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Preface

Inferences regarding the interior structure of the Earth, ranging from over 6000 km
to just the first few hundred meters of depth, have to be made to assess the potential
for geohazards as well as to explore for and extract Earth’s many invaluable
resources and even to evaluate the possibility of safely storing materials under-
ground which we wish to remove from the atmosphere (carbon dioxide) or the
surface (radioactive or hazardous wastes). These inferences are based on the
measurement, analysis, and interpretation of external geophysical fields. These
include potential fields such as gravity and magnetic data which are intrinsically
nonunique, i.e., there are many interpretations, each with their inherent measure-
ment uncertainties, which can be derived from a single set of measurements, and
electrical, electromagnetic, or seismic data which similarly offer multiple applicable
models. It is understood intuitively and intellectually by practitioners within the
discipline that the interpretations are intrinsically “FUZZY”. In some cases, it is
possible to drill down to quite considerable depths to “prove” an interpretation,
even if the answer is only actually applicable to a very small region of subsurface
space. However, this is very costly and in some cases, the invasive nature is not
appropriate, e.g., where the act of drilling may compromise the integrity of a
structure such as a radioactive waste repository or quite simply the target may be
too deep; here, geophysical methods are invaluable.

Geophysical research over the past few decades has witnessed a flurry of activity
especially related to soft computing and intelligent methods. Working in the
interdisciplinary field of soft computing and intelligent methods applications in
geophysics and geotechnical aspects for the past 10 years has motivated us to
publish a textbook on this important area of multi-interdisciplinary applied science.
When Prof. Peter Styles was writing his book on the application of geophysics to
environmental and civil engineering, I proposed that he added a section within a
chapter or a chapter about the application of neural networks and fuzzy logic in
gravity interpretation. However, upon reflection, it was felt that this subject was too
advanced to be included. He then encouraged me to develop a specialist book on
this topic. We agreed to collaborate on a draft for a book on the application of soft
computing and intelligent methods in geophysics combining my expertise in the
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application of these mathematical tools and his wide-ranging expertise across the
fields of applied, environmental, and engineering geophysics. We finally developed
the blueprint which is applied in this book.

During the more than a decade that we have worked on the application of neural
networks, fuzzy logic, and neuro-fuzzy aspects, there have been many graduate
students who were very eager to apply soft computing and intelligent methods
(SCIMs) to their own geophysical problems but the books to introduce them to the
topic and guide them in its application, either weren’t available, didn’t explain the
applications to engineering geophysics or for the main part focused on applications
in oil exploration with a principal emphasis on seismic reflection interpretation. Our
book, in contrast, tries to cover the application of SCIM to a broad spectrum of
geophysical methods. In addition, we provide the tools to design and test SCIM
applications using MATLAB software, and these are presented as simply as pos-
sible, so that the reader can apply the MATLAB routines themselves and therefore
learn the necessary skills in a practical manner.

The book has four main parts: Neural Networks, Fuzzy Logic, Combination of
Neural Networks and Fuzzy Logic, and Genetic Algorithms.

In Part I, Chap. 1 outlines the principles of neural networks (NNs) and their
design in MATLAB with practical examples, and in Chap. 2, the application of
NNs to geophysical applications is presented with many varied examples.

In Part II, Chap. 3 develops the principles of fuzzy logic with the related fuzzy
arithmetic and provides various examples in order to practically train the reader to
grasp this new fuzzy viewpoint. In Chap. 4, we investigate the application of fuzzy
logic to various geophysical methods.

In Part III, Chap. 5, we explain the application of the combination of NNs with
Fuzzy logic as Neuro-Fuzzy Methods, with instructions for using the MATLAB
ANFIS Toolbox through practical examples. In Chap. 6, the application of these
Neuro-Fuzzy methods to geophysical analysis and interpretation is presented.

In Part IV, Prof. Mrinal Sen and Prof. Mallick, the additional contributors to this
book, present the Genetic Algorithm and its applications in geophysics with many
varied and interesting practical examples.

