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Introduction

The present volume contains contributions and lecture notes of the XII Symposium
on Probability and Stochastic Processes, held at the Universidad Autónoma de
Yucatán (UAdY), Mexico in November 16–20, 2015.

The traces of this symposium reach back to December 1988 at CIMAT, when it
was held for the first time. The symposium is one of the main events in the field,
and it takes place every 2 years at different academic institutions in Mexico. During
these 27 years and up until today, this series of symposia has readily accomplished
its main goal of exchanging ideas and discussing the latest developments in the field
by gathering both national and international researchers as well as graduate students.

The symposium in 2015 gathered scholars from over seven countries and covered
a wide range of topics that highlight the interaction between applied and theoretical
probability. The scientific programme included two courses: Optimality of two-
parameter strategies in stochastic control organized by Kazutoshi Yamazaki, and
Scaling limits of large random trees organized by Bénédicte Haas. The event
also benefited from nine plenary talks that were delivered by José Blanchet, Loïc
Chaumont, Alex Cox, Takis Konstantopoulos, Andreas Kyprianou, Hubert Lacoin,
Mihai Sirbu, Gerónimo Uribe and Hasnaa Zidani. Another four thematic sessions
and fourteen contributed talks completed the outline of the symposium.

This volume is split into two main parts: first the lectures notes of the two
courses provided by Bénédicte Haas and Kazutoshi Yamazaki, followed by research
contributions of some of the participants. The lecture notes of Bénédicte Haas
and Kazutoshi Yamazaki give an overview of the recent progress on describing
the large-scale structure of random trees, and on stochastic control problems
where the optimal strategies are described by two parameters under a setting
that is driven by a spectrally one-sided Lévy process, respectively. The research
contributions start with an illustrative article written by Ekaterina Kolkovska and
Ehyter Martín-González, in which they investigate a classical risk process with two-
sided jumps that is perturbed by a spectrally negative α-stable process, where the
gain size distribution has a rational Laplace transform. The contribution of Daniel
Hernández-Hernández and Leonel Pérez-Hernández analyses the minimality of the
penalty function associated with a convex risk measure. By considering dynamic
programming, Laurent series and the study of sensitive discount optimality, Beatris
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viii Introduction

Escobedo-Trujillo, Héctor Jasso-Fuentes and José Daniel López-Barrientos analyse
Blackwell-Nash equilibria for a general class of zero-sum stochastic differential
games. �-convergence of monotone functionals is discussed in the contribution
written by Erick Treviño-Aguilar, where a criterion is presented under which a
functional that is defined on vectors of non-decreasing functions is the �-limit
of a functional that is defined on vectors of continuous non-decreasing functions.
A criterion for the blow-up of a system of one-dimensional reaction-diffusion
equations in a finite time is proposed by Eugenio Guerrero and José Alfredo
López-Mimbela, where the criterion depends on the drift terms of the system of
partial differential equations and on some measures which turn out to be invariant
distributions of some diffusions that are associated with the system. Finally, Arno
Siri-Jégousse and Linglong Yuan study the asymptotic behaviour, for small times,
of the largest block size of Beta-n-coalescents as n increases.

In summary, the high quality and variety of these contributions give a broad
panorama of the rich academic programme of the symposium and of its impact.
It is worth noting that all papers, including the lecture notes of the invited courses,
were subject to a strict peer review process with high international standards. We are
very grateful to the referees, many of whom are leading experts in their fields, for
their diligent and useful reports. Their comments were implemented by the authors
and considerably improve the material presented herein.

We would also like to express our gratitude to all the authors whose original
contributions are published in this book, as well as to all the speakers and session
organizers of the symposium for their stimulating talks and support. Their valuable
contributions show the interest and activity in the area of probability and stochastic
processes in Mexico.

We hold in high regard the editors of the book series Progress in Probability,
Steffen Dereich, Davar Khoshnevisan, Andreas E. Kyprianou and Sidney I. Resnick,
for giving us the opportunity to publish the symposium volume in this prestigious
series.

Special thanks to the symposium venue Universidad Autónoma de Yucatán and
its staff for their great hospitality and for providing excellent conference facilities.
We are also indebted to Rosy Davalos, whose outstanding organizational work
permitted us to focus on the academic aspects of the conference.

