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Preface

This book provides an introduction to flag varieties and their Schubert subva-
rieties. The book portrays flag varieties as an interplay of algebraic geometry,
algebraic groups, combinatorics, and representation theory.

After discussing the representation theory of finite groups, the polynomial
representations (in characteristic zero) of the general linear group are obtained
by relating the representation theory of the general linear group to that of the
symmetric group (using Schur-Weyl duality). Since the Lie algebra of a semisim-
ple algebraic group plays a crucial role in the structure theory of semisimple
algebraic groups, the book discusses the structure theory and the representa-
tion theory of complex semisimple Lie algebras. Since Bruhat decomposition is
at the heart of the study of the flag variety, the book gives a quick treatment
of the generalities on algebraic groups leading to the root system and Bruhat
decomposition in reductive algebraic groups.

The nucleus of this book is the geometry of the Grassmannian and flag
varieties. A knowledge of Grassmannian and flag varieties is indispensable for
any prospective graduate student working in the area of algebraic geometry. We
hope that this book will serve as a reference for basic results on Grassmannian,
flag, and Schubert varieties as well as the relationship between the geometric
aspects of these varieties and the representation theory of semisimple algebraic
groups.

The prerequisite for this book is some familiarity with commutative alge-
bra, algebraic geometry, and algebraic groups. A basic reference to commutative
algebra is [17], algebraic geometry [28], and algebraic groups [5, 36]. The basic
results from commutative algebra and algebraic geometry are summarized in
Chapter 1. We have mostly used standard notation and terminology and have
tried to keep notation to a minimum. Throughout the book, we have numbered
theorems, lemmas, propositions etc., in order according to their chapter and
section; for example, 3.2.4 refers to the fourth item of the second section in the
third chapter.

This book can be used for an introductory course on flag varieties. The
material covered in this book should provide adequate preparation for graduate
students and researchers in the area of algebraic geometry and algebraic groups.
For the interested reader, we have included several exercises at the end of almost
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every chapter; most of these exercises can also be found in the standard texts
on their respective subjects.

Acknowledgments: V. Lakshmibai thanks the organizers K. Uhlenbeck and
C. Terng of the Institute for Advanced Study Program for Women and Mathe-
matics on “Algebraic Geometry and Group Actions,” May 2007, for inviting her
to give lectures on “Flag Variety,” and also the Institute for Advanced Study
for the hospitality extended to her during her stay there.

J. Brown thanks all of those who participated in the Flag Varieties course
at Northeastern University, specifically K. Webster and M. Fries for their con-
tributions and suggestions. He also thanks his wife, Jody, for her love and
support.

September 1, 2007 V. Lakshmibai
Boston, MA, USA J. Brown

Preface to the Second Edition

In this second edition, we have added two recent results (from [42] and
[32], respectively) on Schubert varieties in the Grassmannian. The first result,
which has been added as Chapter 15, gives a free resolution of certain Schubert
singularities. The second result, which has been added as Chapter 16, is about
certain Levi subgroup actions on Schubert varieties in the Grassmannian and
derives some interesting geometric and representation-theoretic consequences.
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Introduction

This book is an expanded version of the lectures given by V. Lakshmibai on
flag varieties at the Institute for Advanced Study Program for Women and
Mathematics on “Algebraic Geometry and Group Actions, 2007.”

An algebraic variety X with an action by an algebraic group G comes
equipped with additional structures; for instance, the action of G on X induces
an action of G on R, the coordinate ring of X, thus admitting representation-
theoretic techniques for the study of X. One important example is the flag
variety F , consisting of flags in Kn, K being a field (a flag being a sequence
(0) = V0 ⊂ V1 ⊂ . . . ⊂ Vn = Kn, Vi being a K-vector subspace of Kn of
dimension i); and the group GLn(K), of invertible n× n matrices with entries
in K, acts on F in a natural way.

Flag varieties form an important class of geometric objects in algebraic ge-
ometry. They have close links with other areas in mathematics — commutative
algebra, representation theory and combinatorics. Their richness in geometry
and combinatorics makes the study of flag varieties very interesting; further,
the Schubert subvarieties in the flag varieties provide a powerful inductive ma-
chinery for the study of flag varieties.

One may describe the flag variety as an interplay of geometry, com-
binatorics and representation theory in mathematics. It is this interplay on
which we want to focus in this book. Fixing a bunch of r distinct integers
d := 1 ≤ d1 < d2 < . . . < dr ≤ n− 1, we may talk about the partial flag variety
F ld, the set of partial flags of type d, namely, sequences Vd1 ⊂ Vd2 ⊂ . . . ⊂ Vdr ,
dimVi = i. The extreme case with r = 1, corresponds to the celebrated Grass-
mannian variety Gd,n consisting of d-dimensional subspaces of Kn. If d = 1,
then G1,n is just the (n − 1)-dimensional projective space Pn−1

K (consisting of
lines through the origin in Kn).

It might be said that after the projective and affine spaces, Grassman-
nian varieties form the next important class of algebraic varieties. In 1934,
Ehresmann (cf. [16]) showed that the classes of Schubert subvarieties in the
Grassmannian give a Z-basis for the cohomology ring of the Grassmannian,
and thus established a key relationship between the geometry of the Grass-
mannian varieties and the theory of characteristic classes. In 1956, Chevalley
(cf. [13]) further enhanced this relationship by showing that the classes of the
Schubert varieties (in the generalized flag variety G/B, G a semisimple alge-

xiii
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braic group and B a Borel subgroup) form a Z-basis for the Chow ring of the
generalized flag variety. Around the same time, Hodge (cf. [30, 31]) developed
the Standard Monomial Theory for Schubert varieties in the Grassmannian.
This theory describes explicit bases for the homogeneous coordinate ring of
the Grassmannian and its Schubert varieties (for the Plücker embedding) in
terms of certain monomials (called standard monomials). Hodge’s theory was
generalized to G/B, for G classical by Lakshmibai, Musili, and Seshadri in the
series G/P I-V (cf. [48, 49, 52, 54, 74]) during 1975–1986; conjectures were then
formulated (cf. [55]) by Lakshmibai and Seshadri in 1991 toward the general-
ization of Hodge’s theory to exceptional groups. These conjectures were proved
by Littelmann (cf. [61, 62, 63]) in 1994–1998, thus completing the standard
monomial theory for semisimple algebraic groups. This theory has led to many
interesting and important geometric and representation theoretic consequences
(see [43, 46, 51, 53, 56, 61, 62, 63, 45]).