Readers of the book will find chapters dealing with preliminary aspects as well
as advanced features of SCIMs. With a unique focus toward geophysical applica-
tions but with applicability to other physical and measurement sciences, this book
will serve as a valuable reference for graduate students, research workers, and
professionals interested in learning about these useful computing tools. The goal of
this book is to help SCIMs find greater acceptability among researchers and
practicing geophysicists alike.

It gives us both great pleasure to express our appreciation and thanks to a
number of individuals who have helped us, either directly or indirectly, toward
starting and eventually completing this book. I am grateful to past Ph.D. students
especially R. Kimiaefar (who graduated in 2015 and is now a board member of
Physics Department at IAUN) for help with MATLAB codes for NN design to
attenuate seismic noise, and also my present Ph.D. student M. Rezazadeh Anbarani,
who helped develop the MATLAB guides in Chapters 1 and 5. My colleague
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Dr. Kh. Soleimani (board member of Mathematics Department at IAUN) provided
invaluable help in the utilization of Fuzzy arithmetic. I will never forget my
advisers for my Masters and Ph.D. degrees, Prof. V. E. Ardestani who first
motivated me to use ANN in gravity interpretations in my M.S. thesis and
Prof. H. Zomorrodian for his kindness and encouragement in combining neural and
fuzzy methods in my Ph.D. thesis to interpret microgravity data. A very special
mention is due to Prof. Caro Lucas (previously a board member of the Electrical
Engineering Department at the University of Tehran) who is not now among us in
this mortal world having passed away about a year before I defended my Ph.D. I am
especially appreciative of having such a mentor who always encouraged me to go
deeper into multi-interdisciplinary researches in soft computing.

I would also like give to a very special thanks to Dr. Pasandi, Assistant Professor
of Geology, University of Isfahan and to record my sincere appreciation to
Dr. A. Bohlooli, Assistant Professor in the Faculty of Computer Engineering at the
University of Isfahan for his key guidance in arranging the book chapters.

Peter Styles would like to thank, en masse, the legions of Ph.D. and M.Sc.
students from Swansea, Liverpool, and Keele Universities who worked with him in
collecting a vast array of geophysical data, from which we select unique examples
for this book, and who gave him such pleasure in their company, often despite
adverse conditions and difficult circumstances. He is enormously grateful to his
long-suffering wife Roslyn, who once again has had to put up with his chosen,
strongly focused, writing modus operandi!

I especially want to give my thanks and express my deep appreciation of my
wife Mohaddeseh and my daughter Elina for their support, over the course of more
than a year, in writing this book and their understanding; therefore, that I could not
spend all of my spare time with them.

Last, but not least, I am indebted to my parents: Mohammad Hassan and Ozra,
for the continued appreciation and support that I have received in all my educational
pursuits. I will never forget my Mother’s endeavors in training me how to think
deeply about the philosophy of work and life.

Najafabad, Iran Alireza Hajian
Department of Physics
Najafabad Branch, Islamic Azad University

Keele, UK Peter Styles
Applied & Environmental Geophysics Research Group

School of Physical and Geographical Sciences

Keele University
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Neural Networks



Chapter 1 )
Artificial Neural Networks Check for

— Principles of neural networks
— Design and test of neural networks
— Neural Networks toolbox in Matlab: NNTOOL

1.1 Introduction

Artificial neural networks are perhaps the most common method amongst intelligent
methods in geophysics and are becoming increasingly popular. Because they are
universal approximations, these tools can approximate any continuous function
with any arbitrary precision.

Neural networks are increasingly being used in prediction, estimation, pattern
recognition and optimization problems (Bohlooli et al. 2011) (Fig. 1.1). Neural
networks have gained popularity in geophysics this last decade (Gret et al. 2000).
Elavadi et al. (2003), Hajian (2008) and Hajian et al. (2011a) used a Hopfield neural
network in order to obtain depth estimates of subsurface cavities. Osman et al.
(2007) used forced neural networks for forward modeling of gravity anomaly
profiles. Styles and Hajian (2012) used Generalized Regression Neural Networks
(GRNN) for cavity depth estimation using microgravity data. Hajian and Shirazi
(2015) used GRNN for depth estimation of salt dome using gravity data.

