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PREFACE

FOR THE PAST 10 YEARS, we have seen significant progress in the devel-
opment of wind power technology and applications. Wind power generation has
become one of the most important renewable energy generations. Instead of the fixed-
speed wind power systems, variable-speed wind turbine systems prevail due to their
significant performance enhancements such as energy-harvesting ability, friendliness
to the grid, reliability, etc. Two most popular variable-speed wind turbine configura-
tions are doubly fed induction generator (DFIG) and synchronous generator (SG).
Nowadays, DFIG wind system is dominating the market. The knowledge of wind
generation is related to electrical engineering, such as electric machine, power elec-
tronics, control theory, electric power systems, etc. Now there are thousands of pub-
lished papers about wind power systems. This book tries to give readers an overview
of the progress of doubly fed induction generation systems. It is more focused on
modeling and control of DFIG wind power conversion system.

This book primarily emphasizes on the advanced control of the DFIG wind
power system, which is realized by the power electronics converters and aims to
improve grid integration performance. First, this book will give the readers an intro-
duction to the wind power system. It includes an overview of wind power systems,
grid codes for wind power systems, modeling of key components in DFIG wind
power systems such as electric machines, converters and inverters, and fundamen-
tal controls. It will introduce the control schemes of the DFIG, which include the
most widely used control strategies nowadays. Second, the book will introduce the
advanced control of DFIG wind power systems. It will cover advanced controls of
DFIG under the non-ideal grid with the grid voltage harmonic distortion and the grid
voltage unbalanced. The dynamic model of the DFIG and converter under grid volt-
age harmonic distortion and the grid voltage unbalanced will be introduced. Then the
stator harmonic current control is used in order to suppress the effect of the stator
lower-order harmonics. Afterward, DC fluctuations of the back-to-back converter for
DFIG is investigated under the unbalanced grid. To accommodate the wind turbine
to the grid fault, the grid low-voltage fault ride-through (LVRT) for the DFIG wind
turbine system is studied. Furthermore, the control strategy for DFIG under recur-
ring grid faults is also investigated. In addition, to improve the reliability of the wind
turbine, the smart thermal de-rating control of DFIG system is explained. Finally, a
DFIG test bench is introduced. It is helpful for the readers to understand how the real
system works and can be a guide to build a small-scale test bench in a laboratory.

This book may be helpful for readers who hope to have knowledge of mod-
eling and controlling DFIG wind power systems and a deep understanding of the
interaction of the wind turbine and the grid. It is suitable for both undergraduate and

xiii
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graduate levels and may serve as a useful reference for academic researchers, engi-
neers, managers, and other professionals in the industry. Most of the chapters include
descriptions of fundamental and advanced concepts, supported by many illustrations.

The authors would like to acknowledge the contribution and kind support
of colleagues and former graduate students of Zhejiang University and Aalborg
University—Dr. Jun Xu, Dr. Changjin Liu, Dr. Min Chen, Dr. Ke Ma, Mr. Ye Zhu,
and others. We acknowledge the tireless efforts and assistance of Wiley Press editorial
staff.

DEHONG XU
FREDE BLAABJERG
WENJIE CHEN
NAN ZHU
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CHAPTER 1

INTRODUCTION

In this chapter, an overview of wind power generation and the evolution of wind
power systems are briefly introduced, and the challenges and trends in wind power
generation are discussed.

1.1 GLOBAL WIND POWER DEVELOPMENT

1.1.1 Global Environment Challenge and Energy Crisis

Nowadays, the human society consumes a huge amount of electricity every year.
It is reported by the U.S. Energy Information Administration (EIA) that the global
net electricity consumption has grown from 10,395 TWh in 1990 to 20,567 TWh in
2015 [1]. Since most of the electricity is generated from fossil fuels, the increase of
the electricity net consumption will lead to large greenhouse gas emissions, and this
may cause global warming. The Earth’s average surface temperature has risen about
0.74°C for the period 1906-2005, which may cause the sea level rise, widespread
melting of snow and ice, or some extreme weather challenges. Furthermore, burning
of fossil fuels will produce dust and other chemical materials harmful to humans.

