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Foreword

It has been our endeavor, to motivate and encourage teaching and research in
emerging areas of mathematics and its applications in our country. One of the
important initiatives taken by some of us including Prof. Khalil Ahmad in this
direction was to organize an International Conference on Advances in
Computational Mathematics in 1993 at the Indira Gandhi National Open
University, New Delhi, which was supported by the National Board of Higher
Mathematics (NBHM), Department of Atomic Energy, Government of India, and
the National Science Foundation, USA. Wavelet and its applications were some
of the main areas covered in the Conference, proceedings of which were published
with Prof. C. A. Micchelli of T. J. Watson Research Center of IBM at Yorktown
Heights, USA, and the undersigned as the editors. Since then, a few good schools of
teaching and research emerged in the areas of wavelet and its applications in our
country, like the one led by Prof. Khalil Ahmad, former Dean Faculty of Natural
Sciences, Jamia Millia Islamia University, Delhi. Thus, Prof. Khalil Ahmad and
several research students motivated by him have significantly contributed to the
important areas of wavelet and its applications. Besides a large number of research
contributions to his credit, Prof. Khalil Ahmad in his typically lucid and clear style
of expression published jointly with F. A. Shah, a beautiful and exhaustive book
Introduction to Wavelet Analysis with Applications, Real World Education
Publishers, New Delhi (2013), which was well received by students and researchers
alike. The present monograph entitled Wavelet Packets and Their Statistical
Applications are jointly written by him and his coauthor Abdullah is an important
contribution to wavelet packets which are a simple but powerful extension of
wavelets and multiresolution analysis. A distinctive feature of the monograph is that
two separate chapters are devoted to applications of wavelets and wavelet packets.
The wavelet packets allow more flexibility in adapting the basis to the frequency
contents of a signal, and it is easy to develop a fast wavelet packet transform. The
power of wavelet packets lies on the fact that we have much more freedom in
deciding which basis function we should use to represent the given function.
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Generally, the contributions in the areas of wavelets and their extensions lay
varying degree of emphasis on the theory, application, and computation aspects, but
this monograph is different as starting from the essential mathematical tools, to a
fairly complete and clear development of the theory and its potential areas of
applications to computational implementation, all have been treated equally well
with clarity. I am confident that this approach will be especially useful for inter-
disciplinary research in a variety of fields including the computational harmonic
analysis and its applications to physical, biological, and medical sciences.

Starting with some basic results in functional analysis, wavelet analysis, and
thresholding, construction of wavelet packets and band-limited wavelet packets and
some of their important properties are presented in Chap. 2. Chapter 3 deals with
the pointwise convergence of wavelet packet series, convolution bounds and con-
vergence of wavelet packet series. Chapter 4 is devoted to characterizations of
certain Lebesgue spaces, Hardy space, and Sobolev function spaces by using
wavelet packets.

The last two Chaps. 5 and 6 provide a comprehensive study of applications of
wavelets and wavelet packets to the important areas of signal and image processing.
Speech denoising methods based on wavelets and wavelet packet decompositions
of speech signals have been given. The proposed method of wavelet decomposition
of speech signals and Wiener filter as post-filtering gives better results in com-
parison with Donoho’s thresholding method. Similarly, the proposed method of
wavelet packet decomposition of speech signals gives better results in comparison
with those presented in J. P. Areanas (Combining adaptive filtering and wavelet
techniques for vibration signal enhancement, Acustica, Paper ID-99, (2004), 1–8).
A novel wavelet packet denoising method based on optimal decomposition and
global threshold value has been also proposed for speech denoising in this work. To
check the performance of this method, the signal-to-noise ratio is computed for the
denoised speech signal.