In the geophysical domain, neural networks have been used for waveform recognition
and first-peak picking (Murat and Rudman 1992; McCormack et al. 1993); for elec-
tromagnetic (Poulton et al. 1992), magneto telluric (Zhang and paulson 1997), and
seismic inversion purposes (Roth and Tarantola 1994; Langer et al. 1996;
Calderon-Macias et al. 1998); neural networks (Elawadi 2001; Osman et al. 2007, Hajian
et al. 2012); multi-adaptive neuro—fuzzy interference systems (Hajian et al. 2011b).

The fundamental important step is the mapping of a geophysical problem onto a
neural network solution which can have various applications in geophysics for both
non-potential and potential methods.
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Fig. 1.1 Various fields of neural networks applications

1.2 A Brief Review of ANN Applications in Geophysics

A comprehensive look at all geophysical application for ANNs is impractical.
However, a glance at the popular publications in journal books and conference
proceedings provides illustrative examples. Geophysical applications include var-
ious disciplines which are short listed below:

Petrophysics:

— Modeling permeability in tight gas sands using well-log responses
— predicting permeability from petrographic
— Porosity estimation, lithofacies mapping,

Seismic data processing:

Wave Form Recognition

Picking Arrival Times

Trace Editing

Velocity Analysis

Elimination of Multiples

Deconvolution

Inversion Of Velocity Model (Moya and Irikura 2010)
Random Noise Attenuation

Joint Inversion

Tracking Horizons And Classifying Seismic Traces
Initial Impedance, Impedance Model Estimation
Scatter Distribution (Neural Wavelets)

4D Filtering (Fu 1999)

Seismic attribute analysis

Gas detection from absorption and amplitude measurements versus offset
(Clifford and Aminzadeh (2011)

Cross-borehole geological interpretation model based on geotomography
(Kumar et al. 2002)
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e Geological pattern recognition and modeling from well logs and seismic data
processing (Huang and Williamson 1994)
Classification of seismic windows (Diersen et al. 2011)
Rock Mass and Reservoir characterization

— Horizon tracking and facies maps, time lapse interpretation
— Predicting log properties, Rock/Reservoir characterization
— Assessing Enhanced Oil Recovery (EOR) methods for reservoirs

e Seismology:
e Regional seismic event classification (Dysart and Pulli 1990)

— Seismic discrimination

— Non-linear Dynamic behavior of earthquakes

— Automatic classification of seismic signals (Scarpetta et al. 2005)
— Earthquake predictions (Reyes et al. 2013)

— Prediction of seismicity cycles (Sharma and Arora 2005)

Identification of earthquake phases under increased noise level conditions
(Fernando et al. 2010)

Earthquake magnitude prediction using artificial neural network (Alarifi
et al. 2012)

e Volcanology:

— Predicting eruptions
— Classification of eruptions

e EM:

Detection of cavities and tunnels from magnetic anomaly data
(Elawadi 2001)

Interpretation of electromagnetic elasticity soundings for near—
surface objects (Poulton 1992)

Extracting IP parameters from TEM data (Poulton 1992)
Magnetic anomaly separation using cellular Neural Networks
(Albora 2001)

Detection of Airborne Electromagnetic Method (AEM) Anomalies
corresponding to dike structures

Interpretation of Geophysical surveys of Archeological sites
Piecewise Half-space interpretation

Inverse modeling of EM data with neural networks

Mineral potential mapping using EM, Gravity & geological data
Pattern recognition of subsurface EM images (Poulton 1992)
Forecasting solar activities (Uwamahoro et al. 2009)

Automatic detection of UXO from Airborne Magnetic Data
(Salem et al. 2001)

e Solar Cycle prediction (Petrovay 2010)
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e Qravity:

— Depth estimation of cavities using microgravity data

— Shape factor estimation of gravity anomalies

— Prediction of linear trends

— Adaptive learning 3D gravity inversion for salt-body imaging 4D gravity
time series prediction