In this book, we confine ourselves to GLn(K) (and SLn(K)) since our goal
is to introduce the readers to flag varieties fairly quickly, minimizing the techni-
calities along the way. We have attempted to give a complete and comprehensive
introduction to the flag variety — its geometric and representation-theoretic
aspects.

Our discussion of the polynomial representations of GLn(C) is carried out
using Schur-Weyl duality (between the general linear group and the symmet-
ric group in characteristic zero). To make it more precise, we first discuss the
representation theory of the symmetric group Sd, then deduce the polynomial
representations of GLn(C) using Schur-Weyl duality. We have carried out the
more general discussion of the representation theory of finite groups; this dis-
cussion is preceded by the discussion on the structure theory of semisimple
algebras. Thus the discussion leading to the representation theory of GLn(C)
occupies Chapters 2 through 6.

The second half of the book is devoted to the discussion on Grassmannian
and flag varieties (and their Schubert varieties). In this part again, as a pre-
lude to the main discussion, we have included a quick introduction to algebraic
groups, followed by the structure theory (as well as the representation theory)
of reductive algebraic groups — mainly root systems and Bruhat decomposition
in reductive algebraic groups. Since this structure theory is built using the Lie
algebra of the reductive algebraic group, we have included the discussion on
structure theory and representation theory of complex semisimple Lie algebras.
We have included a detailed discussion of the geometry of the Grassmannian
variety and its Schubert varieties via standard monomial theory. Similar re-
sults are then described for the flag variety and its Schubert varieties. Thus
the discussion in the second half of the book leading to the main theme on
Grassmannian and flag varieties occupies Chapters 7 through 12.

One of the most important geometric consequences of standard monomial
theory is the determination of the singular locus of a Schubert variety and
we have devoted Chapter 13 for this discussion. Here again, we have confined
ourselves to the special linear group SLn(K). For the discussion on the singular
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locus of Schubert varieties for other semisimple algebraic groups, we refer the
reader to [2].

By way of applications, we have included two instances: the first one is
about the connection between Schubert varieties and classical invariant theory
(cf. [82]). For the diagonal action of GLn(K) on V ⊕m ⊕ (V ∗)

⊕q
, V = Kn, the

corresponding categorical quotient is a determinantal variety in Mm,q(K) (the
space of m × q matrices with entries in K). A determinantal variety can be
identified with a certain open subset of a Schubert variety in the Grassman-
nian variety Gq,m+q, and hence one obtains a standard monomial basis for the
corresponding ring of invariants. This discussion is carried out in Chapter 14.

The second instance describes the connection between Schubert and toric
varieties; to be more precise, we present results on toric degenerations of Schu-
bert varieties, i.e., given a Schubert variety X in the Grassmannian, there exists
a flat family over A1 with X̂ (the cone over X) as the generic fiber and the
special fiber being a toric variety. It should be mentioned that this result gener-
alizes to Schubert varieties in G/B, G any semisimple algebraic group, thanks
to the works of Caldero (cf. [10]) and Chirivi (cf. [14]).

In this second edition, we have included chapters 15 and 16 on recent
results concerning Schubert varieties of the Grassmannian. There is also an
appendix giving a brief account of Chevalley groups.

The book is organized as follows: Chapter 1 is a brief review on the basics
of algebraic varieties. Chapter 2 is on the structure theory of semisimple rings.
Chapter 3 deals with the representation theory of finite groups and leads to the
representation theory of the symmetric group in Chapter 4. Chapter 5 is a brief
account of symmetric polynomials. In Chapter 6, we present the representation
theory of GLn(C). Chapters 7 and 8 deal respectively with the structure theory
and representation theory of complex semisimple Lie algebras. In Chapter 9, we
discuss first the generalities on algebraic groups, and then introduce the variety
of Borel subgroups. In Chapter 10, we discuss the structure theory of reductive
algebraic groups. Chapter 11 is on the representation theory of semisimple
algebraic groups. Chapter 12 is the “nucleus” of the book - Grassmannian,
flag varieties and their Schubert varieties. Chapter 13 is the discussion on the
singular locus of Schubert varieties in the flag variety. Chapter 14 discusses the
connection between standard monomial theory and classical invariant theory
as well as that between Schubert varieties and toric varieties. Chapter 15 gives
free resolutions of a certain class of Schubert singularities. Chapter 16 is on
Levi subgroup actions on Schubert varieties.



Chapter 1

Preliminaries

This chapter is a brief review of commutative algebra and algebraic geometry.
We have included basic definitions and properties. For details in commutative
algebra, we refer the reader to [17] and in algebraic geometry to [28, 67].

1.1 Commutative Algebra

Throughout this section, A shall denote a commutative ring with 1.

Noetherian rings

A ring A is said to be Noetherian if every ideal of A is finitely generated,
or, equivalently, A satisfies a.c.c. (ascending chain condition), namely every
increasing chain of ideals terminates or, equivalently, every nonempty collection
of ideals has a maximal element relative to inclusion.