Applications of wavelets in biomedical signals related to cardiac problems have
been presented with clarity, especially in reference to ECG. An ECG signal
denoising method based on wavelet transform is proposed. An optimum threshold
value is estimated by computing the minimum error between detailed coefficients of
noisy ECG signal and the original noise-free ECG signal. In comparison with the
method used in A. Mikhled and D. Khaled (ECG signal denoising by wavelet
transform thresholding, American Journal of Applied Sciences, 5(3) (2008), 276–
281), the proposed method gives better result. Similarly, an ECG signal denoising
method based on wavelet packet decomposition is proposed which gives a better
result in comparison with the method proposed in M. Chendeb, K. Mohamad, and
D. Jacques (Methodology of wavelet packet selection for event detection, Signal
Processing Archive, 86(12) (2006), 3826–3841). For correct estimation of baseline
drift in ECG signal, wavelet packet transform has been used in the present work.
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Simulation result shows that level 8 is best for correct estimation of baseline drift in
ECG signal. Applications of wavelets and wavelet packets to image processing are
given in the last chapter.

Jabalpur (M.P.), India H. P. Dikshit
Ex Vice Chancellor IGNOU
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Preface

The theory of wavelets is the latest comer to the world of signal processing (more
than 30 years now). It grew and brewed in different areas of science. Harmonic
analysts had developed powerful time–frequency tools, electrical engineers were
busy with subband coding, and quantum physicists were trying to understand
coherent states. They were not aware of each other's progress until the late 1980’s
when a synthesis of all these ideas came to be, and what is now called wavelet
theory contains all those ideas and much more. Wavelet is not one magical trans-
form that solves all problems. It is a library of bases that is appropriate for a large
number of situations where the traditional tools, for example, Fourier analysis, are
not so good. There are many other problems which cannot be optimally treated with
either of the known tools; therefore, new ones have to be designed.

A simple, but a powerful extension of wavelets and multiresolution analysis is
wavelet packets, pioneered by Coifman, Meyer, Wickerhauser, and other researchers.
The wavelet transform is generalized to produce a library of an orthonormal basis of
modulated wavelet packets, where each basis comes with a fast transform. By gener-
alizing the method of multiresolution decomposition, it is possible to construct an
orthonormal basis for L2ðRÞ. Discrete wavelet packets have been thoroughly studied
by Wickerhauser, who has also developed computer programs and implemented
them. The wavelet packets allow more flexibility in adapting the basis to the
frequency contents of a signal, and it is easy to develop a fast wavelet packet
transform. The power of wavelet packet lies on the fact that we have much more
freedom in deciding which basis function we use to represent the given function.

Wavelet packet functions are generated by scaling and translating a family of
basic function shapes, which include father wavelet / and mother wavelet w: In
addition to /; and w there is a whole range of wavelet packet functions xn. These
functions are parametrized by an oscillation or frequency index n. A father wavelet
corresponds to n ¼ 0; so / ¼ x0: A mother wavelet corresponds to n ¼ 1; so
w ¼ x1: Larger values of n correspond to wavelet packets with more oscillations
and higher frequency. Wavelet packets are particular linear combinations or
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superpositions of wavelets. They form bases which retain many of the orthogo-
nality, smoothness, and localization properties of their parent wavelets.

The text begins with an elementary chapter on preliminaries such as basic
concepts of functional analysis, a short tour of the wavelet transform, Haar scaling
functions and function space, Lebesgue spaces LpðRÞ, Hardy space, Sobolev
spaces, Besov spaces, wavelets, Symlets wavelets, and Coiflets wavelets and
thresholding.

Chapters 2 and 3 are devoted to the construction of wavelet packets, certain
results on wavelet packets, band-limited wavelet packets, characterizations of
wavelet packets, MRA wavelet packets, pointwise convergence, the convergence of
wavelet packet series, and convolution bounds. Characterizations of function spaces
like Lebesgue spaces LpðRÞ, Hardy space H 1ðRÞ and Sobolev spaces Lp;sðRÞ in
terms of wavelet packets are given in Chap. 4.

A signal can be defined as a function that conveys information, generally about
the state or behaviour of the physical system. In almost every area of science and
technology, signals must be processed to assist the extraction of information. Thus,
the development of signal processing techniques and systems is of great impor-
tance. The presence of noise in speech signal can significantly reduce the intelli-
gibility of speech and degrade automatic speech recognition performance. These
noises may be due to the background noise of the environment in which the speaker
is speaking, or it may be introduced by the transmission media during transmission
of the speech signal. It is often necessary to perform speech denoising as the
presence of noise, which severely degrades the speech signal. Chapter 5 is devoted
to applications of wavelets and wavelet packets in speech denoising and biomedical
signals.

