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Dedicated to the memory of a great creative
spirit, G. A. Maugin



Preface

At the beginning of February 2017, the invitation letters for a special remembrance
book were sent to approximately 70 friends and colleagues of the great French
scientist in the field of Continuum Mechanics (or more general Continuum Physics)
Gérard A. Maugin who died on September 22, 2016. As usual in such case that the
response is 50% sending a kind reply that they will submit a paper, and finally one
gets 15–20 papers. In the case of Gérard, the resonance was overwhelming—the
editors got finally approximately 60 papers and the decision was made to publish
two volumes. This is the second one including 15 papers from authors living in
13 countries following volume 1 (Altenbach, H., Pouget, J., Rousseau, M.,
Collet, B., Michelitsch, Th. (Eds.) Generalized Models and Non-classical
Approaches in Complex Materials 1, Advanced Structured Materials Vol. 89,
Springer International Publishing, 2018).

The scientific interests of Gérard are well reflected by variety of subjects covered
by the contributions to this book including the following branches of Continuum
Mechanics:

• relativistic continuum mechanics,
• micromagnetism,
• electrodynamics of continua,
• electro-magneto-mechanical interaction,
• mechanics of deformable solids with ferroïc states (ferromagnetics, ferro-

electrics, etc.),
• thermomechanics with internal state variables,
• linear and nonlinear surface waves on deformable structures,
• nonlinear waves in continua,
• Lighthill–Whitham wave mechanics, lattice dynamics,
• Eshelbian Mechanics of continua on the material manifold,
• geometry and thermomechanics of material defects,
• material equations, and
• biomechanical applications (tissue and long bones growth).
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In addition, he published several papers and books on the history of continuum
mechanics. This was reason that the authors of this book have submitted so different
papers with the focus on the research interests of Gérard.

We have to thank all contributors for their perfect job. Last but not least, we
gratefully acknowledge Dr. Christoph Baumann (Springer Publisher) supporting the
book project.

Magdeburg Holm Altenbach
Paris Joël Pouget
February 2018 Martine Rousseau

Bernard Collet
Thomas Michelitsch

The original version of the book was inadvertently published without chapter 15.
A correction to the book can be found at https://doi.org/10.1007/978-3-319-77504-3_16
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Chapter 1
Damping in Materials and Structures:
An Overview

Yvon Chevalier

Abstract For ordinary people, mechanical damping is the attenuation of a motion
over time under possible eventual external actions. The phenomenon is produced by
the loss or dissipation of energy during motion and thus time. The concept of real
time is therefore at the center of the phenomenon of damping and given the recent
scientific contributions (of gravitational waves in 2016), the notion of space-time
calls for reflections and comments. The systemic approach of the phenomenon
taking into account the mechanical system, its input and output variables (gener-
alized forces or displacements) allows a very convenient analysis of the phe-
nomenon. We insist on the differences between a phenomenon and a system: the
causality, the linearity, the hysteresis are for example properties of phenomena and
not properties of system; on the other hand we can consider dissipative or
non-dissipative systems. We describe some macroscopic dissipation mechanisms in
structures and some microscopic dissipation at the molecular level in materials or
mesoscopic dissipation in composites materials. After specifying the notion of
internal forces of a system we present some classical dissipative mechanisms
currently used: viscous dissipation, friction dissipation, micro-frictions. The pur-
pose of this presentation is not to list new dissipative systems but to point out a
number of errors, both scientific and technical, which are frequently committed.

1.1 Introduction

What is the damping of motion in mechanics? For common people that is the
motion of a mass Which decreases with time under the eventual action of an
excitation called force, the phenomenon is regarded as non-destructive, except in
specific cases. This very simple concept currently uses the four general quantities of
Newtonian mechanics (Isaac Newton-1638–1723 (see [33])) which are supposed to

Y. Chevalier (✉)
Quartz Laboratory, Institute Superior of Mechanic of Paris (ISMEP-SUPMECA),
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be independent: displacement, time, mass and force. This concept that we are going
to develop is largely enough to explain and study the common phenomena in the
field of engineering.