Theorem 1.1.1 (Hilbert Basis Theorem). If A is Noetherian, then so is the poly-
nomial ring A[x]. In particular, if K is a field, then K[x1, . . . , xn] is Noetherian.

Localization

Let S be a multiplicative set in A, i.e. 0 6∈ S, 1 ∈ S, and a, b ∈ S ⇒ ab ∈ S. The
ring of quotients (also known as the ring of fractions) S−1A is constructed
using equivalence classes of pairs (a, s) ∈ A × S, where (a1, s1) ∼ (a2, s2) if
there exists s ∈ S such that s(s2a1− s1a2) = 0. Denoting the equivalence class
of (a, s) by a

s , the multiplication and addition in S−1A are defined by

a1

s1
· a2

s2
=
a1a2

s1s2
,
a1

s1
+
a2

s2
=
s2a1 + s1a2

s1s2
.

We have the natural map A→ S−1A, a 7→ a
1 , which is universal for homomor-

phisms from A rendering the elements of S invertible. The (prime) ideals of
S−1A correspond bijectively to the (prime) ideals of A not meeting S.
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If S is the set of all nonzero divisors in A, then S−1A is called the full
ring of fractions of A; note that in this case A → S−1A is injective. If A is
an integral domain, then the full ring of fractions of A consists of fractions of
the form a

s , with a ∈ A, s ∈ A \ {0}, and is in fact a field, called the field of
fractions (or also the quotient field) of A.

If S = A\P , where P is a prime ideal of A, then S−1A is denoted AP . It is
a local ring (i.e. has a unique maximal ideal PAP , consisting of the non-units in
AP , a unit is any element with a multiplicative inverse). The prime ideals of AP
correspond to the prime ideals of A contained in P. If A is Noetherian, then so
is AP . If m is a maximal ideal, then the fields A/m and Am/mAm are naturally
isomorphic. The canonical map A → Am induces a vector space isomorphism
m/m

2 ∼= mAm/ (mAm)
2
.

For an A-module M , S−1M is defined by using classes of pairs (m, s) ∈
M × S, where (m1, s1) ∼ (m2, s2) if there exists s ∈ S such that s(s1m2 −
s2m1) = 0. Then S−1M is an S−1A-module (in a natural way), and is naturally
isomorphic to S−1A⊗M . The functor M → S−1M from A-modules to S−1A-
modules is exact, i.e. it takes exact sequences to exact sequences. Further, it
preserves tensor and Hom in the following sense: if M and N are A-modules,
the natural map S−1(M ⊗ A) → S−1M ⊗S−1A S

−1N is an isomorphism, and
the natural map

S−1 (HomA (M,N))→ HomS−1A

(
S−1M,S−1N

)
is an isomorphism if M is finitely generated.

Radical of an ideal and the nilradical of a ring

If I is an ideal in a ring A, then the set
√
I = {a ∈ A | an ∈ I} is an ideal of

A, called the radical of I. We have

√
I =

⋂
P⊃I,P prime

P.

Note that I ⊂
√
I. The ideal I is called radical or reduced if

√
I = I. Prime

ideals are examples of radical ideals.

The set of nilpotent elements in a (commutative) ring A is an ideal denoted
nil(A) (a ∈ A is nilpotent if there exists some n ≥ 1 such that an = 0). Note
that nil(A) =

√
(0), and nil(A/I) =

√
I/I. The ring A is said to be reduced if

nil(A) = (0).

If S is a multiplicative set, then

√
I · S−1A =

√
I · S−1A.

In particular, a ring A is reduced if and only if the full ring of fractions of A is
reduced.
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Transcendence degree

Let K be a field extension of k. The elements a1, . . . , ad ∈ K are said to be
algebraically independent over k if no nonzero polynomial f(x1, . . . , xd) over
k satisfies f(a1, . . . , ad) = 0. A maximal subset of algebraically independent
elements (over k) in K is called a transcendence basis of K/k. If K is a finitely
generated extension of k, say K = k(a1, . . . an), then a transcendence basis
can be chosen from among the ai’s, say a1, . . . , ad. The integer d (which is
independent of the choice of the transcendence basis) is called the transcendence
degree of K over k, and is denoted tr.degkK. We have k(a1, . . . ad) is purely
transcendental over k, and K is algebraic over k(a1, . . . ad).

Integral closure

Let B ⊃ A be an extension of rings. An element b ∈ B is said to be integral
over A if there exists a monic polynomial f(x) ∈ A[x] having b as a zero. The
integral closure of A in B is the subring of B consisting of elements of B which
are integral over A. The ring B is said to be integral over A if every element
of B is integral over A. An integral domain A is said to be integrally closed if
A is the integral closure of A in F , F being the field of fractions of A. (Such a
domain is also said to be a normal domain.)

Example 1.1.2. Z is integrally closed.

Now let A = k[a1, . . . an] be a finitely generated k-algebra; further, let A
be an integral domain with quotient field K. Then tr.degkA is defined as

tr.degkA = tr.degkK.

Proposition 1.1.3 (Noether normalization lemma, cf. [67]). Let A =
k[a1, . . . , an] be a finitely generated k-algebra. Further, let A be an integral do-
main. Let d =tr.degkA. Then there exist elements x1, . . . , xd ∈ A algebraically
independent over k such that A is integral over k[x1, . . . , xd].

Krull dimension of a ring

Let A be a Noetherian ring. The Krull dimension of A is defined to be the
maximal length t of a strictly increasing chain of prime ideals P0 ⊂ P1 ⊂ P2 ⊂
. . . ⊂ Pt ⊂ A, and is denoted dimA. We list below some facts on dimA.

1. dimA = sup{dimAm | m being a maximal ideal in A}.