On the other hand, the fossil fuel reserves are limited and unsustainable. Oil
will be exhausted in a few decades, followed by natural gas, and coal will also be
used up in 200-300 years. The energy crisis brought by the exhaustion of fossil fuels
is a long-range challenge for human beings. Many efforts have been made worldwide
to try to find an alternative energy.

1.1.2 Renewable Energy Development

Renewable energy is defined as the energy that comes from resources that are natu-
rally replenished on a human timescale such as sunlight, wind, rain, tides, waves and
geothermal heat. Typically, the renewable energy includes wind power, photovoltaic
(PV) power, hydropower, biomass power, and ocean power. As renewable energy is
reproducible and has a low footprint of CO,, it is regarded as a favorable solution
to both the global environment challenge and energy crisis. Rapid deployment of
renewable energy has been reported in recent years. Global renewable energy policy

Advanced Control of Doubly Fed Induction Generator for Wind Power Systems, First Edition.
Dehong Xu, Frede Blaabjerg, Wenjie Chen, and Nan Zhu.
© 2018 by The Institute of Electrical and Electronics Engineers, Inc. Published 2018 by John Wiley & Sons, Inc.
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Figure 1.1 Worldwide capacity share of different non-hydro renewable powers by the end
of 2016 [2].

multistakeholder network REN21 estimated that by the end of 2016, 30% power gen-
eration capacity will come from renewable energy and renewable energy will account
for about 24.5% of global electricity generation [2]. Nowadays, the biggest renew-
able energy generation is from hydropower. However, since the location requirement
of the hydropower is limited to lakes or rivers, the worldwide growth of hydropower
has become slower in the recent years, which indicates that hydropower is very close
to its capacity limit.

The non-hydropower renewable generation, including wind, PV, and biomass,
has been growing very fast in the last 10 years. The non-hydropower renewable gen-
eration capacity reached 921 GW by the end of 2016, compared to 85 GW in 2004
[2]. The worldwide capacity share of different non-hydro renewable powers by the
end of 2016 can be found in Figure 1.1. It is found that wind power has the largest
capacity share among the non-hydropower renewable generations. Wind power has
reached 56.8% of the non-hydro renewable power capacity.

1.1.3 Wind Energy Development

The wind power generation is regarded as the most widely used non-hydro renew-
able energy generation. It has a high reserve and is renewable and clean. Besides it
produces almost no greenhouse gas emissions. Now at least 83 countries around the
world are using wind power to supply their electricity grids [3]. The capacity of wind
power installation has grown rapidly for the past 15 years. The statistics show the
worldwide total wind power capacity has grown from 24 GW in 2001, to about 487
GW in 2016 [3], as shown in Figure 1.2. China leads the accumulated wind power
installation, followed by the United States, Germany, Spain, Indian, etc., as shown in
Figure 1.3.



1.2 EVOLUTION OF WIND POWER SYSTEM 5

5,00,000

[4]
o
[=
o
o

4,00,000
3,50,000
3,00,000

2,50,000

2,00,000

1,50,000

1,00,000 I I
50,000 I I

2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016
Years

(MW)
=Y

Worldwide total wind power capacity

Figure 1.2 Worldwide total wind power capacity from 2001 to 2016 [3].

At the same time, the wind power share in the mix of the power supply also
increased in the world, especially in some European countries. In 2014, Denmark set
a new world record by reaching a wind power share of 39% in the domestic power
supply [4]. Spain has wind power share of more than 15% [5]. Worldwide, the wind
energy production has reached around 4% of total worldwide electricity usage in
2014 [6].

1.2 EVOLUTION OF WIND POWER SYSTEM

With the increasing penetration of wind power into the grid, the technology
of the wind power generation has undergone a rapid development. One of the
typical features is the changing of the wind power system structures. Modern
wind power systems are more efficient, more reliable and more intelligent than
before.