It should be emphasized, however, that the scientific revolution, which was
attacked and vilified by the thurifiers (clerics, flatterers, adulators) of the various
religions for three centuries, was again discussed at the beginning of the 20th
century by the restricted theory of relativity and general relativity of Albert Einstein
and the appearance of quantum mechanics. To try to simplify, in the field of the
infinitely large variables, the parameters of the Newtonian mechanics are no longer
independent: time and space depend on the reference coordinate system, mass and
energy are the same entity and gravitational forces are due to the curvature of
space-time. At the same time quantum mechanics is concerned with the infinitely
small variables (atomic scale) and the particle-wave duality vision is probabilistic:
the famous example is Schrödinger’s cat (1925) which can be both dead and alive.
It distinguishes 4 types of forces and three fields: electromagnetism linking elec-
trons to the nucleus of the atom (chemistry), strong interaction linking protons and
nucleus cohesion (nuclear fusion and fission), nuclear force (radiation) and gravi-
tation. Only the first 3 actions result from a quantum field, since gravitation does
not depend on a field. The theory of relativity explains the gravitation by the
curvature of space-time. It should be noted that the link between the relativistic
mechanics and the quantum mechanics is not yet established despite the efforts of
scientists (8 Nobel prizes in physics during the last 20 years) and the technical
performances of the experimental devices: CERN particle accelerator in Geneva,
the laser interferometers of the centers in Europe-Italy, two in the USA-Washington
and Louisiana), and the satellite observations and space probes moving in the
universe.

The scientific community is booming over the last two decades and concepts
resulting from theories are becoming reality: Higgs boson in 2013, gravitational
waves in 2016 for example. Let us return to our preoccupation with damping in a
concept of Newtonian mechanics which concerns most of the current engineering
problems and where time is still the central variable, while recalling that GPS is an
application of relativistic mechanics.

1.2 Mechanisms of Energy Dissipation

The attenuation of the motion of a mass over time can be analyzed from an energy
point of view, which gives it a more scientific co-notation than the raw observation
presented in the introduction. The mechanical energy dissipated during the move-
ment is transformed, in heat, or else in structural modification of the environment,
in electricity, etc. This leads us to consider a systemic approach to the problem
which makes it possible to give an intrinsic character to the damping. Let us analyze

2 Y. Chevalier



the diagram above (Fig. 1.1) in which the mechanical system is called (Σ), in which
the important mechanism is provided with a mass (articulated systems, solid (and/
or) fluid structures, …) and is subjected to excitatory actions (input variables X).
This results in a response (output variable Y). The nature of the system obviously
links the input and output variables which may be scalar, vector or tensor,
depending on time t and space coordinates (x, y, z). The nature of these variables
provides no information in the interpretation of damping which is a temporal
phenomenon which may have spatial effects in wave propagation phenomena for
example. We will therefore limit ourselves to scalar variables: q(t) will be a general
displacement (length, angle, deformation) and Q(t) will be general force (force,
moment, stress) velocity, acceleration can also be considered. The important thing
is to note the difference between “phenomenon” and “system”: a phenomenon is a
system equipped with its input and output variables, we may thus consider damping
phenomena and dissipative systems. There is often a confusion between the
properties of the phenomenon (causality, stationarity, linearity, hysteresis …) and
those of the system. This energy approach is coherent because it is included in the
formulation of the principle of virtual powers involving power of internal forces,
power of inertia efforts (the system), and power of external forces (the phe-
nomenon). The energy dissipation mechanisms can be schematically classified into
2 categories: macroscopic mechanisms and microscopic mechanisms.

1.2.1 Macroscopic Approach

The macroscopic side appears because the dissipation is produced on the scale of
the system itself directly on the variables of input and output (force, displacement,
velocity, etc.).

Fig. 1.1 Systemic schematics of damping and energy dissipation
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1.2.1.1 Viscous Dissipation

The cause of this energy dissipation is the velocity of motion. The most well-known
mechanical device is the hydraulic damper (or oil-filled drilled piston) found in
vehicles suspension. In this device the dissipation of energy is due to the viscosity
of the oil which goes, with more or less ease, through the holed piston according to
his speed. However, we must not forget the role of the spring that compensates for
external forces. This simple mechanical vehicle suspension device has led to
imagine more integrated systems: the idea is to concentrate the functions of stiffness
(spring) and damping (damper) in the same system using the properties of rigidity
and damping of materials (composite materials). The advantage is obvious: Small
footprint of the device, medium good reliability of the system, good corrosion
resistance, reasonable manufacturing cost. Several projects of unidirectional com-
posite blade (glass or carbon/epoxy), which have not been completed industrially,
were born in this perspective during the last 2 decades of the 20th century.