The symposium as well as this volume would not have been possible without
the generous support of our sponsors: Centro de Investigación en Matemáticas,
RED-CONACYT Matemáticas y Desarrollo, Laboratorio Internacional Solomon
Lefschetz CNRS-CONACYT, Instituto de Investigaciones en Matemáticas Apli-
cadas y en Sistemas and Instituto de Matemáticas at UNAM as well as Universidad
Autónoma de Yucatán.

Finally, we hope that the reader of this volume will enjoy learning about the
various topics that are treated therein, as much as we did editing it.

Guanajuato, Mexico Daniel Hernández-Hernández
Guanajuato, Mexico Juan Carlos Pardo
Guanajuato, Mexico Victor Rivero
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Scaling Limits of Markov-Branching
Trees and Applications

Lecture Notes of the XII Simposio de Probabilidad y
Procesos Estocásticos 16–20 Novembre 2015, Mérida,
Yucatán

Bénédicte Haas

Abstract The goal of these lecture notes is to survey some of the recent progress
on the description of large-scale structure of random trees. We use the framework
of Markov-Branching sequences of trees and discuss several applications.

Keywords Random trees · Scaling limits · Self-similar fragmentations ·
self-similar Markov processes

Mathematics Subject Classification 05C05, 60F17, 60J05, 60J25, 60J80

1 Introduction

The goal of these lecture notes is to survey some of the recent progress on the
description of large-scale structure of random trees. Describing the structure of large
(random) trees, and more generally large graphs, is an important goal of modern
probabilities and combinatorics. Beyond the purely probabilistic or combinatorial
aspects, motivations come from the study of models from biology, theoretical
computer science or mathematical physics.

The question we will typically be interested in is the following. For (Tn, n ≥ 1) a
sequence of random unordered (i.e. non-planar) trees, where, for each n, Tn is a tree
of size n (the size of a tree may be its number of vertices or its number of leaves, for
example): does there exist a deterministic sequence (an, n ≥ 1) and a continuous

B. Haas (�)
Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539), Villetaneuse, France
e-mail: haas@math.univ-paris13.fr

© Springer International Publishing AG, part of Springer Nature 2018
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and Stochastic Processes, Progress in Probability 73,
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4 B. Haas

random tree T such that

Tn

an
−→
n→∞ T ?

To make sense of this question, we will view Tn as a metric space by “replacing”
its edges with segments of length 1, and then use the notion of Gromov-Hausdorff
distance to compare compact metric spaces. When such a convergence holds, the
continuous limit highlights some properties of the discrete objects that approximate
it, and vice-versa.

As a first example, consider Tn a tree picked uniformly at random in the set of
trees with n vertices labelled by {1, . . . , n}. The tree Tn has to be understood as a
typical element of this set of trees. In this case the answer to the previous question
dates back to a series of works by Aldous in the beginning of the 1990s [8–10]:
Aldous showed that

Tn

2
√
n

(d)−→
n→∞ TBr (1)

where the limiting tree is called the Brownian Continuum Random Tree (CRT),
and can be constructed from a standard Brownian excursion. This result has various
interesting consequences, e.g. it gives the asymptotics in distribution of the diameter,
the height (if we consider rooted versions of the trees) and several other statistics
related to the tree Tn. Consequently it also gives the asymptotic proportion of trees
with n labelled vertices that have a diameter larger than x

√
n or/and a height larger

than y
√
n, etc. Some of these questions on statistics of uniform trees were already

treated in previous works, the strength of Aldous’s result is that it describes the
asymptotics of the whole tree Tn.

Aldous has actually established a version of the convergence (1) in a much
broader context, that of conditioned Galton–Watson trees with finite variance. In this
situation, to fit to our context, Tn is an unordered version of the genealogical tree
of a Galton–Watson process (with a given, fixed offspring distribution with mean
one and finite variance) conditioned on having a total number of vertices equal to
n, n ≥ 1. Multiplied by 1/