— Attenuation of the effect of atmospheric temperature and pressure (as noise)
on microgravity continuously record by gravimeters

— Boundary detection for iron ore deposits (Wavelet Cellular Neural Networks)

e Geodesy:

— Optimal Interpretation of the Gravity of the earth

— Predicting vertical displacement of structures

— Orbit propagation for small satellite missions

— Sea-level prediction using satellite altimetry

— Determination of structure parameters (Kaftan and Salk 2009)

e Resistivity:

— Layer boundary picking, locating layer boundaries with unfocused resistivity
tools

— Inversion of DC resistivity data (EL-Qady and Ushijima 2001)

— Obtaining formation resistivity and layer thickness from vertical electrical
sounding (VES)

The most common Neural Networks used in geophysics are:

— Back-propagation

— SVM (Support Vector Machine)

— GRNN (General Regression Neural Networks)

— Cellular Neural Networks, Wavelet Cellular neural networks (CNN)
— Modular Neural Networks (MNN)

— Forced Neural Networks (FNN)

— Radial Basis Function Neural Networks (RBF)

In this chapter we first explain neural network concepts and introduce some of
the important types of neural networks which are most common in geophysical
problems.

1.3 Natural Neural Networks

The human brain is a complex organism with great powers of learning and gen-
eralization from specific data. The human brain is one of the great mysteries of our
time and scientists have not reached a consensus on exactly how it works. Two
theories of the brain exist namely: the “grandmother cell theory” and the
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“distributed representation theory”. The first theory asserts that individual neurons
have high information capacity and are capable of representing complex concepts
such as ‘your grandmother’ or even ‘Jennifer Aniston’. The second theory asserts
that neurons are much simpler and the representation of complex objects is dis-
tributed across many neurons. Artificial neural networks are loosely inspired by the
second theory. Up to now much research has been done by neuroscientists to
explore the nature of the human brain operation and structure. These scientists have
explored the map of a mouse brain which is shown in Fig. 1.2a. This is the First
Detailed Map of a Mammal’s Neural Network; if this looks like an incredibly
complex wiring diagram to you, it’s because it is: you’re looking at the Allen
Mouse Brain Connectivity Atlas, the first detailed map of any mammal’s neural
network. It’s not a full connectome—the name given to maps of every single
interconnection between neurons in a brain—but it’s the most detailed rendering of
interconnections in any mammalian brain yet. It traces connections between tiny
cubes, called voxels, of brain tissue containing between 100 and 500 neurons.
Hongkui Zeng and colleagues at the Allen Institute for Brain Science in Seattle,
Washington, injected the brains of 469 mice with a virus that introduced a
fluorescent protein into the neural network. Because each animal was injected at a
slightly different location, when taken together, the fluorescing proteins gave a
snapshot of the network’s shape. Next, the team diced up each brain into 500,000
pieces each measuring 100 cubic micrometers. Based on the strength of fluores-
cence in the cubes, they generated a 3D map of how each of the 469 different
signals spread through the brain’s thoroughfares and quieter by roads (www.giz-
modo.com.au).

Human brains have a lot of cells namely “neurons” (Fig. 1.2b, ¢) and the number
of these elements is approximately 10'" neurons with perhaps 10'° interconnections
over transmission paths that may range a metre or more.

1.4 Definition of Artificial Neural Network (ANN)

A single neuron in the brain is an incredibly complex machine that even today we don’t
understand. A single “neuron” in a neural network is an incredibly simple mathematical
function that captures a minuscule fraction of the complexity of a biological neuron. So to
say neural networks mimic the brain, that is true at the level of loose inspiration, but really
artificial neural networks are nothing like what the biological brain does.—Andrew Nigrin.