1.2.1.2 Friction Dissipation

The cause of this energy dissipation is the presence of frictional forces between two
elements of the system. The normal force at the contact surface generates a tan-
gential force which opposes the motion and the phenomenon is therefore damped.
The most known device is the vehicle brake consisting of a brake housing con-
taining a pad which rubs on a rotating disc. Compared to viscous-type dissipation,
this dissipation by friction can be sudden or softer in the case of micro-friction
where the two masses can be clamped in their displacements (see paragraph 1.3.4.4)
This is the case for example of assemblies riveted, bolted or even glued. These
previous devices are the seat of micro-displacements during external stresses and
therefore of micro-frictions which are dissipative.

1.2.1.3 Magneto-Mechanic Dissipation

The cause of this energy dissipation is due to the presence of a magnetic field in
which moves a conducting mass which generates eddy currents. These currents
generate an own drag force, electromotive force of Laplace which opposes the
movement. This concept of dissipation of energy and thus damping, is very recent
compared to a pad rubbing on a wheel which is known for millennia. The first
patent for electromagnetic retarder was deposited by Steckel in 1903 and realized in
practice by Raoul Sarazin in 1936. These systems are known under the trade name
of “Telma” and equip heavy trucks and coaches. Unlike the conventional brakes
which use the friction of two masses, this braking, or this dissipation of energy,
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works without contact and thus without wear of the mechanical parts. The system of
damping of motion by dissipation of electric energy is a non-destructive system.

1.2.1.4 Electro-Mechanic Dissipation

The cause of this energy dissipation is due to the presence of an electric field
generated by displacements of electric charges caused by external forces: piezo-
electricity. If these charges can move in an electrical circuit there is dissipation of
energy by Joule effect. This electric current can also excite systems of piezoelectric
actuators which correct and attenuate the movement, (see [4, 27]).

1.2.1.5 Plastic Dissipation

The cause of this dissipation of energy is the plasticity of a part of the system. High
external loads generate significant internal stresses. If these exceed a threshold the
system is irreversibly altered (plasticity of the materials for example) but retains its
integrity. The integrity of the system can be destroyed if the efforts are too large and
then there is ruin. This device for absorbing energy by plastic deformation of
metallic materials (see Fig. 1.2) is used, for example, in the aeronautical sector to
absorb the slight shocks and is present at the front of the cockpit of the aircraft. The
same principle is used in the automotive sector for absorbing shocks at low speeds:
metal profiles in the shape of tubes of rectangular cross-section, attaching the front
and rear automobile bumpers to the body of the vehicle, deform by buckling in the
event of an impact and thus absorb kinetic energy for low speeds (of the order of
10 km/h).

Fig. 1.2 Materials with high absorptive capacity a type of aluminum honeycomb b type of
small-pore aluminum foams
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1.2.2 Microscopic Approach

The mechanical dissipative system can also be studied finer by introducing smaller
scales in the system to explain the macroscopic phenomenon which is the result of
several micro-phenomena working in an intimate way on a smaller scale.

1.2.2.1 Atomic Scale Approach

We can schematically distinguish two close mechanisms that generate damping:
one by thermomechanical effects, the other by energy effects:

• Damping in materials by thermomechanical effects
The most well-known theory is that of the “thermoelastic peaks of Zener” (see
[46]) which considers damping in metals can be interpreted by the presence of
thermal diffusion phenomena which (the best-known mechanism). An increase
in temperature under constant pressure always results in a local increase in
volume. Vice versa, the adiabatic application of loads causes a drop-in tem-
perature and, consequently, tends to cause a heat flow from the outside. As the
temperature drop gradually relaxes, the specimen undergoes a slow increase in
length and generate relaxation. This phenomenon is conditioned by the thermal
diffusion coefficient which affects the heat flux. This importance of thermal
conductivity was found by Kirchhoff as early as 1860 (see [20]), who noted the
importance of thermal conductivity in the damping of acoustic waves. Note that
damping in common metals can be neglected (less than 0.1% at ambient tem-
perature) except for some particular ferro-magnetic alloys (Fe–Cr–Al or Mo)
(see [36]) where it can reach a few per cent. These metal alloys have approx-
imately the rigidity of steel with cushioning capacities of the polymers, they are
used in military applications (submarine discretion for example). An approach
also well known in, is those of “free volumes”. Interpretation assumes that there
are “empty volumes” at the atomic or molecular scale inside the material. Under
the effect of temperature, forces or other physical phenomena such as moisture,
for example, these volumes lose its shape and evolve according to the excitation
and then tend to stabilize, with delay and according to a time of their own
(material history). Compared to the present time (real time) this phenomenon
generates damping and therefore energy dissipation. This interpretation has been
developed by chemists concerned with the mechanical behavior of rubber
materials. We can mention the work of Knauss and Emri [21, 22] in which the
deformation of the free volume is due to temperature (rubber materials and
polymers for example), this help to explain William, Landel, Ferry
(WLF) curve, (see [13]) and the non-linear viscoelastic behavior of elastomers.
In a similar way Schapery proposes that the cause of deformation of the free
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volume is the stress that conditions the historical time. This gives rise to non-
linear viscoelastic models reflecting the behavior of polymers (see [40, 41]).
This approach by the theory of free volume has been taken up more recently by
other authors to study non-linear viscoelasticity (see [14, 15]). It should be noted
that the scale considered here is “large microscopic” close to those of the
mechanics of continuous media.