The growth of media communication industry and demand of the high quality of
visual information in the modern age has an interest to researchers to develop
various image denoising techniques. In recent years, there has been a plethora of
work on using wavelet thresholding techniques for removing noise in both signal
and image processing. Chapter 6 is devoted to applications of wavelets and wavelet
packets in image denoising. An exhaustive list of references is given at the end
of the monograph.

The present book is intended to serve as a reference book for those working in
the area of wavelet packets and their applications in different branches of mathe-
matics and engineering, in particular in signal and image processing. It is also
useful for statisticians and to those working in the industrial sector.

New Delhi, India Khalil Ahmad
January 2018 Abdullah
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Chapter 1
Preliminaries

1.1 Introduction

In this chapter we enlist those concepts and results concerning functional analysis,
wavelet analysis and thresholding which are already known in the literature and we
require in the subsequent chapters.

1.2 Basic Concepts of Functional Analysis

Throughout, the functions f, g, ϕ, ψ, and ωn will stand for f (x), g(x), ϕ(x),
ψ(x), and ωn(x), respectively.

Let Z and R denote the set of integers and real numbers, respectively, and T

denote the unit circle in the complex plane which can be identified with the interval
[−π, π). The inner product of two functions f ∈ L2(R) and g ∈ L2(R) is denoted
by 〈 f, g〉 and is defined as

〈 f, g〉 =
∫ ∞

−∞
f (x) g(x)dx .

The norm of f ∈ L2(R) is written as ‖ f ‖. The Fourier transform of any function
f ∈ L2(R) is denoted by f̂ and is defined as

f̂ (ξ) =
∫ ∞

−∞
f (x)e−iξ xdx .

The inverse Fourier transform of any function g ∈ L2(R) is denoted by ǧ and is
defined as

ǧ = 1

2π

∫ ∞

−∞
g(ξ)eiξ x dξ

© Springer Nature Singapore Pte Ltd. 2018
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2 1 Preliminaries

and if we apply it to g = f̂ we obtain ǧ = f , that is ( f̂ )ˇ = f. With this definition,
the Plancherel theorem asserts that

〈 f, g〉 = 1

2π
〈 f̂ , ĝ〉.

The set l2(Z) is the vector space of square-summable sequences, i.e.,

l2(Z) =
{

{hk}k∈Z :
∞∑

k=−∞
| hk |2< ∞

}
.

Throughout we shall denote R
0, S for the regularity class and Schwartz class,

respectively. For the dual of Schwartz class, we denote S′.

Lemma 1.2.1 Let H be a Hilbert space and {e j : j = 1, 2, . . .} be a family of
elements of H. Then

(i) ‖ f ‖2 =
∞∑
j=1

|〈 f, e j 〉|2 holds for all f ∈ H

if and only if

(ii) f =
∞∑
j=1

〈 f, e j 〉e j , with convergence in H, for all f ∈ H.

Lemma 1.2.2 Suppose {e j : j = 1, 2, . . .} be a family of elements in a Hilbert
space H such that equality (i) in Lemma 1.2.1 holds for all f belonging to a dense
subset D of H, then the equality is valid for all f ∈ H.

Lemma 1.2.3 Let C be a positive integer and let {v j : j ≥ 1} be a family of vectors
in a Hilbert space H such that

(i)
∞∑
n=1

‖vn‖2 = C and

(ii) vn =
∞∑

m=1

〈vn, vm〉vm for all n ≥ 1.

Let F = span{v j : j ≥ 1}. Then, dimF = ∑∞
j=1 ‖v j‖2 = C (Number of basis

elements of F).

Definition 1.2.4 For a given function g defined onR, we say that a bounded function
H : [0,∞) → R

+ is a radial decreasing L1-majorant of g if |g(x)| ≤ H(|x |) and
H satisfies the following conditions

⎧⎨
⎩

(i)H ∈ L1[0,∞)

(i i)H is decreasing
(i i i)H(0) < ∞

(1.2.1)



1.2 Basic Concepts of Functional Analysis 3

The set of all bounded radially decreasing functions is denoted by RB.