√
n, this tree converges in distribution to the Brownian

CRT multiplied by a constant that only depends on the variance of the offspring
distribution. This should be compared with (and is related to) the convergence of
rescaled sums of i.i.d. random variables towards the normal distribution and its
functional analog, the convergence of rescaled random walks towards the Brownian
motion. It turns out that the above sequence of uniform labelled trees can be seen as
a sequence of conditioned Galton–Watson trees (when the offspring distribution is a
Poisson distribution) and more generally that several sequences of combinatorial
trees reduce to conditioned Galton–Watson trees. In the early 2000s, Duquesne
[44] extended Aldous’s result to conditioned Galton–Watson trees with offspring
distributions in the domain of attraction of a stable law. We also refer to [46, 70] for
related results. In most of these cases the scaling sequences (an) are asymptotically
much smaller, i.e. an � √

n, and other continuous trees arise in the limit, the so-
called family of stable Lévy trees. All these results on conditioned Galton–Watson
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trees are now well established, and have a lot of applications in the study of large
random graphs (see e.g. Miermont’s book [78] for the connections with random
maps and Addario-Berry et al. [4] for connections with Erdős–Rényi random graphs
in the critical window).

The classical proofs to establish the scaling limits of Galton–Watson trees consist
in considering specific ordered versions of the trees and rely on a careful study of
their so-called contour functions. It is indeed a common approach to encode trees
into functions (similarly to the encoding of the Brownian tree by the Brownian
excursion), which are more familiar objects. It turns out that for Galton–Watson
trees, the contour functions are closely related to random walks, whose scaling
limits are well known. Let us also mention that another common approach to study
large random combinatorial structures is to use technics of analytic combinatorics,
see [54] for a complete overview of the topic. None of these two methods will be
used here.

In these lecture notes, we will focus on another point of view, that of sequences
of random trees that satisfy a certain Markov-Branching property, which appears
naturally in a large set of models and includes conditioned Galton–Watson trees.
This property is a sort of discrete fragmentation property which roughly says that
in each tree of the sequence, the subtrees above a given height are independent
with a law that depends only on their total size. Under appropriate assumptions, we
will see that Markov-Branching sequences of trees, suitably rescaled, converge to a
family of continuous fractal trees, called the self-similar fragmentation trees. These
continuous trees are related to the self-similar fragmentation processes studied by
Bertoin in the 2000s [14], which are models used to describe the evolution of
objects that randomly split as time passes. The main results on Markov-Branching
trees presented here were developed in the paper [59], which has its roots in the
earlier paper [63]. Several applications have been developed in these two papers,
and in more recent works [15, 60, 89]: to Galton–Watson trees with arbitrary degree
constraints, to several combinatorial trees families, including the Pólya trees (i.e.
trees uniformly distributed in the set of rooted, unlabelled, unordered trees with n

vertices, n ≥ 1), to several examples of dynamical models of tree growth and to
sequence of cut-trees, which describe the genealogy of some deletion procedure of
edges in trees. The objective of these notes is to survey and gather these results, as
well as further related results.

In Sect. 2 below, we will start with a series of definitions related to discrete
trees and then present several classical examples of sequences of random trees.
We will also introduce there the Markov-Branching property. In Sect. 3 we set
up the topological framework in which we will work, by introducing the notions
of real trees and Gromov–Hausdorff topology. We also recall there the classical
results of Aldous [9] and Duquesne [44] on large conditioned Galton–Watson trees.
Section 4 is the core of these lecture notes. We present there the results on scaling
limits of Markov-Branching trees, and give the main ideas of the proofs. The key
ingredient is the study of an integer-valued Markov chain describing the sizes of the
subtrees containing a typical leaf of the tree. Section 5 is devoted to the applications
mentioned above. Last, Sect. 6 concerns further perspectives and related models
(multi-type trees, local limits, applications to other random graphs).
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All the sequences of trees we will encounter here have a power growth. There is
however a large set of random trees that naturally arise in applications that do not
have such a behavior. In particular, many models of trees arising in the analysis of
algorithms have a logarithmic growth. See e.g. Drmota’s book [42] for an overview
of the most classical models. These examples do not fit into our framework.

2 Discrete Trees, Examples and Motivations

2.1 Discrete Trees

Our objective is mainly to work with unordered trees. We give below a precise
definition of these objects and mention nevertheless the notions of ordered or/and
labelled trees to which we will sometimes refer.

A discrete tree (or graph-theoretic tree) is a finite or countable graph (V ,E) that
is connected and has no cycle. Here V denotes the set of vertices of the graph and E

its set of edges. Note that two vertices are then connected by exactly one path and
that #V = #E + 1 when the tree is finite.

In the following, we will often denote a (discrete) tree by the letter t, and for
t = (V ,E) we will use the slight abuse of notation v ∈ t to mean v ∈ V .