1,80,000
1,60,000
1,40,000
1,20,000
1,00,000

80,000
60,000
40,000 I
20,000

China Germany India Spain France Canada Brazil Italy Sweden Turkey

Total wind power capacity (MW)

Figure 1.3  Accumulated wind power installation versus countries, end of 2015 [3].
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Figure 1.4  Structure of a wind turbine system.

1.2.1 Basic Structure of a Wind Turbine

The mostly used wind turbine is the horizontal wind turbine as shown in Figure 1.4.
The blade, the shaft and the nacelle of the wind turbine are installed on a high tower.
The blade rotates under wind flow and the wind energy is captured and converted into
the mechanical energy in the shaft. The rotating angular speed of the shaft is increased
using the gearbox so that it is compatible with the generator. The mechanical energy
originated from the wind is converted into electric energy by the generator. Then the
electricity is transmitted to the power electronic converter on the ground via the power
cable, which is connected to the transformer in the grid. The nacelle provides space
for components such as the shaft, the gearbox, and the brake on the tower, and can
also target the turbine toward the wind flow direction by the action of the yaw.

1.2.2 Power Flow in the Wind Turbine System

The function of the wind power generation system is to harvest the kinetic energy
of the wind flow, convert it into the electrical energy and finally feed into the grid.
The configuration of the wind turbine system (WTS), which is composed of the wind
turbine, the gearbox, the generator, the power converter, as well as the transformer,
can be simplified as shown in Figure 1.5.
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Figure 1.5 Basic configuration of wind power generation system.

Wind Turbine: The kinetic energy in the wind is collected by the wind tur-
bine, and it is converted into mechanical energy on the shaft of the wind turbine. The
early wind turbines normally rotate at an almost fixed speed, while the modern wind
turbines can adjust the rotation speed with the variations in wind speed in order to
increase the wind energy harvesting efficiency [34].

Gearbox: The gearbox is used to adjust the rotating speed of the shaft and
make it compatible with the generator. In some cases, for example, in directly driven
wind power system with multiple-pole synchronous generators, the gearbox may not
be used.

Generator: The generator converts the mechanical energy on the shaft into
electrical energy. In different types of WTS, the generator can be caged generator
(CG), doubly fed induction generator (DFIG), or permanent magnet synchronous
generator (PMSG).

Power Converter: The power converter works as an interface between the gen-
erator and the power grid. It converts the original electrical energy from the generator,
which may be unstable with respect to amplitude or frequency, into the relatively sta-
ble electrical energy, which is more accepted by the power grid. On the other hand,
the power converter also controls the generator to cooperate with the wind turbine to
achieve better energy harvesting efficiency.

Transformer: The transformer is used to step up the output of the power con-
verter (normally around 690 V) to a higher voltage, and transfers the wind power to
the distribution or transmission power lines.

1.2.3 Fixed-Speed Wind Turbine System

The fixed-speed WTSs emerged in the 1970s and were widely used during the 1980s
and 1990s. The shaft of the wind turbine is operated at a fixed angular speed, indepen-
dent of the wind speed. The scheme of the fixed-speed WTS is shown in Figure 1.6.
The generator operates with a fixed rotor speed corresponding to the grid frequency.
It is directly connected to the grid by a transformer.

The advantage of the fixed-speed WTS is its simplicity of structure. It has a
drawback that it cannot realize maximum wind energy tracking according to the vari-
ations in the wind speed. Reactive power consumed by the generator needs to be
compensated by the capacitor bank. Further, it has no grid fault support capability,
which is now needed by the grid operator. It also has higher mechanical stress for the
wind turbine.
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Figure 1.6 Scheme of a fixed-speed wind turbine system.

1.2.4 Variable-Speed Wind Turbine System

The variable-speed WTS is widely used nowadays. Different from the fixed-speed
WTS, the variable-speed WTS is able to adjust the rotor speed when the wind speed
changes to realize the maximum wind energy harvesting.

The scheme of a variable-speed wind turbine is shown in Figure 1.7. The wind
power is captured by a pitch-controlled wind turbine and sent to the generator. The
generator is connected to the grid by a power electronic converter. The variable-speed
operation of the WTS is achieved by the power electronic converter.