2. Let A = k[x1, . . . , xn], the polynomial algebra. Then dimA = n.

3. Let A be an integral domain which is a finitely generated k-algebra. Then
dimA =tr.degkA.

4. Let A be an integral domain which is a finitely generated k-algebra. Let
P be a prime ideal in A. Then

dimA/P + dimAP = dimA.
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Defining the height (resp. coheight) of a prime ideal P as dimAP (resp.
dimA/P), the above formula is often expressed as

heightP + coheightP = dimA.

Cohen-Macaulay rings and modules

Let A be a Noetherian ring, and M a finitely generated A-module.

Definition 1.1.4. An element a ∈ A is said to be a zero divisor in M if am = 0,
for some nonzero element m ∈M .

Note that a is not a zero divisor if and only if the map M →M , m 7→ am
is a monomorphism.

Definition 1.1.5. A sequence a1, . . . , ar of elements of A is said to be an M -
regular sequence, or just an M -sequence if

1. (a1, . . . , ar)M 6= M ,

2. ai is not a zero divisor in Mi−1 := M/(a1, . . . , ai−1)M, 1 ≤ i ≤ r, (here
a0 = 0).

Let now A be local with m as its maximal ideal.

Proposition 1.1.6 (cf. [17]). Any two maximal M -sequences of elements in m
have the same length.

Definition 1.1.7. Let A,M,m be as above. The length of a maximal M -sequence
of elements in m is defined as the depth of M , and is denoted depthM .

Proposition 1.1.8 (cf. [17]). Let A,M be as above. Then depthM ≤ dimM ,
where dimM = dim (A/annM) , annM being the annihilator of M .

Definition 1.1.9. Let A,M be as above. Then M is said to be Cohen-Macaulay if
either M = (0), or depthM = dimM . The ring A is said to be Cohen-Macaulay
if A is Cohen-Macaulay as an A-module.

Regular rings

Let (A,m) be a local Noetherian ring, and let K = A/m.

Proposition 1.1.10 (Nakayama’s Lemma, cf. [17]). Let M be as above. Suppose
that mM = M . Then M = (0).

Remark 1.1.11. The following are consequences of Nakayama’s Lemma.

1. Let A,M be as above. Let N be a submodule of M such that M =
mM + N . Then M = N . (This follows by applying Nakayama’s Lemma
to M/N ; note that m ·M/N = (mM +N)/N = M/N .)
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2. Let V = M/mM ; note that V is a finite dimensional vector space over
K(= A/m). Let dimKM/mM = n. Suppose that x1, . . . , xn are elements
in M such that x̄1, . . . , x̄n in M/mM is a K-basis for V . Then x1, . . . , xn
generate M . (To see this, let N be the submodule of M generated by
x1, . . . , xn. Then under the canonical map M → M/mM , N maps onto
M/mM . Hence N + mM = M , and (1) implies N = M .)

Let us now take M = m. Let x1, . . . , xn ∈ m such that x̄1, . . . , x̄n is a K-
basis for m/m2. Then x1, . . . , xn generate m; further, n is the smallest number
of elements in a generating set for m. Let dimA = r. In general, we have r ≤ n.

Definition 1.1.12. (A,m) is a regular local ring if r = n, or equivalently, m is
generated by r elements.

Definition 1.1.13. A Noetherian ring A is said to be regular if AP is a regular
local ring for all prime ideals P.

Example 1.1.14. The polynomial ring k[x1, . . . , xn] is a regular ring.

Theorem 1.1.15. Let A be a regular ring. Then

1. A is a normal domain.

2. A is a U.F.D. - unique factorization domain, (recall that a U.F.D. is a
domain in which every nonzero non-unit element has an expression as a
product of prime elements; here, an element a ∈ A is said to be a prime
element if the principal ideal Aa is a prime ideal).

1.2 Affine Varieties

Let K be the base field, which we suppose to be algebraically closed of arbitrary
characteristic.

The affine space An

We shall denote by AnK or just An, the affine n-space, consisting of (a1, . . . , an),
ai ∈ K. For P = (a1, . . . , an) ∈ An, the ai’s are called the affine coordinates of
P .

Affine varieties

Given an ideal I in the polynomial algebra K[x1, . . . , xn], let

V (I) = {(a1, . . . , an) ∈ An | f(a1, . . . , an) = 0 for all f ∈ I}.

The set V (I) is called an affine variety . Clearly V (I) = V (
√
I). Fixing a (finite)

set of generators {f1, . . . , fr} for I, V (I) can be thought of as the set of common
zeros of f1, . . . , fr.

Conversely, given a subset X ⊂ An, let

I(X) = {f ∈ K[x1, . . . , xn] | f(x) = 0 for all x ∈ X}.
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Zariski topology on An

Define a topology on An by declaring {V (I) | I an ideal in K[x1, . . . , xn]} as
the set of closed sets. We now check that this defines a topology on An. We
have

1. An = V ((0)), ∅ = V (K[x1, . . . , xn]).

2. V (I) ∪ V (J) = V (I ∩ J).

3.
⋂
α V (Iα) = V (

∑
α Iα).

Statements (1) and (3) are clear. (2): The inclusion V (I)∪ V (J) ⊂ V (I ∩ J) is
clear. To see the reverse inclusion, let a ∈ V (I ∩ J). If possible, let us assume
that a 6∈ V (I), a 6∈ V (J). Assumption implies that there exist f ∈ I, g ∈ J such
that f(a) 6= 0, g(a) 6= 0. Since fg ∈ I∩J , we have f(a)g(a) = 0, a contradiction.
Hence our assumption is wrong, and the reverse inclusion follows.

Remark 1.2.1.

1. An is a T1-space for the Zariski topology, i.e. points are closed subsets.

2. An is not Hausdorff for the Zariski topology. For, consider A1. The closed
subsets are precisely the finite sets, and hence no two nonempty open sets
can be disjoint.