A tree t can be seen as a metric space, when endowed with the graph distance
dgr: given two vertices u, v ∈ t, dgr(u, v) is defined as the number of edges of the
unique path from u to v.

A rooted tree (t, ρ) is an ordered pair where t is a tree and ρ ∈ t. The vertex ρ

is then called the root of t. This gives a genealogical structure to the tree. The root
corresponds to the generation 0, its neighbors can be interpreted as its children and
form the generation 1, the children of its children form the generation 2, etc. We will
usually call the height of a vertex its generation, and denote it by ht(v) (the height
of a vertex is therefore its distance to the root). The height of the tree is then

ht(t) = sup
v∈t

ht(v)

and its diameter

diam(t) = sup
u,v∈t

dgr(u, v).

The degree of a vertex v ∈ t is the number of connected components obtained
when removing v (in other words, it is the number of neighbors of v). A vertex
v different from the root and of degree 1 is called a leaf. In a rooted tree, the
out-degree of a vertex v is the number of children of v. Otherwise said, out-
degree(v)=degree(v)-1{v �=root}. A (full) binary tree is a rooted tree where all
vertices but the leaves have out-degree 2. A branch-point is a vertex of degree
at least 3.
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In these lecture notes, we will mainly work with rooted trees. Moreover we will
consider, unless specifically mentioned, that two isomorphic trees are equal, or,
when the trees are rooted, that two root-preserving isomorphic trees are equal.
Such trees can be considered as unordered unlabelled trees, in opposition to the
following definitions.

Ordered or/and Labelled Trees In the context of rooted trees, it may happen that
one needs to order the children of the root, and then, recursively, the children of each
vertex in the tree. This gives an ordered (or planar) tree. Formally, we generally see
such a tree as a subset of the infinite Ulam–Harris tree

U =
∞⋃

n=0

N
n

where N := {1, 2, . . .} and N
0 = {∅}. The element ∅ is the root of the Ulam–Harris

tree, and any other u = u1u2 . . . un ∈ U\{∅} is connected to the root via the unique
shortest path

∅→ u1 → u1u2 → . . . → u1 . . . un.

The height (or generation) of such a sequence u is therefore its length, n. We then
say that t ⊂ U is a (finite or infinite) rooted ordered tree if:

• ∅ ∈ t
• if u = u1 . . . un ∈ t\{∅}, then u = u1 . . . un−1 ∈ t (the parent of an individual in

t that is not the root is also in t)
• if u = u1 . . . un ∈ t, there exists an integer cu(t) ≥ 0 such that the element

u1 . . . unj ∈ t if and only if 1 ≤ j ≤ cu(t).

The number cu(t) corresponds to the number of children of u in t, i.e., its out-degree.
We will also sometimes consider labelled trees. In these cases, the vertices are

labelled in a bijective way, typically by {1, . . . , n} if there are n vertices (whereas in
an unlabelled tree, the vertices but the root are indistinguishable). Partial labelling
is also possible, e.g. by labelling only the leaves of the tree.

In the following we will always specify when a tree is ordered or/and
labelled. When not specified, it is implicitly unlabelled, unordered.

Counting Trees It is sometimes possible, but not always, to have explicit formulæ
for the number of trees of a specific structure. For example, it is known that the
number of trees with n labelled vertices is

nn−2 (Cayley formula),

and consequently, the number of rooted trees with n labelled vertices is

nn−1.
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The number of rooted ordered binary trees with n+ 1 leaves is

1

n+ 1

(
2n

n

)

(this number is called the nth Catalan number) and the number of rooted ordered
trees with n vertices is

1

n

(
2n− 2

n− 1

)
.

On the other hand, there is no explicit formula for the number of rooted (unlabelled,
unordered) trees. Otter [79] shows that this number is asymptotically proportional
to

cκnn−3/2

where c ∼ 0.4399 and κ ∼ 2.9557. This should be compared to the asymptotic
expansion of the nth Catalan number, which is proportional (by Stirling’s formula)
to π−1/24nn−3/2.

We refer to the book of Drmota [42] for more details and technics, essentially
based on generating functions.

2.2 First Examples

We now present a first series of classical families of random trees. Our goal will be
to describe their scaling limits when the sizes of the trees grow, as discussed in the
Introduction. This will be done in Sect. 5. Most of these families (but not all) share
a common property, the Markov-Branching property that will be introduced in the
next section.

