
Python
Graphics

A Reference for Creating 2D and 3D Images
—
B.J. Korites

Python Graphics
A Reference for Creating 2D and

3D Images

B.J. Korites

Python Graphics

ISBN-13 (pbk): 978-1-4842-3377-1 ISBN-13 (electronic): 978-1-4842-3378-8
https://doi.org/10.1007/978-1-4842-3378-8

Library of Congress Control Number: 2018946635

Copyright © 2018 by B.J. Korites

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484233771. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

B.J. Korites
Duxbury, Massachusetts, USA

https://doi.org/10.1007/978-1-4842-3378-8

For Pam

v

About the Author ��� ix

About the Technical Reviewer ��� xi

Acknowledgments ��� xiii

Table of Contents

Chapter 1: Essential Python Commands and Functions ��� 1
1.1 Programming Style ... 2

1.2 The Plotting Area ... 3

1.3 Establishing the Size of the Plotting Area ... 4

1.4 Importing Plotting Commands .. 6

1.5 Displaying the Plotting Area .. 8

1.6 The Plotting Grid .. 8

1.7 Saving a Plot ... 8

1.8 Grid Color .. 9

1.9 Tick Marks ... 9

1.10 Custom Grid Lines ... 11

1.11 Labelling the Axes ... 13

1.12 The Plot Title ... 14

1.13 Colors .. 15

1.13.1 Color Mixing .. 16

1.13.2 Color Intensity... 19

1.14 Overplotting .. 20

1.15 Background Color ... 23

1.16 The Plotting Area Shape .. 23

1.17 How to Correct Shape Distortions ... 26

1.17.1 Applying a Scale Factor When Plotting ... 27

1.17.2 The Best Way: Scaling the Axes in plt.axis() ... 27

vi

1.18 Coordinate Axes .. 29

1.19 Commonly Used Plotting Commands and Functions .. 30

1.19.1 Points and Dots Using scatter() .. 31

1.19.2 Lines Using plot() ... 32

1.19.3 Arrows .. 33

1.19.4 Text ... 34

1.19.5 Lists, Tuples, and Arrays ... 36

1.19.6 Arrays ... 41

1.19.7 arange() ... 42

1.19.8 range() ... 43

1.20 Summary... 43

 Chapter 2: Graphics in Two Dimensions �� 45
2.1 Lines from Dots ... 45

2.2 Dot Art ... 50

2.3 Circular Arcs from Dots ... 52

2.4 Circular Arcs from Line Segments .. 59

2.5 Circles ... 60

2.6 Dot Discs ... 64

2.7 Ellipses .. 68

2.8 2D Translation ... 75

2.9 2D Rotation ... 78

2.10 Summary... 100

Chapter 3: Graphics in Three Dimensions �� 101
3.1 The Three-Dimensional Coordinate System .. 101

3.2 Projections onto the Coordinate Planes .. 104

3.3 Rotation Around the y Direction .. 106

3.4 Rotation Around the x Direction .. 109

3.5 Rotation Around the z Direction .. 111

3.6 Separate Rotations Around the Coordinate Directions .. 113

3.7 Sequential Rotations Around the Coordinate Directions ... 121

Table of ConTenTs

vii

3.8 Matrix Concatenation .. 129

3.9 Keyboard Data Entry with Functional Program Structure ... 133

3.10 Summary... 141

Chapter 4: Perspective ��� 143
4.1 Summary... 152

Chapter 5: Intersections ��� 153
5.1 Line Intersecting a Rectangular Plane .. 153

5.2 Line Intersecting a Triangular Plane .. 166

5.3 Line Intersecting a Circle .. 181

5.4 Line Intersecting a Circular Sector .. 181

5.5 Line Intersecting a Sphere .. 187

5.6 Plane Intersecting a Sphere .. 196

5.7 Summary... 201

Chapter 6: Hidden Line Removal ��� 203
6.1 Box .. 203

6.2 Pyramid ... 212

6.3 Planes ... 218

6.4 Sphere ... 225

6.5 Summary... 233

Chapter 7: Shading ��� 235
7.1 Shading a Box ... 236

7.2 Shading a Sphere .. 246

7.3 Summary... 253

Chapter 8: 2D Data Plotting �� 255
8.1 Linear Regression ... 265

8.2 Function Fitting ... 269

8.3 Splines .. 275

8.4 Summary... 283

Table of ConTenTs

viii

Chapter 9: 3D Data Plotting �� 285
9.1 3D Surfaces... 297

9.2 3D Surface Shading .. 305

9.3 Summary... 319

Chapter 10: Demonstrations ��� 321
10.1 Saturn ... 321

10.2 Solar Radiation .. 331

10.2.1 Photons and the Sun .. 331

10.2.2 Max Planck’s Black Body Radiation .. 333

10.2.3 The Sun’s Total Power Output ... 334

10.3 Earth’s Irradiance .. 344

10.3.1 The Earth Sun Model .. 346

10.4 Summary... 351

Appendix A: Where to Get Python ��� 353

Appendix B: Planck’s Radiation Law and the Stefan-Boltzmann Equation ����������� 355

 Index ��� 359

Table of ConTenTs

https://doi.org/10.1007/978-1-4842-3378-8_10#Sec555

ix

About the Author

B.J. Korites has been involved in engineering and scientific

applications of computers for his entire career. He has

been an educator, consultant, and author of more than

ten books on geometric modelling, computer graphics,

artificial intelligence, simulation of physical processes,

structural analysis, and the application of computers

in science and engineering. He has been employed by

Northrop Corporation, the Woods Hole Oceanographic

Institute, Arthur D. Little, Itek, and Worcester Polytech.