3. The d.c.c. on closed sets implies the a.c.c. on open sets, i.e. any nonempty
collection of open sets has a maximal element. Hence An is quasi-compact,
i.e. every open cover admits a finite subcover (the term “quasi” is used
since An is not Hausdorff).

4. If K = C, then the zero-set of a polynomial f ∈ C[x1, . . . , xn] is closed
in the usual topology of Cn, being the inverse image of the closed set {0}
in C under the continuous map Cn → C, a 7→ f(a). The set of common
zeros of a collection of polynomials is also closed in the usual topology,
being the intersection of closed sets. Of course, the complex n-space Cn
has plenty of other closed sets which are not obtained this way (as is clear
in the case n = 1). Thus the usual topology is stronger than the Zariski
topology.

We have
X ⊂ V (I(X)), I ⊂ I(V (I)).

Fact: V (I(X)) = X̄, the closure of X.

Theorem 1.2.2 (Hilbert’s Nullstellensatz, cf. [67]). Let I be an ideal in
K[x1, . . . , xn]. Then

√
I = I(V (I)).

As a consequence of the fact above and Hilbert’s Nullstellensatz we obtain
an inclusion-reversing bijection

{radical ideals in K[x1, . . . , xn]} ←→ {affine varieties in An},
I 7−→ V (I)

I(X) ←− [ X.
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The Noetherian property of K[x1, . . . , xn] implies d.c.c. (descending chain con-
dition) on the set of affine varieties in An. Now, if m is a maximal ideal,
then by Hilbert’s Nullstellensatz V (m) is non-empty. Let a ∈ V (m). We have
m ⊂ I({a}) ⊂ K[x1, . . . , xn]. Hence we get m = I({a}) (since m is a maximal
ideal). Conversely, if a ∈ An, consider the homomorphism K[x1, . . . , xn]→ K,
f 7→ f(a). Its kernel is precisely I({a}), and is a maximal ideal (since K is a
field). Thus, under the above bijection, points of An correspond 1-1 to the max-
imal ideals of K[x1, . . . , xn]. (The maximal ideal corresponding to (a1, . . . , an)
is the ideal (x1 − a1, . . . , xn − an).)

Irreducible components

A topological space X is said to be irreducible if X cannot be written as
the union of two proper nonempty closed sets in X, or equivalently, any two
nonempty open sets in X have a nonempty intersection, or equivalently, any
nonempty open set is dense. It is easily seen that a subspace Y ⊂ X is ir-
reducible if and only if its closure Ȳ is irreducible. By Zorn’s lemma, every
irreducible subspace of X is contained in a maximal one; the maximal irre-
ducible subsets are closed, and are called the irreducible components of X.

Noetherian spaces

A topological space is said to be Noetherian if every open set in X is quasi-
compact, or equivalently, if open sets satisfy the maximal condition, or equiv-
alently, if each nonempty collection of open sets has a maximal element, or
equivalently, if open sets satisfy a.c.c., or equivalently, if closed sets satisfy
d.c.c.

Proposition 1.2.3 (cf. [5, 36]). Let X be Noetherian. Then X has only finitely
many irreducible components Xi, and X =

⋃
Xi.

Irreducible affine varieties

Proposition 1.2.4. A closed set X in An is irreducible if and only if I(X) is
prime. In particular, An is irreducible.

Proof. Denote I(X) by I. Let X be irreducible. Let f1f2 ∈ I. Then each a ∈ X
is a zero of f1 or f2. Thus X ⊂ V (I1) ∪ V (I2), where I1 = (f1), I2 = (f2). The
irreducibility of X implies that either X ⊂ V (I1) or X ⊂ V (I2). Hence we
obtain that either f1 or f2 belongs to I. Thus I is prime.

Now let I be prime. If possible, let us assume that X = X1 ∪ X2, with
Xi ⊂ X, closed in X for i = 1, 2. Then we can find fi ∈ I(Xi) such that fi 6∈ I.
Now, for z ∈ X, a ∈ X1 or a ∈ X2. Hence f1(a) = 0 or f2(a) = 0. This implies
f1f2(a) = 0 for all a ∈ X, i.e. f1f2 ∈ I, with fi 6∈ I, i = 1, 2. This contradicts
the primality of I. Hence our assumption is wrong and the result follows. �

Corollary 1.2.5. Under the bijection following Theorem 1.2.2, the prime ideals
correspond to irreducible affine varieties.
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The affine algebra K[X]

A finitely generated K-algebra is also called an affine K-algebra (or simply
an affine algebra, the field K being fixed). Let X be an affine variety in An.
The affine algebra K[x1, . . . , xn]/I(X) is called the affine algebra of X, and is
denoted K[X]. Now each f̄ ∈ K[X] defines a function X → K, a 7→ f(a) (note
that this is well-defined). Thus each element of K[X] may be thought of as a
polynomial function on X (with values in K). For this reason, K[X] is also
called the algebra of polynomial functions on X, or also the algebra of regular
functions on X, or the coordinate ring of X. If X is irreducible, then K[X] is
an integral domain (since I(X) is prime), and the quotient field K(X) of K[X]
is called the function field of X (or the field of rational functions on X).

As in the case of An, we see that we have a bijection between closed subsets
of X and the radical ideals of K[X], under which the irreducible closed subsets
of X correspond to the prime ideals of K[X]. In particular, the points of X are
in one to one correspondence with the maximal ideals of K[X]. Further, X is
a Noetherian topological space, and the principal open subsets Xf = {x ∈ X |
f(x) 6= 0}, f ∈ K[X], give a base for the Zariski topology.