Combinatorial Trees Let Tn denote a finite set of trees with n vertices, all sharing
some structural properties. E.g. Tn may be the set of all rooted trees with n vertices,
or the set of all rooted ordered trees with n vertices, or the set of all binary trees with
n vertices, etc. We are interested in the asymptotic behavior of a “typical element”
of Tn as n →∞. That is, we pick a tree uniformly at random in Tn, denote it by Tn

and study its scaling limit. The global behavior of Tn as n →∞will represent some
of the features shared by most of the trees. For example, if the probability that the

height of Tn is larger than n
1
2+ε tends to 0 as n →∞, this means that the proportion

of trees in the set that have a height larger than n
1
2+ε is asymptotically negligible,

etc. We will more specifically be interested in the following cases:

• Tn is a uniform rooted tree with n vertices
• Tn is a uniform rooted ordered tree with n vertices
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• Tn is a uniform tree with n labelled vertices
• Tn is a uniform rooted ordered binary tree with n vertices (n odd)
• Tn is a uniform rooted binary tree with n vertices (n odd),

etc. Many variations are of course possible, in particular one may consider trees
picked uniformly amongst sets of trees with a given structure and n leaves, or more
general degree constraints. Some of these uniform trees will appear again in the next
example.

Galton–Watson Trees Galton–Watson trees are random trees describing the
genealogical structure of Galton–Watson processes. These are simple mathematical
models for the evolution of a population that continue to play an important role in
probability theory and in applications. Let η be a probability on Z+ (η is called
the offspring distribution) and let m := ∑

i≥1 iη(i) ∈ [0,∞] denote its mean.
Informally, in a Galton–Watson tree with offspring distribution η, each vertex has
a random number of children distributed according to η, independently. We will
always assume that η(1) < 1 in order to avoid the trivial case where each individual
has a unique child. Formally, an η-Galton–Watson tree T η is usually seen as an
ordered rooted tree and defined as follows (recall the Ulam–Harris notation U):

• c∅(T η) is distributed according to η

• conditionally on c∅(T η) = p, the p ordered subtrees τi = {u ∈ U : iu ∈ T η}
descending from i = 1, . . . , p are independent and distributed as T η.

From this construction, one sees that the distribution of T η is given by:

P
(
T η = t

) =
∏

v∈t
ηcv(t) (2)

for all rooted ordered tree t. This definition of Galton–Watson trees as ordered trees
is the simplest, avoiding any symmetry problems. However in the following we will
mainly see these trees up to isomorphism, which roughly means that we can “forget
the order”.

Clearly, if we call Zk the number of individuals at height k, then (Zk, k ≥ 1) is
a Galton–Watson process starting from Z0 = 1. It is well known that the extinction
time of this process,

inf{k ≥ 0 : Zk = 0}

if finite with probability 1 when m ≤ 1 and with a probability ∈ [0, 1) when m > 1.
The offspring distribution η and the tree T η are said to be subcritical when m < 1,
critical when m = 1 and supercritical when m > 1. From now on, we assume that

m = 1

and for integers n such that P(#T η = n) > 0, we let T
η,v
n denote a non-ordered

version of the Galton–Watson tree T η conditioned to have n vertices. Sometimes, we
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will need to keep the order and we will let T η,v,ord
n denote this ordered conditioned

version. We point out that in most cases, but not all, a subcritical or a supercritical
Galton–Watson tree conditioned to have n vertices is distributed as a critical Galton–
Watson tree conditioned to have n vertices with a different offspring distribution. So
the assumption m = 1 is not too restrictive. We refer to [66] for details on that point.

It turns out that conditioned Galton–Watson trees are closely related to combina-
torial trees. Indeed, one can easily check with (2) that:

• if η = Geo(1/2), T η,v,ord
n is uniform amongst the set of rooted ordered trees with

n vertices
• if η = Poisson(1), T η,v

n is uniform amongst the set of rooted trees with n labelled
vertices

• if η = 1
2 (δ0 + δ2), T

η,v,ord
n is uniform amongst the set of rooted ordered binary

trees with n vertices.