• Damping in materials by energy effects
This approach is energetic and based on the notion of internal variables and on
the local state, this is also a microscopic point of view but does not explicitly
refer to the geometric aspect. The simplest theory, “Theory of transition steps”,
allows us to study the influence of temperature. It is associated with the name of
Eyring who analyses studies chemical reactions and the chemical kinetics (see
[12]). The basic idea is that two molecules that react, to lead an activated
complex, or possess a transition step, which decomposes to give final reaction
products. This reaction, which comes from the theory of transition step, gen-
erates an equation which, unlike Arrhenius’ law, corresponds to a theoretical
model based on statistical thermodynamics (This equation was established
almost simultaneously in 1935 by Henry Eyring, G. Evans, and Michael
Polanyi). The “theory of sites” is a specific approach to damping in polymers
which have an amorphous state and a crystalline state according to temperature
(see [7]). The theory of sites is based on the “theory of transition steps”. It
applied to solid crystalline dielectrics and was extended with some success to
the mechanical relaxations of polymers. This relaxation is related to the varia-
tion of free energy between the crystalline state and the amorphous state gen-
erated by the difference between two sites modified by application of a stress.
There is a population change between site 1 and site 2 and this change is related
to deformation. It is not difficult to imagine how this can happen at the
molecular level if, for example, the motion a molecular chain involves internal
rotations. Locally, the configurations of strings can be changed from a left
configuration to a right configuration. The free energy difference generates a
time constant identical to that of the Zener model cited above. This site model is
applicable to relaxation processes showing a constant activation energy, that is
to say to local motions in the crystalline regions of the semi-crystalline
polymers.

1.2.2.2 Molecular Scale Approach

In this approach, the dynamics of the movement of molecules inside the material
makes it possible to explain the macroscopic mechanical behavior of the material.
In this perspective Rouse’s theory is the most well-known (see [38]), it applies to
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polymers. It is based on the movement of flexible insulated chains. The aim of this
theory is to predict the relaxation spectrum for amorphous polymers as well as the
relationship between time scale and temperature. The molecules of polymers are
represented as a system of strings (sub-molecules) connected by springs whose
behavior is that of a free chain on the basis of the Gaussian theory of elasticity (see
Fig. 1.3). If the nodes are moved from their free equilibrium position, the motion is
generated by two types of forces:

• the forces due to the friction of the chains,
• forces due to a tendency of the molecular chains to return to their state and the

result on a macroscopic scale is that the behavior of the polymer is equivalent to
a model of spring and shock absorbers in parallel (Kelvin-Voigt) (see [44]).

1.2.2.3 Mesoscopic Scale Approach

In an approach close to the previous ones, it is possible to envisage composite
materials which have damping properties, that is to say media composed of two or
more materials that are more or less damping. The scale of analysis is no longer
microscopic (atoms or molecules) but intermediate between the latter and the
macroscopic approach of the medium: it is called “mesoscopic scale”. If on the
macroscopic scale the composite medium is considered as homogeneous material,
its behavior is determined by homogenization processes from a microscopic or
mesoscopic scale (see [8, 37]). The most known case is laminated composite (see
Fig. 1.4). The behavior of each ply is determined by the microscopic scale as before
and the mesoscopic scale corresponds to the behavior of each ply integrated into a
homogenization process (see [24]) to arrive at the macroscopic behavior.