Morphisms

Let X ⊂ An, Y ⊂ Am be two affine varieties. A morphism ϕ : X → Y is
a mapping of the form ϕ(a) = (ψ1 (a) , . . . , ψm (a)), where a ∈ X, and for
i = 1, . . . ,m, ψi ∈ K[x1, . . . , xn]. A morphism ϕ : X → Y defines a K-algebra
morphism ϕ∗ : K[Y ]→ K[X] given by ϕ∗ (f) = f ◦ ϕ. We have

Theorem 1.2.6 (cf. [28]). The map X 7→ K[X] defines a (contravariant) equiv-
alence of the category of affine varieties (with morphisms as defined above)
and the category of affine K-algebras (i.e. finitely generated K-algebras) with-
out non-zero nilpotents (with K-algebra morphisms as morphisms). Further,
irreducible affine varieties correspond to affine K-algebras which are integral
domains.

Products of affine varieties

The product of the Zariski topologies on An and Am does not give the Zariski
topology on An+m. For example, in A1×A1 the only closed sets in the product
topology are finite unions of horizontal and vertical lines, while A2 has many
more sets that are closed in the Zariski topology.

To arrive at a correct definition (so that we will have An ×Am ∼= An+m),
one takes the general category-theoretical definition, and defines the product
as a triple (Z, p, q), where Z is an affine variety and p : Z → X, q : Z → Y
are morphisms such that given a triple (M,α, β), where M is an affine variety
and α : M → X, β : M → Y are morphisms, there exists a unique morphism
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θ : M → Z such that the following diagram is commutative:

X

M

α

>>

θ //

β   

Z

p

OO

q

��
Y

Theorem 1.2.7 (Existence of products). Let X, Y be two affine varieties with
coordinate rings R, S respectively. Then the affine variety Z with coordinate
ring R ⊗K S together with the canonical maps p : Z → X, q : Z → Y (induced
by R→ R⊗ S, r 7→ r⊗ 1, and S → R⊗ S, s 7→ 1⊗ s respectively) is a product
of X and Y .

The uniqueness up to isomorphism of a product follows from the universal
mapping property of a product. The product of X and Y is denoted by (X ×
Y, p, q).

Remark 1.2.8. Let X ⊂ An, Y ⊂ Am be two affine varieties. Then the product
variety X×Y (as defined above) is nothing but the set X×Y ⊂ An+m, together
with the induced topology.

1.3 Projective Varieties

The projective space Pn

We shall denote by PnK , or just Pn, the set
(
An+1 \ {0}

)
/ ∼, where ∼ is the

equivalence relation (a0, . . . , an) ∼ (b0, . . . , bn) if there exists λ ∈ K∗ such that
(a0, . . . , an) = λ (b0, . . . , bn). Thus a point P ∈ Pn is determined by an equiva-
lence class [a0, . . . , an], and for any (n+1)-tuple (b0, . . . , bn) in this equivalence
class, the bi’s will be referred as the projective (or homogeneous) coordinates of
P .

Sometimes we write Pn also as P(V ), where V is an (n+1)-dimensional K-
vector space, the points of Pn being identified with 1-dimensional subspaces of
V . Let f(x0, . . . , xn) ∈ K[x0, . . . , xn]. Further, let f be homogeneous of degree
d. The homogeneity of f implies f(λx0, . . . , λxn) = λdf(x0, . . . , xn), λ ∈ K∗.
Hence it makes sense to talk about f being zero or nonzero at a point P ∈ Pn.

Projective varieties

Let I be a homogeneous ideal in K[x0, . . . , xn], i.e. for each f ∈ I, the ho-
mogeneous parts of f belong to I, or equivalently, I is generated by some
homogeneous polynomials. Let

V (I) = {P ∈ Pn | f(P ) = 0, f a homogeneous element of I}.
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The set V (I) is called a projective variety . Conversely, given a subset of X ⊂ An,
let I(X) be the ideal generated by

{f ∈ K[x0, . . . , xn], f homogeneous | f(P ) = 0 for all P ∈ X}.

As in the affine case, I(X) is a radical ideal. We have a similar version (as in
the affine case) of the Nullstellensatz with one minor adjustment, namely the
ideal I0 in K[x0, . . . , xn] generated by x0, . . . , xn is a proper radical ideal, but
clearly has no zeros in Pn. Deleting I0, we have a similar formulation given by
the following.

Theorem 1.3.1. The maps I 7→ V (I), X 7→ I(X) define an inclusion-reversing
bijection between the set of homogeneous radical ideals of
K[x0, . . . , xn] other than I0 and the projective varieties in Pn.

Zariski topology on Pn

The Zariski topology on Pn is defined in exactly the same way as in the affine
case, by declaring

{V (I) | I homogeneous radical ideal in K[x0, . . . , xn] other than I0}

as closed sets. As in the affine case, under the above bijection, the homogeneous
prime ideals (other than I0) correspond to irreducible projective varieties. Let
Ui = {[a] ∈ Pn | ai 6= 0}, 0 ≤ i ≤ n. (These are some special open sets.) The
map Ui → An,

[a] 7→
(
a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

)
defines an isomorphism of affine varieties. The quotients

a0

ai
, . . . ,

ai−1

ai
,
ai+1

ai
, . . . ,

an
ai

are called the affine coordinates on Ui, 0 ≤ i ≤ n. Note that {Ui, 0 ≤ i ≤ n} is
an open cover for Pn.

1.4 Schemes - Affine and Projective

Presheaves

Let X be a topological space. Let top(X) be the category whose objects are
open sets in X, and whose morphisms are inclusions. Let C be a category. A
C-valued presheaf on X is a contravariant functor U 7→ F (U) from top(X) to
C. Thus, if V ⊂ U are open sets in X, then we have a C-morphism

resUV : F (U) −→ F (V )

called the restriction map.
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A morphism of presheaves ϕ : F → F ′ is a morphism of functors. Suppose
C is a category of “sets with structure,” like groups, rings, modules, etc. Then
we say that F is a presheaf of groups, rings, modules, etc., respectively.