We refer e.g. to Aldous [9] for additional examples.
Hence, studying the large-scale structure of conditioned Galton–Watson trees

will also lead to results in the context of combinatorial trees. As mentioned in the
Introduction, the scaling limits of large conditioned Galton–Watson trees are now
well known. Their study has been initiated by Aldous [8–10] and then expanded by
Duquesne [44]. This will be reviewed in Sect. 3. However, there are some sequences
of combinatorial trees that cannot be reinterpreted as Galton–Watson trees, starting
with the example of the uniform rooted tree with n vertices or the uniform rooted
binary tree with n vertices. Studying the scaling limits of these trees remained open
for a while, because of the absence of symmetry properties. These scaling limits are
presented in Sect. 5.2.

In another direction, one may also wonder what happens when considering
versions of Galton–Watson trees conditioned to have n leaves, instead of n vertices,
or more general degree constraints. This is discussed in Sect. 5.1.2.

Dynamical Models of Tree Growth We now turn to several sequences of finite
rooted random trees that are built recursively by adding at each step new edges
on the pre-existing tree. We start with a well known algorithm that Rémy [88]
introduced to generate uniform binary trees with n leaves.

Rémy’s Algorithm The sequence (Tn(R), n ≥ 1) is constructed recursively as
follows:

• Step 1: T1(R) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(R), choose uniformly at random one of its edges and graft on

“its middle” one new edge-leaf. By this we mean that the selected edge is split
into two so as to obtain two edges separated by a new vertex, and then a new
edge-leaf is glued on the new vertex. This gives Tn(R).

It turns out (see e.g. [88]) that the tree Tn(R), to which has been subtracted the
edge between the root and the first branch point, is distributed as a binary critical
Galton–Watson tree conditioned to have 2n − 1 vertices, or equivalently n leaves
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(after forgetting the order in the GW-tree). As so, we deduce its asymptotic behavior
from that of Galton–Watson trees. However this model can be extended in several
directions, most of which are not related to Galton–Watson trees. We detail three of
them.

Ford’s α-Model [55] Let α ∈ [0, 1]. We construct a sequence (Tn(α), n ≥ 1) by
modifying Rémy’s algorithm as follows:

• Step 1: T1(α) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(α), give a weight 1− α to each edge connected to a leaf, and

α to all other edges (the internal edges). The total weight is n − 1 − α. Now, if
n �= 2 or α �= 1, choose an edge at random with a probability proportional to
its weight and graft on “its middle” one new edge-leaf. This gives Tn(α). When
n = 2 and α = 1 the total weight is 0 and we decide to graft anyway on the
middle of the edge of T1 one new edge-leaf.

Note that when α = 1/2 the weights are the same on all edges and we recover
Rémy’s algorithm. When α = 0, the new edge is always grafted uniformly on an
edge-leaf, which gives a tree Tn(0) known as the Yule tree with n leaves. When
α = 1, we obtain a deterministic tree called the comb tree. This family of trees
indexed by α ∈ [0, 1] was introduced by Ford [55] in order to interpolate between
the Yule, the uniform and the comb models. His goal was to propose new models
for phylogenetic trees.

k-Ary Growing Trees [60] This is another extension of Rémy’s algorithm, where
now several edges are added at each step. Consider an integer k ≥ 2. The sequence
(Tn(k), n ≥ 1) is constructed recursively as follows:

• Step 1: T1(k) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(k), choose uniformly at random one of its edges and graft on

“its middle” k − 1 new edges-leaf. This gives Tn(k).

When k = 2, we recover Rémy’s algorithm. For larger k, there is no connection
with Galton–Watson trees.

Marginals of Stable Trees: Marchal’s Algorithm In [73], Marchal considered the
following algorithm, that attributes weights also to the vertices. Fix a parameter
β ∈ (1, 2] and construct the sequence (Tn(β), n ≥ 1) as follows:

• Step 1: T1(β) is the tree with one edge and two vertices: one root, one leaf
• Step n: given Tn−1(β), attribute the weight

– β − 1 on each edge
– d − 1 − β on each vertex of degree d ≥ 3.

The total weight is nβ − 1. Then select at random an edge or vertex with a
probability proportional to its weight and graft on it a new edge-leaf. This gives
Tn(β).
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The reason why Marchal introduced this algorithm is that Tn(β) is actually
distributed as the shape of a tree with edge-lengths that is obtained by sampling n

leaves at random in the stable Lévy tree with index β. The class of stable Lévy trees
plays in important role in the theory of random trees. It is introduced in Sect. 3.2
below.