An artificial neural network is a processing method which is inspired by how the
human brain and the nervous system are interconnected with neurons. Azoff (1994)
states that, “A neural network may be considered as a data processing technique
that maps, or relates, some type of input streams of information to an output stream
of data”. Nigrin (1993) described a neural network based on circuit concepts as” a
circuit composed of a very large number of simple processing elements that are
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«Fig. 1.2 a The first detailed map of a mammal’s neural network (source http://www.gizmodo.
com.au/2014/04/this-is-the-first-detailed-map-of-a-mammals-neural-network/). b Schematic of
neurons in human brains (source http://detechter.com/10-interesting-facts-about-the-human-brain).
¢ Some very interesting views of the brain as created by state of the art brain imaging techniques
(source http://www.turingfinance.com/misconceptions-about-neural-networks/#comment-10376)

neutrally based. Each element operates only on local information. Furthermore,
each element operates asynchronously; thus there is no overall system clock™.

There are numerous alternative definitions of artificial neural networks. One of
the commonest is: “Neural networks are composed of simple elements operating in
parallel. These elements are inspired by biological nervous systems. As in nature,
the network function is determined largely by the connections between elements.
We can train a neural network to perform a particular function by adjusting the
values of the connections (weights) between elements” (Schalkoff 2011).

An artificial neural network is composed of a number of interconnected units
(artificial neurons) each unit has an input/output (I/O) characteristic and implements
a local computation or function. The output of any unit is determined by its I/O
characteristics, its interconnections to other units, and (possibly) external inputs.
Although “hand crafting” of the network is possible, the network usually develops
an overall functionally through one or more forms of training. It is necessary to
mention that numerous alternative definitions about ANN exist and the one we
select above is a somewhat generic definition.

Commonly, neural networks are adjusted, or trained, so that a particular input
leads to a specific target output. Such a situation is shown in Fig. 1.3. There, the
network is adjusted, based on comparison of the output and the target, until the
network output matches the target. Typically many such input/target pairs are used,
in this supervised learning, to train a network.

The overall computing model of an ANN consists of a reconfigurable inter-
connection of simple elements namely ‘“neurons”. The neuron model will be
described in detail in the next section. Corresponding to the interconnection

Target

Input
¢ Neural Network including elements Output

e (Called Weights) —=
between neurons

adjust weights

Fig. 1.3 Diagram of a neural network operation
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(a) Outputs (b) Outputs

Inputs Inputs

Fig. 1.4 a Non-recurrent, b recurrent neural networks (Hajian et al. 2012)

direction ANNSs can be placed into one of three classes based on their feedback link
connection structure ANN’s topology: non-recurrent (e.g. feed forward) recurrent
(global feedback connections). Local recurrent structure (local feedback connec-
tions, e.g. cellular NN).

The non-recurrent ANN contains no closed interconnection paths but in the
recurrent ANN the interconnection has arbitrary interconnection flexibility which
allows closed-loop (feedback) paths to exist. This allows the network to exhibit far
more complex temporal dynamics compared with the (open-loop) strategy, illus-
trated in Fig. 1.4a, b.

1.5 From Natural Neuron to a Mathematical Model
of an Artificial Neuron

Artificial neural networks are a very much simplified model of the natural neural
networks of the human nervous system. As we mentioned in the last sections the
biological nervous system is built of cells called neurons. Each neuron shares many
characteristics with the other cells in the human body and has the capability to
receive process and transmit electrochemical signals over the neural pathways that
comprise the brain’s communication system. The schematic drawing of a Biological
Neuron is shown in Fig. 1.5.

1. Dendrites: extend from the cell body out to other neurons where they receive
signals at a connection point called “Synapse”.

2. The axon is a single long fiber that carries the signal from the cell body out to
other neurons.
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Fig. 1.5 Schematic of a biological neuron. Redrawn from Van der Baan and Jutten (2000)

On the receiving side of the synapse, these inputs are conducted through the cell
body out to other neurons. There they are summed; some inputs tend to excite the
cell, others tend to inhibit its firing.