Lemma 1.2.5 Let H be a function on [0,∞) satisfying condition (1.2.1). Then

∑
k∈Z

H (|x − k|) H (|y − k|) ≤ CH

[ |x − y|
2

]
, ∀x, y ∈ R

where C is a constant depending on H .

Definition 1.2.6 The point x ∈ R is said to be a Lebesgue point of a function f on
R if f is integrable in some neighborhood of x and

lim
ε→0

1

V (Bε)

∫
Bε

| f (x) − f (x + y)|dy = 0

where Bε denotes the ball of radius ε about the origin and V denotes volume.

Definition 1.2.7 For a function g defined on R and for a real number λ > 0, the
maximal function is defined by

g∗
λ(x) = sup

y∈R
|g(x − y)|
(1 + |y|)λ , x ∈ R. (1.2.2)

Definition 1.2.8 Hardy–Littlewood maximal function, M f (x), is defined by

M f (x) = sup
r>0

1

2r

∫
|y−x |≤r

| f (y)| dy (1.2.3)

for a locally integrable function f on R.

It is well known that M is bounded on L
p
(R), 1 < p ≤ ∞. An important

property of M that we shall need is the following vector-valued inequality:

Lemma 1.2.9 Suppose 1 < p, q < ∞; then there exists a constant Cp,q such that

∥∥∥∥∥∥
{ ∞∑

i=1

(M fi )
q

} 1
q

∥∥∥∥∥∥
L p(R)

≤ Cp,q

∥∥∥∥∥∥
{ ∞∑

i=1

| fi |q
} 1

q

∥∥∥∥∥∥
L p(R)

(1.2.4)

for any sequence { fi : i = 1, 2, . . .} of locally integrable functions.
Lemma 1.2.10 Let g be a band-limited function on R such that g∗

λ(x) < ∞ for all
x ∈ R. Then, there exists a constant Cλ such that

g∗
λ(x) ≤ Cλ

{
M (|g| 1

λ )(x)
}λ

, x ∈ R. (1.2.5)
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Lemma 1.2.11 If g is a band-limited function, i.e., support of ĝ is contained in a
finite interval, defined on R such that g ∈ L

p
(R), 0 < p ≤ ∞, then we have

g∗
λ(x) < ∞ for all x ∈ R.

Lemma 1.2.12 (Hörmander–Mihlin Multiplier Theorem). Let H0 and H1 be two
Hilbert spaces, and we denote byL (H0, H1) the set of all bounded linear operators
T fromH0 toH1. Assume that m is a function defined onRwith values inL (H0, H1)

such that

‖(D jm)(ξ)‖L (H0 , H1)
≤ B

1

|ξ | j , j = 0, 1 (1.2.6)

for some positive constant B < ∞. Then, the operator Tm given by

(Tm f )̂(ξ ) = m(ξ) f̂ (ξ) for all f ∈ S(H0)

can be extended to a bounded linear operator from L
p
(R; H0) to L

p
(R; H1), 1 <

p < ∞. That is, there exists a constant C, 0 < C < ∞ such that

‖Tm f ‖
L
p

(R; H1)
≤ C‖ f ‖

L
p

(R; H0)
for all f ∈ L

p
(R; H0). (1.2.7)

Lemma 1.2.13 Given ε > 0 and 1 ≤ r < 1+ ε, there exists a constant C such that
for all sequences

{
sl,k : l, k ∈ Z

}
of complex numbers and all x ∈ Il,k ,

(a)
∑
k ′∈Z

|sl ′,k ′ |(
1 + 2l ′ |2−l k − 2−l ′k ′|)1+ε

≤ C

[
M

(∑
k ′∈Z

|sl ′,k ′ | 1
r χ

Il′,k′

)
(x)

]r

if l ′ ≤ l

and

(b)
∑
k ′∈Z

|sl ′,k ′ |(
1 + 2l |2−l ′k ′ − 2−l k|)1+ε

≤ C2(l ′−l)r

×
[
M

(∑
k ′∈Z

|sl ′,k ′ | 1
r χ

Il′,k′

)
(x)

]r

if l ′ ≥ l

whereM is the Hardy–Littlewood maximal function defined in Definition 1.2.6 and
Il,k = [

2−l k, 2−l(k + 1)
]
.