(a)

i-1 y

x

i

i

i+1

i+1
i-1

(xi,yi,zi)

z

(b)

Fig. 1.3 Rouse model—
a network of chains—
b representation of the
network by a combination of
springs and shock absorbers
[38, 44]
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1.3 Modelling Energy Dissipation

The internal forces and their work in cyclic motions are examined before analyzing
some models of dissipation.

1.3.1 Internal Forces

The notion of internal forces specific to a mechanical system (Σ), a thermodynamic
concept, manifests only itself in reality when the system is in operation. As we have
already pointed out, the energy balance of a mechanical system in operation is
governed by the principle of “virtual powers”, see [17, 28, 29, 39] in which work of
the internal efforts is one of the elements. The real movement is a special case of the
virtual movement and is expressed in general by the following equation (or
equations) in temporal aspect:

m q
∙∙
+ Φ q, q

∙
, . . . q

ðnÞ
; Q, Q

∙
, . . . Q

ðnÞ
, t

� �
= Q tð Þ ð1:1Þ

in which q(t) is a generalized displacement, Q(t) a generalized effort and Φ the
internal forces of the system which are sometimes called “internal frictions”. These
internal forces depend usually on generalized displacements and their successive

Fig. 1.4 Angle-ply carbon/epoxy composite, 8 plies: 2 × (0° × 60° × 0° × −60°)—thickness
900 μ. a Microscopic scale: ply—b mesoscopic scale: laminate structure

1 Damping in Materials and Structures: An Overview 9



derivatives, on generalized forces and their successive derivatives according to the
considered dissipation mechanism. As mentioned previously, q and Q can be scalar,
vector or tensor quantities and are all causal signals (q, Q, Φ, etc.) it means they are
zero for the negative values of time. This deserves undivided attention for the
internal efforts Φ that exist only from the moment 0 beginning of the phenomenon:

Φ = 0 when q and q
∙
are zero. Caution should therefore be exercised in the analysis

of aging systems whose properties change over of time.
One technique of analyzing relation (1.1) is to use the classical integral trans-

forms, Laplace or Fourier, which are advantageous because they transform the
derivatives into multiplications and the integrations into divisions. Take for
example the Fourier transform of the relation of motion (1.1)

mω2 q ̂ðωÞ+ Φ̂ q, q
∙
, . . . q

ðnÞ
; Q, Q

∙
, . . . . Q

ðnÞ
, t

� �
= Q̂ ωð Þ ð1:2Þ

Relation expressed with q ̂ðωÞ and Q̂ ωð Þ, the Fourier transforms of the general-
ized displacements and forces q(t) and Q(t), ω is the circular frequency. The relation
(1.2) is advantageous only if the Fourier transform of de Φ is expressed as a
function of the Fourier transforms of q and Q (linear dependence for example). It is
important to note that for any physical signal which is causal, its Fourier transform
has an even real part and an odd imaginary part versus circular frequency ω.
This remark must be present in any choice of frequency models. As we shall see
later, relations (1.1) (temporal aspect) or (1.2) (frequency aspect), which are the
most natural, allow to quantify the elementary mechanisms of energy dissipation in
mechanical systems. It should be emphasized, however, that in some dissipation
mechanisms the internal forces Φ are only implicitly determined and it is possible to
express the generalized displacement q in the following form

qðtÞ=Θ Φ, Φ
∙
, . . . Φ

ðnÞ
; Q, Q

∙
, . . . Q

ðnÞ
, t

� �
ð1:3Þ

The dependence can be an integro-differential equation, which does not facilitate
the analysis of the problem, except in the case of a linear dependence.

1.3.2 Work of Internal Forces: Cycling

The approach of the phenomenon of energy dissipation from the internal forces of
the mechanical system is an analytical approach, that means the knowledge and the
nature of the internal dissipation of energy is known. If the dissipation models are
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numerous and varied (see viscous dissipation Sects. 1.3.3 and 1.3.4 below) they are
left to the discretion of the user and the designer. Conversely, a cyclical approach is
synthetic in the sense that it does not explicitly take into account the notion of
internal efforts of the system but only their work. For example, let us describe a
cycle by a system (see Fig. 1.5), the input variable being for example the gener-
alized displacement q(t) and the output variable the generalized force Q(t). The
energy balance of this cycle is as follows:

• WF: energy supplied to the system (surface subtended by the upper curve of
Fig. 1.5): Vertical stripes and hatchings

• WR: energy recovered by the system (surface subtended by the lower curve of
Fig. 1.5): Vertical stripes

• WD = WF − WR: energy dissipated during the cycle: hatched area of the cycle
(Fig. 1.5).