The power electronic converter controls the rotor speed of the generator so that
the shaft speed of the blade adjusts when the wind speed changes to realize the highest
wind energy harvesting.

When the wind turbine reaches the speed limit or the electric limit, either
the mechanical angular speed or electric power can be limited by controlling the
power electronic converter. Besides, it can also realize soft start for the wind tur-
bine so that there is less power surge to the grid. When the grid fault happens, the
variable-speed WTS can help the grid recover from the fault by feeding reactive power
to the grid. The power electronic converters may provide ancillary services to the
grid.

Power electronics has been bringing in significant performance improvements
for the WTSs. It not only increases the energy yield and reduces the mechanical
stress, but also enables the WTS to act like an ideal power source friendlier to the
utility [38].

Gear box Generator Power electronic Transformer Grid
converter

3 ~

Figure 1.7 Scheme of a variable-speed wind turbine system.
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Figure 1.8 Fixed-speed wind turbine with a soft starter.

1.3 POWER ELECTRONICS IN WIND
TURBINE SYSTEMS

1.3.1 Power Electronics in Fixed-Speed Wind Turbine System

For the fixed-speed WTS, usually induction machines are used as the generator. Con-
necting a large induction machine to the power system will cause a large power surge
to the utility with a very high inrush current, which results in disturbances to the grid.
To limit the starting current of the induction machine, a thyristor soft starter is used
in the fixed-speed WTS, as shown in Figure 1.8. The starting current is reduced by
gradually increasing the voltage applied to the generator to the grid voltage. The soft
starter, based on thyristor technology, typically limits the RMS value of the inrush
current to less than two times the rated current of the generator. Once the starting
process is over, all thyristors are kept in the on-state. Since the thyristor has a voltage
drop when it is conducting and causes power loss, a mechanical switch is used to
bypass the thyristor soft starter when the WTS finishes the starting process. Besides
reducing the impact on the grid, the soft starter also effectively reduces the torque
peak associated with the inrush current during the starting, which is helpful to relieve
the mechanical stress on the gearbox.

1.3.2 Power Electronics in Variable-Speed Wind Turbine System

In variable-speed WTSs, the power electronic converter plays an important role as
the interface between the WTS and the grid. Two most popular variable-speed wind
turbine configurations are DFIG and synchronous generator (SG). The DFIG wind
system equipped with partial-scale power converter is dominating the market while
the WTS with SG with full-scale power converter has grown in recent years.

1.3.2.1 Doubly Fed Induction Generator

WTSs with DFIG has been used extensively since 2000 and is the most adopted solu-
tion nowadays. As shown in Figure 1.9, a back-to-back converter is used in the DFIG
system. The stator windings of the DFIG are directly connected to the power grid,
while the rotor windings are connected to the back-to-back converter [30]. In this
configuration, both the frequency and the current amplitude in the rotor windings
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Figure 1.9 Variable-speed wind turbine with a partial-scale power converter and a doubly
fed induction generator.

can be freely regulated so that the rotor speed can be changed in a wide range and
wind energy harvesting capability is enhanced. Besides, it can realize soft start for
the wind turbine and provide the grid fault ride-through ability. It can also reduce the
mechanical stress to the wind turbine.

In addition, the DFIG has a special feature that it only needs a back-to-back con-
verter with about 30% capacity of the wind turbine, which is an economical solution
at an earlier stage of wind power development when the cost of the power converter
was more critical [36-37].

The two-level pulse-width-modulation voltage-source-converter (2L-PWM-
VSC) is the mostly used converter topology so far for the DFIG-based wind tur-
bine concept as the power rating requirement for the converter is limited [41]. Nor-
mally, two 2L-PWM-VSCs are configured in a back-to-back structure in the WTS,
as shown in Figure 1.10, which is called 2L-BTB for convenience. Advantages of the
2L-BTB solution include the full power controllability (four-quadrant operation) with
a relatively simple structure and fewer components, which contribute to well-proven
robust/reliable performances as well as the advantage of lower cost [29].