Definition 1.2.14 We say that a function ϕ defined on R belongs to the regularity
class R0 if there exist constants C0,C1, γ , and ε > 0 such that

(i)
∫
R

ϕ(x)dx = 0

(ii) |ϕ(x)| ≤ C0

(1 + |α|)2+γ
for all x ∈ R

(iii) |ϕ′(x)| ≤ C1

(1 + |α|)1+ε
for all x ∈ R.
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Lemma 1.2.15 Let ε > 0. Suppose that g and h satisfy

(a) |g(x)| ≤ C1

(1 + |x |)1+ε
for all x ∈ R and

(b) |h(x)| ≤ C2

(1 + |x |)1+ε
for all x ∈ R

with C1 and C2 independent of x ∈ R. Then, there exists a constant C such that for
all l, k, l ′, k ′ ∈ Z and l ≤ l ′, we have

|(gl,k ∗ hl ′,k ′)(x)| ≤ C2
1
2 (l−l ′)

(1 + 2l |x − 2−l k − 2−l ′k ′|)1+ε
for all x ∈ R.

Lemma 1.2.16 Let r ≥ ε > 0 and N ∈ N. Suppose that g and h satisfy

(a)

∣∣∣∣d
ng

dxn
(x)

∣∣∣∣ ≤ Cn,1

(1 + |x |)1+ε
for all x ∈ R and 0 ≤ n ≤ N + 1

(b)
∫
R

xn h(x) dx = 0 for all 0 ≤ n ≤ N

(c) |h(x)| ≤ C2

(1 + |x |)2+N+r
for all x ∈ R

with Cn,1, 0 ≤ n ≤ N + 1, and C2 independent of x ∈ R. Then, there exists a
constant C such that for all l, k, l ′, k ′ ∈ Z and l ≤ l ′, we have

|(gl,k ∗ hl ′,k ′)(x)| ≤ C2(l−l ′)( 1
2 +N+1)

(1 + 2l |x − 2−l k − 2−l ′k ′|)1+ε
for all x ∈ R.

For N ∈ N ∪ {−1}, let D N be the set of all functions f defined on R for which
there exist constants ε > 0 and Cn < ∞, n = 0, 1, . . . , N + 1, such that

∣∣Dn f (x)
∣∣ ≤ Cn

(1 + |x |)1+ε
for all x ∈ R and 0 ≤ n ≤ N + 1.

We write M N for the set of all functions f defined on R for which there exist
constants γ > 0 and C < ∞ such that

∫
R

xn f (x) dx = 0 for n = 0, 1, . . . , N

and | f (x)| ≤ C
1

(1 + |x |)2+N+γ
for all x ∈ R.

Definition 1.2.17 For a nonnegative integer s, let Rs = D s ∩ M s; that is, f ∈ R
s

if there exist constants ε > 0, γ > 0, C < ∞, and Cn < ∞, n = 1, 2, . . . , s + 1,
such that
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(i)
∫
R

xn f (x) dx = 0 for n = 0, 1, . . . , s

(ii) | f (x)| ≤ C

(1 + |x |)2+s+γ
for all x ∈ R

(iii)
∣∣Dn f (x)

∣∣ ≤ Cn

(1 + |x |)1+ε
for all x ∈ R, n = 1, 2, . . . , s + 1.

Definition 1.2.18 TheSchwartz space S is the subspaceofC∞ (the set of all bounded
continuous functions) given

S =
∞⋂
N=1

⎧⎨
⎩ f ∈ C∞ :

∑
|α|≤N

sup
x∈Rn

< x >N |∂α f (x)| < ∞
⎫⎬
⎭ .

The topology of S is the weakest one for which the mapping f ∈→ pN ( f ) ∈ R is
continuous for all N ∈ N, where

pN ( f ) =
∑

|α|≤N

sup
x∈Rn

< x >N |∂α f (x)| , < x >=
√
1 + |x |2.

Definition 1.2.19 One defines

S′ = { f : S → C : f is linear and continuous}

One equips S′ with the weakest topology so that the mapping

f ∈ S′ →< f, ϕ >∈ C

is continuous for all ϕ ∈ S.