Note that when β = 2, vertices of degree 3 are never selected (their weight is 0).
So the trees Tn(β), n ≥ 1 are all binary, and we recover Rémy’s algorithm.

Of course, several other extensions of trees built by adding edges recursively may
be considered, some of which are mentioned in Sects. 5.3.3 and 6.1.

Remark In these dynamical models of tree growth, we build on a same probability
space the sequence of trees, contrary to the examples of Galton–Watson trees or
combinatorial trees that give sequences of distributions of trees. In this situation,
one may expect to have more than a convergence in distribution for the rescaled
sequences of trees. We will see in Sect. 5.3 that it is indeed the case.

2.3 The Markov-Branching Property

Markov-Branching trees were introduced by Aldous [11] as a class of random binary
trees for phylogenetic models and later extended to non-binary cases in Broutin et
al. [30], and Haas et al. [63]. It turns out that many natural models of sequence of
trees satisfy the Markov-Branching property (MB-property for short), starting
with the example of conditioned Galton–Watson trees and most of the examples of
the previous section.

Consider

(
Tn, n ≥ 1

)

a sequence of trees where Tn is a rooted (unordered, unlabelled) tree with n leaves.
The MB-property is a property of the sequence of distributions of Tn, n ≥ 1.
Informally, the MB-property says that for each tree Tn, given that

the root of Tn splits it in p subtrees with respectively λ1 ≥ . . . ≥ λp leaves,

then Tn is distributed as the tree obtained by gluing on a common root p independent
trees with respective distributions those of Tλ1, . . . , Tλp . The way the leaves are
distributed in the sub-trees above the root, in each Tn, for n ≥ 1, will then allow to
fully describe the distributions of the Tn, n ≥ 1.

We now explain rigorously how to build such sequences of trees. We start with a
sequence of probabilities (qn, n ≥ 1), where for each n, qn is a probability on the
set of partitions of the integer n. If n ≥ 2, this set is defined by

Pn :=
{
λ = (λ1, . . . , λp), λi ∈ N, λ1 ≥ . . . ≥ λp ≥ 1 :

p∑

i=1

λi = n

}
,
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whereas if n = 1, P1 := {(1),∅} (we need to have a cemetery point). For a partition
λ ∈ Pn, we denote by p(λ) its length, i.e. the number of terms in the sequence λ.
The probability qn will determine how the n leaves of Tn are distributed into the
subtrees above its root. We call such a probability a splitting distribution. In order
that effective splittings occur, we will always assume that

qn((n)) < 1, ∀n ≥ 1.

We need to define a notion of gluing of trees. Consider t1, . . . , tp , p discrete rooted
(unordered) trees. Informally, we want to glue them on a same common root in
order to form a tree 〈t1, . . . , tp〉 whose root splits into the p subtrees t1, . . . , tp.
Formally, this can e.g. be done as follows. Consider first ordered versions of the
trees tord

1 , . . . , tord
p seen as subsets of the Ulam–Harris tree U and then define a new

ordered tree by

〈tord
1 , . . . , tord

p 〉 := {∅} ∪p
i=1 itord

i .

The tree 〈t1, . . . , tp〉 is then defined as the unordered version of 〈tord
1 , . . . , tord

p 〉.
Definition 2.1 For each n ≥ 1, let qn be a probability on Pn such that qn((n)) <

1. From the sequence q = (qn, n ≥ 1) we construct recursively a sequence of
distributions (Lq

n) such that for all n ≥ 1, Lq
n is carried by the set of rooted trees

with n leaves, as follows:

• Lq
1 is the distribution of a line-tree with G+ 1 vertices and G edges where G is

a geometric distribution:

P(G = k) = q1(∅)(1 − q1(∅))k, k ≥ 0,

• for n ≥ 2, Lq
n is the distribution of

〈T1, . . . , Tp()〉

where  is a partition of n distributed according to qn, and given , the trees
T1, . . . , Tp() are independent with respective distributions Lq

1
, . . . , Lq

p()
.

A sequence (Tn, n ≥ 1) of random rooted trees such that Tn ∼ Lq
n for each n ∈ N is

called a MB-sequence of trees indexed by the leaves, with splitting distributions
(qn, n ≥ 1).