The commonly accepted definition of Damping is the “Specific damping
Capacity” (SDC) Ψ and is defined as follows

Ψ =
WD

WF
= 1 −

WR

WF
ð1:4Þ

If the system is non-dissipative WD = 0: the energy returned is equal to the
energy supplied and thus the SDC Ψ = 0. The system is then thermodynamically
called “elastic”. This behavior is of course ideal, it is convenient in modeling and
simulation, realistic in some cases, but does not correspond to the general physical
reality. In a non-destructive mechanical system (excluding explosions, deflagra-
tions, etc.) the energy recovered cannot be greater than the energy supplied and
therefore

0<ψ<1 ð1:5Þ

Fig. 1.5 Description of a
cycle for a reversible
mechanical system: q(t) and
Q(t) are respectively the
displacements and the
generalized forces
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In its general formulation, the SDC Ψ depends on the internal forces of the
system (Σ) (relation 1.1) but also on the cycle, that means

Ψ Φ, q(t), Q(t), t0, t1, t2½ � ð1:6Þ

and consequently, indirectly of q0 and Q1 (see Fig. 1.5). In practical aspects a
number of remarks deserve to be mentioned which can simplify the analysis.

Comment 3.1 If the system is governed by a potential that means that the energy
involved in going from point A to point B of the diagram (q, Q) (see Fig. 1.5) is
independent of the path then the energy supplied WF is identical to the energy
recovered WR. This implies that Ψ = 0.

Comment 3.2 If the phenomenon is invariant in time or “stationary” (non-aging),
the evolution between times t0 and t1 (Fig. 1.5) does not depend on t0 and t1 but on
the difference t1 − t0. In this case, we do not restrict the generality by taking t0 = 0.

Comment 3.3 The previous scheme (Fig. 1.5) is described for a cycle but it is
possible to envisage several successive cycles. The specific damping thus evolves
from one cycle to another. “The Mullins effect” (see [31]) in some viscoelastic
media is the best known (see Fig. 1.6).

As in many damping phenomena, when the number of cycles increases, the
difference from one cycle to another is very low or nil and the notion of specific
damping appears as the consequence of an intrinsic property of the system.

Comment 3.4 In the field of electricity, the notion of quality factor Q (not to be
confused with forces) is sometimes used which is the inverse of the specific
damping Q = 2π/Ψ.

Fig. 1.6 Mullin effect [31] in viscoelastic media. q = ε (strain), Q = σ (stress)
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1.3.3 Viscous Dissipation

Mechanisms related to velocity is the most commonly accepted and used because it
is the most practical: In the ignorance of the dissipative phenomenon, it is often
reduced to viscous damping (under the operating conditions of the system).

1.3.3.1 Linear Behavior of the Phenomenon

The phenomenon is linear (proportionality between the input and output variables
(see Fig. 1.1)). The internal efforts of the system (relation 1.1) take the following
generic form called “historic integral” (convolution)

Φðt) =R(0+ Þqðt) +
Z t

0

R
∙
t − τð Þ q τð Þdτ = R(t)q ð0+ Þ +

Z t

0

R t − τð Þ q∙ ðτÞdτ =
D(R * q)

Dt

ð1:7Þ

in which R(t) is the relaxation function of the system and q(t) the generalized
displacement which is a causal function (or distribution) not increasing with time.
The point symbolizes the temporal derivative and D/Dt the derivative in the sense
of the distributions which allows a more synthetic expression of the formulation
(see [10] Chapter 2), * represents is the convolution. As we mentioned this relation
can be inverted (relation 1.3) and then the generalized displacement q(t) as a
function of the internal forces and becomes

q(t) = J(0+ ÞΦðt) +
Z t

0

J
∙

t − τð ÞΦðτÞ dτ = J(t)Φð0+ Þ +
Z t

0

J t− τð Þ Φ∙ ðτÞdτ =
D(J *ΦÞ

Dt

ð1:8Þ

In the relation (1.8) J(t) is called creep function. The creep functions and the
relaxation are inverse to each other in the sense of convolutions.