1.3.2.2 Asynchronous/Synchronous Generator with Full-Scale

Power Converter

The second important configuration that has become popular for the newly devel-
oped and installed wind turbines is shown in Figure 1.11. It introduces a full-scale
power converter to interconnect the power grid and stator windings of the generator.
The reliability enhancement due to the elimination of slip rings and simpler or even

Filter Transformer  Grid

-------------- ’ 2LvsC 2L-VSC  ‘mmmmm-omeeet

To

Generator

\
T
| |
T
| |
L
] 1
| |
! 1
! 1
! 1
v

Figure 1.10 Two-level back-to-back (2L-BTB) voltage source converter for a wind turbine.
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Figure 1.11  Variable-speed wind turbine with a full-scale power converter and synchronous
generator.

eliminated gearbox, full power and speed controllability, and better grid support capa-
bility are the primary advantages compared to the DFIG-based concept. However,
there are some drawbacks such as the high cost of PMSG, the need for a full-power
BTB converter as well as the higher power losses in the converter. Instead of PMSG,
wound rotor synchronous generator, etc., can be used as the generator.

1.4 CHALLENGES AND TRENDS IN FUTURE WIND
POWER TECHNOLOGY

In this section, several emerging technology challenges for the future WTSs are
addressed. The discussions will mainly focus on technology issues of power elec-
tronic converters in the WTS with respect to cost, reliability, grid integration, new
power electronics circuits, etc.

1.4.1 Lower Cost

Cost is one of the most important considerations for the technology which determines
the feasibility of certain energy technologies to be widely used in the future. In order
to quantify and compare the cost of different energy technologies, levelized cost of
energy (LCOE) index is generally used [7]. LCOE represents the price at which the
electricity is generated from a specific energy source over the whole lifetime of the
generation unit. It is an economic assessment of the cost of the energy-generating
system including initial investment, development cost, capital cost, operations and
maintenance cost, the cost of fuel, etc. LCOE can be defined in a single formula
as [8]:
Cpev + Ccap + Cosm

LCOE = (1.1)
EAnnual

Here, the initial development cost Cp,,, capital cost C,,,, and the cost for opera-
tion and maintenance C g, are first levelized to annual average cost over the lifetime
of the generation system, and then divided by the average annual energy production in
the whole lifetime E,,,,,,;- In order to reduce the cost of energy, one effective way is

to reduce the cost of development, capital, operation, and maintenance, and the other
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Figure 1.12  Estimated levelized cost of energy for several renewable energy technologies in
2018 [10].

effective way is to increase the lifetime of the generation system. As an example, the
LCOE for offshore wind power of Denmark and the United Kingdom is between 140
and 180 EUR/MWh in 2010 according to the studies carried by [9], and this number
is expected to be reduced by 50% by 2020 to a range between 67 and 90 EUR/MWh,
providing an increase in the lifetime of wind turbines from 20 to 25 years, and other
significant cost reductions are achieved.

Figure 1.12 shows another example of US-estimated LCOE for several promis-
ing renewable energy technologies in 2018 [10]. It can be seen that the cost distribu-
tion of different technologies varies a lot, where the onshore wind power still shows
cost advantages compared to other renewable energy sources. It can be also expected
that in the United States, the capital cost may still be dominant for most of the renew-
able energy technologies for the next decade.

As more power electronics are introduced to the energy system to improve the
performances of power generation, the cost of the power electronics becomes more
important. In the WTS, cost considerations impose challenges for the design and the
selection of power electronics.

For instance, the needs for higher power capacity and full-scale power con-
version will increase the cost for power semiconductors, passive components, and
corresponding thermal management. Due to the limited space in the nacelle, higher
power density for the power converters leads to extra cost for the design. Besides,
remote locations of the wind turbines increase the cost for installation and mainte-
nance, which demands high reliability, modularity, and redundancy of the system.

1.4.2 Larger Capacity

The size and power generation capacity of the wind turbine has been gradually
increasing over the last decades and will be continuously increasing in the future,
as shown in Figure 1.13 [11].