If x ∈ X, then the collection Ux = {F (U), U open neighborhood of x} is
a directed system, and Fx = lim−→

F (U)∈Ux

F (U) is called the stalk of F at x.

Sheaves

Let F be a C-valued presheaf on X, where C is some category of “sets with
structure.” Then F is called a sheaf if it satisfies the following “sheaf axioms”:
For every collection {Ui} of open sets in X with U =

⋃
Ui,

(S1) if f, g ∈ F (U) are such that f |Ui = g|Ui for all i, then f = g.

(S2) if {fi ∈ F (Ui)} is a collection such that fi|Ui∩Uj = fj |Ui∩Uj for all i and
j, then there exists an f ∈ F (U) such that f |Ui = fi.

Example 1.4.1. Let X be a topological space, and for U open in X, let F (U) be
the ring of continuous real valued functions on U . The assignment U 7→ F (U),
for U open, defines a sheaf.

Example 1.4.2. Let X ∈ An be an irreducible affine variety, with function field
K(X). Let R = K[X]. Define

OX,x = {f ∈ K(X) | f is regular at x},

(note that f is regular at x if f = g/h, with g, h ∈ R, h(x) 6= 0). We have, OX,x
is simply RP , where P is the prime ideal {f ∈ R | f(x) = 0}; in particular,
OX,x is a local ring. The assignment U 7→

⋂
x∈U OX,x, for U open defines a

sheaf called the structure sheaf , and denoted OX .

Example 1.4.3. Let now X be an affine variety with irreducible components
Xi. Let U ⊂ X open, and x ∈ U . A function f : U → K is said to be regular
at x if there exist g, h ∈ K[X] and an open set V ⊂ U , x ∈ V , such that for all

y ∈ V , h(y) 6= 0, f(y) = g(y)
h(y) . Set

OX(U) = {f : U → K | f regular at all x ∈ U}.

Then OX is a sheaf, again called the structure sheaf. Note that OX(X) = K[X].

Sheafification

Let F be a C-valued presheaf on X, where C is some category of “sets with
structure.” Then there is a sheaf F ′, called the sheafification of F , or the
sheaf associated with F , and a morphism f : F → F ′ such that the map
Mor(F ′, G)→Mor(F,G) (induced by f) is bijective whenever G is a sheaf.
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Construction of F ′

Let E =
⋃
x∈X Fx (a disjoint union of sets). Let p : E → X be the “projection

map,” namely p(a) = x, if a ∈ Fx. For U open in X, and σ ∈ F (U), we have
a canonical map (also denoted by σ) σ : U → E, σ(x) = σx, where σx is the
image of σ under the canonical map F (U) → Fx. Equip E with the strongest
topology which makes σ : U → E continuous for all σ ∈ F (U), and all open U .
It can be seen easily that a set G in E is open if and only if for every open U
in X and σ ∈ F (U), the set W = {x ∈ U | σx ∈ G} is open. The space (E, p)
is called the etale space of F .

Let F ′ be the sheaf of continuous sections of p, i.e. for U open in X,

F ′(U) = {s : U → E continuous such that p ◦ s = IdU}.

Remark 1.4.4. Given a sheaf F on X, F(X) is usually denoted by Γ(X,F),
and its elements are called global sections of F .

Geometric spaces

A geometric space is a topological space X together with a sheaf OX of rings
(commutative with identity element) on X whose stalks OX,x are local rings.
The sheaf OX is called the structure sheaf of X. We denote the maximal ideal
of OX,x by mx, and the residue class field by K(x).

A morphism (X,OX)→ (Y,OY ) of geometric spaces consists of a contin-
uous map f : X → Y together with ring homomorphisms

fVU : OY (V )→ OX(U)

for U ⊂ X, V ⊂ Y open sets such that f(U) ⊂ V . These maps are required to
be compatible with the respective restriction maps in OX and OY . Then it is
easy to see that if x ∈ X and y = f(x), then f induces a local homomorphism
fx : OY,y → OX,x, i.e. fx(my) ⊂ mx.

1.5 The Scheme Spec(A)

Let A be a commutative ring with identity element, and let Spec(A) be the
set of all prime ideals in A. Define a topology on Spec(A) (called the Zariski
topology on Spec(A)) by declaring the closed sets as V (I) = {p ∈ Spec(A) |
p ⊃ I}, for I any ideal of A. For Y ⊂ X = Spec(A), let I(Y ) =

⋂
p∈Y p. Then

V (I(Y )) = Ȳ . Further, we have I(V (I)) =
√
I. Thus we have an inclusion-

reversing bijection between the set of closed sets in Spec(A), and the set of
radical ideals in A, under which irreducible closed sets correspond to prime
ideals. If A is Noetherian, then Spec(A) is a Noetherian topological space, and
the irreducible components of X correspond to the minimal primes in A.
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The principal open sets

Let f ∈ A, and p ∈ Spec(A). Let f(p) be the image of f in the residue class
field of Ap (which is simply the field of fractions of A/p). Let X = Spec(A),
and Xf = X \ V ((f)) = {p ∈ X | f(p) 6= 0}. The set Xf is called a principal
open set . For any ideal I, we have V (I) =

⋂
f∈I V ((f)). Thus the principal

open sets form a base of the Zariski topology on X.

Geometric space structure on Spec(A)

Let X = Spec(A), and let OX be the sheaf associated to the presheaf U 7→
S−1
U A, where SU (for U open in X) is the set of all f ∈ A vanishing nowhere

on U , i.e. f(p) 6= 0 for all p ∈ U . It is easily seen that the stalk OX,x is simply
Ax. Thus we have the following theorem.

Theorem 1.5.1.
(

Spec(A),OSpec(A)

)
is a geometric space.

Remark 1.5.2. If A is an integral domain with quotient field K, then the Ax’s
are subrings of K, and OX can be defined directly by OX(U) =

⋂
x∈U Ax.