Taking the Fourier transform of Eq. (1.7) we obtain the frequency aspect (re-
lation 1.2) of the internal forces.

ΦðωÞ= iω R̂ðωÞ q ̂ðωÞ=FðωÞq ̂ðωÞ ð1:9Þ

F(ωÞ= iω R̂ðωÞ=F′ðωÞ+ iF′′ðωÞ is called “complex stiffness” in general or
“complex modulus” in the context of viscoelasticity, i is the pure imaginary number
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(i2 = −1). It is convenient to introduce the loss angle δ(ω) defined by its tangent (tg
δ), which is the ratio of the imaginary part of the complex stiffness (loss modulus)
to its real part (storage modulus), which is commonly called the “damping factor, or
loss factor”

ηðωÞ= tgδðωÞ= F′′ðωÞ
F′ðωÞ ð1:10Þ

These models are frequently used in the field of mechanics of structures and
mechanics of material.

Cycling this system makes possible to link the specific damping capacity Ψ
(relation 1.4) to the system parameters and provide then energy balance of the
evolution of the system. We then consider that a sinusoidal strain ε(t) = ε0 sin ωt
generates a sinusoidal stress when the transient running has disappeared to give
place to a permanent running, the cycle is of the elliptic and symmetrical type as
shown in Fig. 1.7.

The choice of the supplied WF energy leads to several expressions for the SDC
Ψ as in the discussion presented by Lee and Hartmann in 1998 (see [25]). The
discussion is based on the choice of WF

ψ=2π sin δ Maximum potential energy:WF = q0Q0 ̸2
ψ= π sin δ Potential energy over one cycle,WF = q0Q0

ψ=
π tg δ

1+ π
2 + δ
� �

tg δ
Energy involved in a cycle

ð1:11Þ

Depending on the choice the SDC can be greater than one, which is a
disadvantage.

Fig. 1.7 Scheme of the cycling of a damping of the viscous type. cycle of a viscoelastic material:
q = ε strain, Φ = σ stress
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Discrete Bi-parametric Model (Like Voigt Model)

This model is the most common since internal forces are modelled by a spring and a
damper having a linear behavior and placed in parallel. The relaxation function (see
relation 1.7) is then of the form:

R(t) =C δðt) +KH(t) ð1:12Þ

The parameters C and K are respectively the damping constant and the stiffness,
δ(t) is the Dirac distribution and H(t) the Heaviside unit step (H(t) = 0 for t < 0, t) =
1 for t > 0). The internal efforts take the following simple form

Φðt) =C q
∙ ðt) +Kq(t) ð1:13Þ

And the the expression of the complex stiffness thus (relationship 1.9) is then

F(ωÞ= iωC+K ð1:14Þ

The relationship (1.14) shows that the damping (relation (1.10) evolves linearly
with the circular frequency ω, which can only be realistic within a certain range of
circular frequencies. This “two-parameter” model is commonly used in multidi-
mensional formulations (simulations by finite elements for example). The complex
stiffness then takes the following matrix form

F(ωÞ½ � = iω C½ � + K½ � ð1:15Þ

In which [C] and [K] are respectively the symmetric square matrices. If this
formulation poses no conceptual problem, it raises some difficulties in solving the
equation of motion in the frequency domain.

To solve easily numerically this matrix problem several tricks, having no real
physical foundation, are proposed.

Comment 4.1 the first trick t is to introduce the notion of “structural damping”
which consists in choosing the following complex stiffness

F(ωÞ½ �= i C½ �+ K½ � ð1:16Þ

This concept has no physical reality for the simple reason that there is no real
time signal whose Fourier transform has a constant and even real part and a constant
and odd imaginary part.

This concept of structural damping, which is practical in design, can be
explained by considering the notion of a fractional derivative of a function (see
[2, 10, 42]). The complex stiffness is then equal to FðwÞ½ � = iωð Þα C½ � + K½ � and if α
is small and even close to 0, we find that the real and imaginary parts of the
previous stiffness are respectively even and odd and almost constant and therefore
independent of ω in a given circular frequency bandwidth.
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Comment 4.2 the second trick consists in introducing the notion of proportional
damping known as the “Basile hypothesis”. If the system is conservative ([C] = 0),
its resolution is done by projection of the displacement {q} on the eigen-modes of
this system and in this case the matrix is diagonal. If the system is dissipative ([C]
≠ 0), the method consists in express the damping matrix [C] as a linear combi-
nation of the mass matrix [M] and stiffness matrix [K], then [C] = ε[K] + γ[M].
Then the matrix equation of motion is projected on the basis of the eigen-modes of
the corresponding conservative system. The matrices are then diagonal which
facilitates the resolution of the problem. The difficulty lies in the choice of the
parameters ε and γ which have no physical reality and are simply a numerical
convenience