When the cumulative excitation in the cell body exceeds a threshold, the cell
fires, sending a signal through the axon to other neurons. This basic functional
outline has many complexities and exceptions; nevertheless, most Artificial Neural
Networks contain only these simple characteristics (Gret and Klingele 1998).
Artificial neural networks comprise a set of highly interconnected but simple pro-
cessing units called nodes which are such neurons. The nodes are arranged in a
series of layers that are interconnected through functional linkages. The mathe-
matical model of a simple neuron or ‘perception’ is presented in Fig. 1.6.

(@)

input coefficients

w
s ’ a=Zi, Wi x;

y=f(a)+b

summing node

neuron Inputs mathematical neuron

Fig. 1.6 a Mathematical model of a ‘perception’ or ‘neuron’ b the weighted sum of the inputs is
rescaled by an activation function. Redrawn from Van der Baan and Jutten (2000)
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As shown in Fig. 1.6 the neuron consists of a set of inputs:

and one output. Functionally each input x(i) is weighted or multiplied by a weight
function W(i) and summed in a process equivalent to the mathematical process
known as Convolution. This is called net input of the neuron:

N

net =y [x(i)w(i)]

i=1

Then an activation function is computed. This simulates the firing of the nerve
cells by inputs from other never cells. The Full diagram of steps from a biological
neuron to its mathematical model is shown in Fig. 1.7.

The activation function can be a: step function (hard-limiter), arc-tangent sig-
moidal function, hyperbolic tangent sigmoid etc. (see Fig. 1.8). The various kind of
activation functions or transfer functions are listed in Table 1.1 with their related
MATLAB commands.

The ‘sigmoid’ activation function is very commonly used for geophysical
applications because many applications require a continuous valued output rather
than the binary output produced by the hard-limit. In addition, it is particularly
well-suited to pattern recognition problems because it produces an output between 0
and 1 that can often be interpreted as a probability estimate (Richard and Lippmann
1991).

x; Biological Neuron X1 Artificial Neuron

X2
X %
W ) - >

X3 Ason change from SYMBOLIC  ~
XN % ., to NUMERIC syntax XN

Output

Lastly, filter the sum through an

Activation function X1
Sutpar J . X2
{0.0:1.0}“‘%=" = Z [x()w(i)] net )
i=l 3
XN

Artificial Neuoron
numerically balanced

Fig. 1.7 Full diagram of steps from a biological neuron to its mathematical model (here, the
activation function is a tangent sigmoid, see Table 1.1)
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Fig. 1.8 Some of common activation functions

Table 1.1 Some of activation functions with related relations and Matlab commands

Function Equation Matlab command
Hard limit 0 x<0 Hardlim
y= { 1 x>0
Symmetrical hard limit —1 | x<0 hardlims
y= { 1 | x>0

Saturating linear 0 x<0 -
y=1<x 0<x<l1
1 x>1
Symmetrical saturating linear — x< —1 elliotsig
y= x | —1<x<1
1 [x>1
Log-sigmoid y= ﬁ logsig
Hyperbolic tangent sigmoid |y =< fe: tansig
Linear y=x purelin
Positive linear 0 x<0 -
= { X x>0

Competitive

Neuron with Max X other
neurons

Before the activation function is computed, a bias value (v) is added which
serves as a threshold for the activation function. For example if the activation
function is a sigmoidal function the output of the neuron will be:

b(j

1

(e [=])

(1.1)

where “d” is a sigmoid shaping factor, “v” is the bias factor and net is the weighted
average of neuron inputs. If “d” is a high number then the sigmoid will be a gently
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Fig. 1.9 Sigmoid activation functions for different values of shaping factor (as it can be seen the
bias factor is fixed at 2)

varying function. For lower values of the shape factor the sigmoid will take a
steeper form. To plot the neuron output in MATLAB run below codes the results
are illustrated in Fig. 1.9.

***x*Matlab codes to generate sigmoid activation functions with different

shape factOrs***************************************

x=[-20:0.1:207;
bias=2;
for j=1:6
d=[24681012];
f=-(x-bias)/(d(3));
ff=exp (£f)+1;
b=ff."~(-1);
axis([-212101])
plot (x,b)
hold on
end
grid