Let X = Spec(A), Y = Spec(B). Then it is seen easily that a morphism
ϕ : (X,OX) → (Y,OY ) induces a ring homomorphism B → A. Conversely, a
ring homomorphism B → A induces a morphism X → Y , (cf. [67]).

Affine schemes

Definition 1.5.3. An affine scheme is a geometric space (X,OX) which is iso-
morphic to (Spec(A),OSpec(A)).

Theorem 1.5.4. The map A 7→ (Spec(A),OSpec(A)) defines a (contravariant)

equivalence of the category of commutative rings and the category of affine
schemes.

Definition 1.5.5. A prescheme is a geometric space (X,OX) which has a finite
cover by open sets U such that (U,O|U ) is an affine scheme.

Definition 1.5.6. A prescheme X is called a scheme if the diagonal ∆(X) (=
{(x, x) ∈ X ×X}) is closed in X ×X.

Remark 1.5.7. An affine scheme is a scheme in the sense of Definition 1.5.6.

1.6 The Scheme Proj(S)

Let S =
⊕

d≥0 Sd be a graded ring , i.e., Sd is an abelian group and SdSe ⊂ Sd+e.
Let S+ =

⊕
d>0 Sd. Define Proj(S) to be the set of all homogeneous prime ideals

of S not containing S+. For a homogeneous ideal a of S, set

V (a) = {p ∈ Proj(S) | p ⊇ a}.
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In view of the following lemma, we define V (a) to be a closed set for any
homogeneous ideal a of S, and we obtain the Zariski topology on Proj(S).

Lemma 1.6.1 (cf. [28]).

1. If a and b are two homogeneous ideals in S, then V (ab) = V (a) ∪ V (b).

2. If {ai} is any family of homogeneous ideals in S, then V (
∑

ai) =
⋂
V (ai).

The structure sheaf O on Proj(S)

For p ∈ Proj(S), let S(p) denote the homogeneous localization of S at p consist-
ing of elements of degree 0 in Sp, i.e.,

S(p) = {f
g
∈ Sp | f, g homogeneous of the same degree}.

For an open set U ⊆ Proj(S), define O(U) as the set of functions s : U →
∐
S(p)

such that the following hold:

1. For each p ∈ U, s(p) ∈ S(p).

2. s is locally a quotient of elements of S, i.e., for each p in U , there exists
a neighborhood V of p in U , and homogeneous elements g, f ∈ S of the
same degree, such that for all q ∈ V , f 6∈ q, s(q) = g

f in S(q).

It is clear that O is a presheaf of rings, with the natural restrictions, and
it is also clear from the local nature of the definition that O is in fact a sheaf.

Definition 1.6.2. We define (Proj(S),O) to be Proj(S) with the sheaf of rings
constructed above.

Proposition 1.6.3 (cf. [28]). (Proj(S),O) is a scheme. Further, for p ∈ Proj(S),
the stalk Op is isomorphic to the local ring S(p).

The special open subsets D+(f)

For a homogeneous element f ∈ S+, define D+(f) = {p ∈ Proj(S) | f 6∈ p}.
Then D+(f) is open in Proj(S). Further, these open sets cover Proj(S), and
we have an isomorphism of geometric spaces:(

D+(f),O|D+(f)

) ∼= Spec(S(f)),

where S(f) is the subring of elements of degree 0 in Sf . See [28] for details.

1.7 Sheaves of OX -Modules

Let (X,OX) be a scheme. A sheaf on X is said to be a sheaf of OX -modules if
for U ⊂ X open, F (U) is an OX(U)-module.
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Example 1.7.1. Let M be an A-module. Then M defines a presheaf M̄ , namely
for all f ∈ A, M̄(Xf ) = Mf (note that for any open U , we have M̄(U) =

lim←−
Xf⊂U

Mf ). Let M̃ be the sheaf associated to M̄ . Then M̃ is a sheaf of OX -

modules.

The sheaf M̃ on Proj(S)

Let S be a graded ring, and M a graded S-module, i.e., M is an S-module
together with a decomposition M =

⊕
d∈ZMd such that Sd ·Mr ⊆Md+r. The

sheaf M̃on Proj(S) is defined as follows. For p ∈ Proj(S), let M(p) denote the

group of elements of degree 0 in Mp. For an open set U ⊆ Proj(S), define M̃(U)
as the set of functions s : U →

∐
M(p) such that the following holds:

1. For each p ∈ U , s(p) ∈M(p).

2. s is locally a quotient, i.e., for each p in U , there exists a neighborhood V
of p in U , and homogeneous elements m ∈ M , f ∈ S of the same degree,
such that for all q ∈ V , f 6∈ q, s(q) = m

f in Mq.

We make M̃ into a sheaf with the natural restriction maps. We have the
following facts:

1. For p ∈ Proj(S), the stalk M̃p
∼= M(p).

2. For a homogeneous element f ∈ S+, we have, M̃ |D+(f)
∼=
(
M̃(f)

)
via

the isomorphism D+(f) ∼= Spec(S(f)), where M(f) denotes the group of
elements of degree 0 in the localized module Mf .

See [28] for details.

The twisting sheaf

Let X = Proj(S). For n ∈ Z, set M(n) to be the graded S-module with

M(n)d = Mn+d for all d ∈ Z. Define the sheaf OX(n) to be S̃(n). The sheaf
OX(1) is called the twisting sheaf of Serre. For any sheaf F of OX -modules, we
define

F (n) = F ⊗OX OX(n).

The sheaf f∗F

Let f : X → Y be a morphism between two schemes. Let F be any sheaf on
X. We define the direct image sheaf f∗F on Y by (f∗F) (V ) = F(f−1(V )) for
any open subset V of Y .