Continuous Multi-parametric Model (Prony Series)

These models are more complex and include n parameters n≥ 2ð Þ and are used in
the behavior of viscoelastic materials (see [10], Chapter 2). The relaxation function
R(t) is usually expressed as a linear combination of exponentials or Prony’s series

RðtÞ=K∞ 1+ ∑
p= n

p=1
kpe

− t
τp

 !
ð1:17Þ

The best known of these models is that of generalized Maxwell (see [10]) but the
main difficulty lies in the choice of the number of parameters which must be
relatively important to correctly represent the behavior of the material (a dozen) but
not too important for reasons for determination and measurement. The relation
(1.17) easily leads to the complex stiffness (relation 1.9) which is a sum of rational
fractions depending on ω. The loss factor varies according to the materials: on the
order of a few 10−4 for metals, some 10−2 for polymers and about 10−1 for rubber
materials at ambient temperature (20 °C).

1.3.3.2 Non-linear Behavior of the Phenomenon

The notion of nonlinear phenomenon is extremely wide and therefore very varied in
representations. The most conventional approach is to admit that in its operation the
system has a dissipation of viscous and linear origin and to complete the model with
ingredients generating non-linearity in certain cases of motions. We therefore
consider the “historic integral” generating internal forces (relations 1.7 or 1.8) by
modifying it somewhat.
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Schapery Model

This model is adapted to polymers and is based on the notion of free volume (see
Sect. 1.2.2.1). It was developed by Shapery in 1966 [41]. The hypothesis is to
assume that the real time t is modified by a number of internal variables (temper-
ature, constraint, dilatation, moisture, etc.) and to introduce an artificial time which
translates the history of material. In the Schapery model the stress σ of course
generates strain but also a modification of time and the model expresses the
deformation ε as follows by using the creep functions (relation 1.8)

εðt) = J(0+ Þ g1 σðt)½ �σ ̂ðtÞ + g1 σðt)½ �
Z t

0

J
∙ ðφðt) − φðτÞ½ � σ ̂ðτÞ

a σðτÞ½ � dτ ð1:18Þ

In this relation (1.18)

• t is the present (or real) time and τ represents a time specific to the loading
history, or historical time (classic case of linear viscoelasticity).

• g1[σ(t)] is a stress factor that expresses the “nonlinear memory” of the material.
This factor is equal to 1 for the low stress levels (linear viscoelasticity) and
increases approximately linearly with the stress: the slope is bounded by 0.04
and 0.05 MPa−1 in the case of polymers, (see [45]).

• σ ̂ðtÞ= σðtÞg2 σðt)½ � where g2[σ(t)] is known as the “stiffening stresses factor” and
is equal to 1 for low stresses. It grows proportionally according to the level of
stress with a slope by 0.05 and 0.06 MPa−1 in the case of polymers, [45].

• φðtÞ = R t
0

ds
aσ σðsÞ½ � is the reduced real time and s the time of memory, specific to

the history of the phenomenon, a[σ] is the stress-time factor.

The Schapery model allows to describe the dissipative behavior of polymers in
the case of low or high deformations or weak or high stresses for polymer materials.
It can be noted that the Schapery model is formally similar to the notion of
time-temperature superposition (WLF-William-Landel-Ferry, [13]), stress playing
the role of temperature in the expression of reduced real time The Schapery model
can be generalized by introducing time into the stress-time factor and makes it
possible to obtain the behavior of the material for longer times, see [16]. Note that
in the case of certain materials, ferro-magnetic alloys for example, the phenomenon
of dissipation can depend on the deformation even for small deformations and
generate nonlinear phenomena (see [36], Fig. 1.8).

Other kind of alloys, such as “Sonoston” (Manganese, copper, Aluminum, (see
[48]), have comparable damping factors like polymers (2 to 5 × 10−2) with
Young’s moduli comparable to aluminum, between 73 and 83 GPa. These alloys
are used, for example, in the manufacture of submarine propellers for reasons of
vibrations damping and acoustic discretion. The disadvantage is the high density,
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