1.3 A Short Tour of Wavelet Transform

The need of simultaneous representation and localizations of both time and frequency
for nonstationary signals (e.g., music, speech, images) led toward the advancement
of wavelet transform from the popular Fourier transform. Different “time–frequency
representations” (TFR) are very informative in understanding and modeling of
wavelet transform [68, 124, 143].

1.3.1 Fourier Transform

Fourier transform is awell-knownmathematical tool to transform time-domain signal
to frequency-domain for efficient extraction of information and it is reversible also.
For a signal x(t), the Fourier transform is given by:
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X ( f ) =
∫ ∞

−∞
x(t)e− j2π f t dt

The Fourier transform has a great ability to detain signal’s frequency content as
long as x(t) is composed of few stationary components (e.g., sine waves). How-
ever, any abrupt change in time for nonstationary signal x(t) is spread out over the
whole frequency axis in X ( f ). Hence, the time-domain signal sampled with Dirac
delta function is highly localized in time but spills over entire frequency band and
vice versa. The limitation of Fourier transform is that it cannot offer both time and
frequency localization of a signal at the same time.

To overcome the limitations of the standard Fourier transform, Gabor [117] intro-
duced the initial concept of short-time Fourier transform (STFT). The advantage
of STFT is that it uses an arbitrary but fixed-length window g(t) for analysis, over
which the actual nonstationary signal is assumed to be approximately stationary.
The STFT decomposes such a pseudo-stationary signal x(t) into a two-dimensional
time–frequency representation S(τ, f ) using that sliding window g(t) at different
times τ . Thus, the Fourier transform of windowed signal x(t) ∗ (t − τ) yields STFT
as:

STFTx (τ, f ) =
∫ ∞

−∞
x(t)g ∗ (t − τ)e− j2π f t dt

Filter bank interpretation is an alternative way of seeing “windowing of the signal”
viewpoint of STFT [19, 219]. With the modulated filter bank, a signal can be seen as
passing through a bandpass filter centered at frequency f with an impulse response
of the window function modulated to that frequency. From this dual interpretation,
a possible drawback related to time–frequency resolution of STFT can be shown
through “Heisenberg’s uncertainty principle” [41, 256]. For a window g(t) and its
Fourier transform G( f ), both centered around the origin in time as well as in fre-
quency, i.e., satisfying

∫
t |g(t)|2dt = 0 and

∫
f |G( f )|2d f = 0. Then, the spreads

in time and frequency are defined as:

�2
t =

∫∞
−∞ t2|g(t)|2dt∫∞
−∞ |g(t)|2dt , �2

f =
∫∞
−∞ f 2|G( f )|2d f∫∞

−∞ |G( f )|2d f

Thus, the time–frequency resolution for STFT is lower bounded by their product as:

Time-Bandwidth product �t� f ≥ 1

4π
.

Once awindowhas been chosen for STFT, the time–frequency resolution is fixed over
the entire time–frequency plane because the same window is used at all frequencies.
There is always a trade-off between time resolution and frequency resolution in
STFT.
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1.3.2 Wavelet Transform

Fixed resolution limitation of STFT can be resolved by letting the resolution �t

and � f vary in time–frequency plane in order to obtain multiresolution analysis.
The wavelet transform (WT) in its continuous form; i.e., CWT provides a flexible
time–frequencywindow,which narrowswhen observing high-frequency phenomena
and widens when analyzing low-frequency behavior. Thus, time resolution becomes
arbitrarily good at high frequencies, while the frequency resolution becomes arbi-
trarily good at low frequencies. This kind of analysis is suitable for signals composed
of high-frequency components with short duration and low-frequency components
with long duration, which is often the case in practical situations [230].

When analysis is viewed as a filter bank, the wavelet transform, generally termed
as standard discrete wavelet transform (DWT), is seen as a composition of bandpass
filters with constant relative bandwidth such that � f / f is always constant. As � f

changes with frequencies, corresponding time resolution �t also changes so as to
satisfy the uncertainty condition. The frequency responses of bandpass filters are
logarithmically spread over frequency.