This construction may be re-interpreted as follows: we start from a collection of
n indistinguishable balls, and with probability qn(λ1, . . . , λp), split the collection
into p sub-collections with λ1, . . . , λp balls. Note that there is a chance qn((n)) < 1
that the collection remains unchanged during this step of the procedure. Then, re-
iterate the splitting operation independently for each sub-collection using this time
the probability distributions qλ1, . . . , qλp . If a sub-collection consists of a single
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Fig. 1 A sample tree T11. The first splitting arises with probability q11(4, 4, 3)

ball, it can remain single with probability q1((1)) or get wiped out with probability
q1(∅). We continue the procedure until all the balls are wiped out. The tree Tn is then
the genealogical tree associated with this process: it is rooted at the initial collection
of n balls and its n leaves correspond to the n isolated balls just before they are
wiped out, See Fig. 1 for an illustration.

We can define similarly MB-sequences of (distributions of) trees indexed by
their number of vertices. Consider here a sequence (pn, n ≥ 1) such that pn is a
probability on Pn with no restriction but

p1((1)) = 1.

Mimicking the previous balls construction and starting from a collection of n

indistinguishable balls, we first remove a ball, split the n−1 remaining balls in sub-
collections with λ1, . . . , λp balls with probability pn−1((λ1, . . . , λp)), and iterate
independently on sub-collections until no ball remains. Formally, this gives:

Definition 2.2 For each n ≥ 1, let pn be a probability on Pn, such that p1((1)) = 1.
From the sequence (pn, n ≥ 1) we construct recursively a sequence of distributions
(Vp

n ) such that for all n ≥ 1, Vp
n is carried by the set of trees with n vertices, as

follows:

• Vp
1 is the deterministic distribution of the tree reduced to one vertex,

• for n ≥ 2, Vp
n is the distribution of

〈T1, . . . , Tp()〉
where  is a partition of n − 1 distributed according to pn−1, and given
, the trees T1, . . . , Tp() are independent with respective distributions
Vp
1

, . . . ,Vp
p()

.
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A sequence (Tn, n ≥ 1) of random rooted trees such that Tn ∼ Vp
n for each n ∈ N is

called a MB-sequence of trees indexed by the vertices, with splitting distributions
(pn, n ≥ 1).

More generally, the MB-property can be extended to sequences of trees (Tn, n ≥
1) with arbitrary degree constraints, i.e. such that for all n, Tn has n vertices in
A, where A is a given subset of Z+. We will not develop this here and refer the
interested reader to [89] for more details.

Some Examples

1. A deterministic example. Consider the splitting distributions on Pn

qn(�n/2�, �n/2�) = 1, n ≥ 2,

as well as q1(∅) = 1. Let (Tn, n ≥ 1) the corresponding MB-sequence indexed
by leaves. Then Tn is a deterministic discrete binary tree, whose root splits in
two subtrees with both n/2 leaves when n is even, and respectively (n + 1)/2,
(n−1)/2 leaves when n is odd. Clearly, when n = 2k, the height of Tn is exactly
k, and more generally for large n, ht(Tn) ∼ ln(n)/ ln(2).

2. A basic example. For n ≥ 2, let qn be the probability on Pn defined by

qn((n)) = 1 − 1

nα
and qn(�n/2�, �n/2�) = 1

nα
for some α > 0,

and let q1(∅) = 1. Let (Tn, n ≥ 1) be an MB-sequence indexed by leaves
with splitting distributions (qn). Then Tn is a discrete tree with vertices with
degrees ∈ {1, 2, 3} where the distance between the root and the first branch
point (i.e. the first vertex of degree 3) is a Geometric distribution on Z+ with
success parameter n−α . The two subtrees above this branch point are independent
subtrees, independent of the Geometric r.v. just mentioned, and whose respective
distances between the root and first branch point are Geometric distributions
with respectively (�n/2�)−α and (�n/2�)−α parameters. Noticing the weak
convergence

Geo(n−α)

nα

(d)−→
n→∞ Exp(1)

one may expect that n−αTn has a limit in distribution. We will later see that it is
indeed the case.

3. Conditioned Galton–Watson trees. Let T
η,l
n be a Galton–Watson tree with

offspring distribution η, conditioned on having n leaves, for integers n for which
this is possible. The branching property is then preserved by conditioning and
the sequence (T

η,l
n , n : P(#leavesT

η) > 0) is Markov-Branching, with splitting


