by clustering techniques, which are techniques from
analytics in which a data set is partitioned to find groups within it.

Even if processing power is expanded by combining several computers in
a cluster, creating a distributed system, conventional software for distributed
systems usually cannot cope with big data. One of the limitations is the
efficient distribution of data among the different processing and storage units.
To deal with these requirements, new software tools and techniques have been
developed.

One of the first techniques developed for big data processing using clusters
was MapReduce. MapReduce is a programming model that has two steps: map
and reduce. The most famous implementation of MapReduce is called Hadoop.

MapReduce divides the data set into parts – chunks – and stores in the mem-
ory of each cluster computer the chunk of the data set needed by this computer
to accomplish its processing task. As an example, suppose that you need to
calculate the average salary of 1 billion people and you have a cluster with
1000 computers, each with a processing unit and a storage memory. The people
can be divided into 1000 chunks – subsets – with data from 1 million people
each. Each chunk can be processed independently by one of the computers.
The results produced by each these computers (the average salary of 1 million
people) can be averaged, returning the final salary average.

To efficiently solve a big data problem, a distributed system must attend the
following requirements:

• Make sure that no chunk of data is lost and the whole task is concluded. If
one or more computers has a failure, their tasks, and the corresponding data
chunk, must be assumed by another computer in the cluster.

• Repeat the same task, and corresponding data chunk, in more than one clus-
ter computer; this is called redundancy. Thus, if one or more computer fails,
the redundant computer carries on with the task.

• Computers that have had faults can return to the cluster again when they are
fixed.

• Computers can be easily removed from the cluster or extra ones included in
it as the processing demand changes.

A solution incorporating these requirements must hide from the data analyst
the details of how the software works, such as how the data chunks and tasks
are divided among the cluster computers.

1.3 Small Data

In the opposite direction from big data technologies and methods, there is
a movement towards more personal, subjective analysis of chunks of data,
termed “small data”. Small data is a data set whose volume and format allows
its processing and analysis by a person or a small organization. Thus, instead of
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collecting data from several sources, with different formats, and generated at
increasing velocities, creating large data repositories and processing facilities,
small data favors the partition of a problem into small packages, which
can be analyzed by different people or small groups in a distributed and
integrated way.

People are continuously producing small data as they perform their daily
activities, be it navigating the web, buying a product in a shop, undergoing
medical examinations and using apps in their mobiles. When these data are
collected to be stored and processed in large data servers they become big data.
To be characterized as small data, a data set must have a size that allows its full
understanding by an user.

The type of knowledge sought in big and small data is also different, with the
first looking for correlations and the second for causality relations. While big
data provide tools that allow companies to understand their customers, small
data tools try to help customers to understand themselves. Thus, big data is
concerned with customers, products and services, and small data is concerned
with the individuals that produced the data.

1.4 What is Data?

But what is data about? Data, in the information age, are a large set of bits
encoding numbers, texts, images, sounds, videos, and so on. Unless we add
information to data, they are meaningless. When we add information, giving
a meaning to them, these data become knowledge. But before data become
knowledge, typically, they pass through several steps where they are still
referred to as data, despite being a bit more organized; that is, they have some
information associated with them.

Let us see the example of data collected from a private list of acquaintances
or contacts.

Information as presented in Table 1.1, usually referred to as tabular data, is
characterized by the way data are organized. In tabular data, data are organized
in rows and columns, where each column represents a characteristic of the data
and each row represents an occurrence of the data. A column is referred to as
an attribute or, with the same meaning, a feature, while a row is referred to as
an instance, or with the same meaning, an object.

Instance or Object Examples of the concept we want to characterize.

Example 1.1 In the example in Table 1.1, we intend to characterize people in
our private contact list. Each member is, in this case, an instance or object. It
corresponds to a row of the table.

Attribute or Feature Attributes, also called features, are characteristics of
the instances.
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Table 1.1 Data set of our private contact list.

Contact Age Educational level Company

Andrew 55 1.0 Good
Bernhard 43 2.0 Good
Carolina 37 5.0 Bad
Dennis 82 3.0 Good
Eve 23 3.2 Bad
Fred 46 5.0 Good
Gwyneth 38 4.2 Bad
Hayden 50 4.0 Bad
Irene 29 4.5 Bad
James 42 4.1 Good
Kevin 35 4.5 Bad
Lea 38 2.5 Good
Marcus 31 4.8 Bad
Nigel 71 2.3 Good

Example 1.2 In Table 1.1, contact, age, education level and company are four
different attributes.

The majority of the chapters in this book expect the data to be in tabular for-
mat; that is, already organized by rows and columns, each row representing
an instance and each column representing an attribute. However, a table can
be organized differently, having the instances per column and the attributes
per row.

There are, however, data that are not possible to represent in a single table.

Example 1.3 As an example, if some of the contacts are relatives of other
contacts, a second table, as shown in Table 1.2, representing the family rela-
tionships, would be necessary. You should note that each person referred to in
Table 1.2 also exists in Table 1.1, i.e., there are relations between attributes of
different tables.

Data sets represented by several tables, making clear the relations between
these tables, are called relational data sets. This information is easily handled
using relational databases. In this book, only simple forms of relational data will
be used. This is discussed in each chapter whenever necessary.