1.3.3 Continuous Wavelet Transform

It is very clear that wavelet means “small wave,” so wavelet analysis is about analyz-
ing signal with short duration finite energy functions. Mathematically, wavelet can
be represented as:

ψa,b(t) = 1√|a|ψ
(
t − b

a

)

with some wavelet admissibility conditions:

Cψ =
∫ ∞

0

|ψ̂(ω)|
ω

dω < ∞

and ∫ ∞

−∞
|ψ(t)|2dt = 1

Where “b” is location parameter, “a” is scaling parameter, ψ̂(ω) is the Fourier trans-
form, which ensures that ψ̂(ω) goes to zero quickly as ω → 0. In fact to guarantee
that Cψ < ∞, we must impose ψ̂(0) = 0. Wavelet transform is defined as:

W (a, b) =
∫
t
f (t)

1√|a|ψ
(
t − b

a

)
dt. (1.3.1)
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According to above equation, for every (a, b), we have a wavelet transform coeffi-
cient, representing how much the scaled wavelet is similar to the function at location
t = a

b .
Now, we can say that continuous wavelet transform (CWT) is a function of two

parameters and, therefore, contains a high amount of extra (redundant) information
when analyzing a function. A critical sampling of the CWT

W (a, b) =
∫
t
f (t)

1√|a|ψ
(
t − b

a

)
dt

is obtained via a = 2− j , where j and k (in next integral) are integers representing
the set of discrete translations and discrete dilations. Upon substitution, Eq. (1.3.1)
can become ∫

f (t)2 j/2ψ(2 j t − k)dt

which is function of j and k. We denote it by W ( j, k). In general, ψ j,k(t) =
2 j/2ψ(2 j t−k) iswavelet for all integers j and k and produces an orthogonal basis.We
call ψ0,0(t) = ψ(t) as mother wavelet. Other wavelets are produced by translation
and dilation of the mother wavelet [60].

In earlier time, a phenomenon that is known asHeisenberg’s uncertainly principle,
which says that a signal cannot be simultaneously localized in time and frequency.
Wavelets are an attempt to overcome this shortcoming. They provide a way to do
time–frequency analysis. The idea is that one chooses a “mother wavelet,” i.e., a
function subject to some conditions like mean value by using two variable base (one
for the amount to shift and one for the amount of dilation); we are able to introduce
enough redundancy to maintain the local properties of the original function.

Overall, we can say that continuous wavelet transform is defined as the sum over
all time of the signal multiplied by scaled, shifted version of the wavelet function ψ :

C(scale, position) =
∫ ∞

−∞
f (t)ψ((scale, position))dt

The results of the CWT are many wavelet coefficients C , which are a function of
scale and position. Multiplying each coefficient by the appropriately scaled and
shifted wavelet yields the constituent wavelets of the original signal.

Now, we are very eager to know that what is continuous in CWT, because in
any signal processing real-world data must be performed on a discrete signal. The
speciality of CWT is that it can operate at every scale, from that of the original signal
up to some maximum scale that we determine by trading off our need for detailed
analysis. The CWT is also continuous in term of shifting: during computation, which
makes continuous wavelet transform distinguishing from others.
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1.3.4 Discrete Wavelet Transform

Unlike conventional methods, in wavelet transform, one can use a single function
and its dilations and translations to generate a set of orthonormal basis functions to
represent a signal. Numbers of such functions are infinite, and we can choose one
that suits to the application. Unfortunately, most of the wavelets used in discrete
wavelet transform are fractal in nature. They are expressed in terms of a recurrence
relation so that to see them we must do several iterations. But fortunately, we have
two special functions known as Haar wavelet functions and Haar scaling functions,
which have explicit expression. To understand mathematical (geometry) approach
insight wavelet transform, Haar function is the only hope. Scaling functions and
wavelet functions are just like twins; corresponding to wavelet function there is a
scaling function. The details about these will be discussed in next sections of this
chapter [18, 257].

1.4 Haar Scaling Functions and Function Space

In discrete wavelet transform, we have to deal with basically two sets of functions—
scaling and wavelet functions. Understanding the relation between these two func-
tions, consider Haar scaling function ϕ(t) defined in Eq. (1.4.1) and shown in Fig. 1.1

ϕ(t) =
{
1, 0 ≤ t ≤ 1
0 elsewhere

(1.4.1)

Fig. 1.1 a Haar scaling
function and b translation of
Haar scaling function