He has consulted for Stone and Webster Engineering, Gould Inc, Wyman Gordon, CTI

Cryogenics, the US Navy, Aberdeen Proving Grounds, and others. Early in his career he

developed mathematics and software that would find physical interferences between

three-dimensional solid objects. This found wide application in the design of nuclear

power plants, submarines, and other systems with densely packed spaces. He enjoys

sailing and painting maritime landscapes in oils. He holds degrees from Tufts and Yale.

xi

About the Technical Reviewer

Andrea Gavana has been programming in Python for

almost 15 years and dabbling with other languages since the

late nineties. He graduated from university with a Master’s

degree in Chemical Engineering, and he is now a Senior

Reservoir Engineer working for Maersk Oil in Copenhagen,

Denmark.

Andrea enjoys programming at work and for fun, and

he has been involved in multiple open source projects, all

Python-based. One of his favorite hobbies is Python coding,

but he is also fond of cycling, swimming, and cozy dinners

with family and friends.

xiii

Acknowledgments

I would like to thank my wife, Pam, for her patience during the many long days and

nights that I spent writing this book and for her understanding of the distant stare I

sometimes had while off in another world thinking of math and Python, two of life’s great

joys. I would also like to thank everyone at Apress, especially editors Todd Green and Jill

Balzano, who made the production of this book a fast and seamless process.

1
© B.J. Korites 2018
B.J. Korites, Python Graphics, https://doi.org/10.1007/978-1-4842-3378-8_1

CHAPTER 1

Essential Python
Commands and Functions
In this chapter, you will learn the essential Python commands and functions you

will need to produce the illustrations shown in this book. You will learn how to use

Python’s basic plotting functions, set up a plotting area, create a set of two-dimensional

coordinate axes, and use basic plotting primitives (the dot, the line, and the arrow),

which are the building blocks you will use to construct images throughout this book. In

Chapter 2, you will learn how to use these primitives to build two-dimensional images

and then translate and rotate them. In Chapter 3, you will extend these concepts to three

dimensions. Also in this chapter you will learn about colors, how to apply text to your

plots, including the use of Latex commands, and the use of lists and arrays. By the last

chapter, you will be able to create images such as Figure 1-1.

Figure 1-1. Saturn

2

1.1 Programming Style
First a note on the programming style used in this book. We all have preferences when

it comes to style. I favor a clear, top-down, open style. Many programmers try to reduce

their code to as few lines as possible. That may be fine in practice but in an instructional

text, such as we have here, I believe it is better to proceed slowly in small, simple steps.

The intention is to keep everything clear and understandable. Since I do not know the

skill level of the readers, and since I want to make this book accessible to as wide an

audience as possible, I generally start each topic from an elementary level, although I do

assume some familiarity with the Python language. If you are just learning Python, you

will benefit from the material in this first chapter. If you are an accomplished Pythoner,

you could probably skip it and move on to Chapter 2.

Some Python developers advocate using long descriptive names for variables such

as “temperature” rather than “T.” I find excessively long variable names make the code

difficult to read. It’s a matter of preference. With relatively short programs such as we

have in this book, there’s no need for complex programming. Try to adopt a style that is

robust rather than elegant but fragile.

My programs usually have the same structure. The first few statements are generally

import numpy as np, import matplotlib.pyplot as plt, and so on. Sometime I will

import from the math library with from math import sin, cos, radians, sqrt. These are

commonly used functions in graphics programming. Importing them separately in

this way eliminates the need to use prefixes as in np.sin(); you can just use sin().

Then I most often define the plotting area with plt.axis([0,150,100,0]). As explained in

Section 1.2, these values, where the x axis is 50% wider than the y axis, produce a round

circle and a square square without reducing the size of the plotting area. At this point,

axes can be labelled and the plot titled if desired. Next, I usually define parameters

(such as diameters, time constants, and so on) and lists. Then I define functions.

Finally, in lengthy programs, at the bottom I put a control section that invokes the

functions in the proper order.

Including plt.axis('on') plots the axes; plt.grid(True) plots a grid. They are very

convenient options when developing graphics. However, if I do not want the axes or grid

to show in the final output, I replace these commands with plt.axis('off') and

plt.grid(False). The syntax must be as shown here. See Section 1.10 to learn how to

create your own grid lines if you are not satisfied with Python’s defaults.

Chapter 1 essential python Commands and FunCtions

3

I often begin development of graphics by using the scatter() function which

produces what I call scatter dots. They are fast and easy to use and are very useful in the

development stage. If kept small enough and spaced closely together, dots can produce

acceptable lines and curves. However, they can sometimes appear a bit fuzzy so, after I

have everything working right, I will often go back and replace the dots with short line

segments using either arrows via plt.arrow() or lines via plt.plot(). There is another

aspect to the choice of dots or lines: which overplots which. You don’t want to create

something with dots and then find lines covering it up. This is discussed in Section 1.14.

Some variants of Python require the plt.show() statement at the end to plot graphics.

My setup, Anaconda with Spyder and Python 3.5 (see Appendix A for installation

instructions), does not require this but I include it anyway since it serves as a marker for

the end of the program. Finally, press the F5 key or click on the Run button at the top to

see what you have created. After you are satisfied, you can save the plot by right-clicking

it and specifying a location.

Regarding the use of lists, tuples and arrays, they can be a great help, particularly

when doing graphics programming that involves a lot of data points. They are explained

in Section 1.19.5. An understanding of them, together with a few basic graphics

commands and techniques covered in this chapter, are all you need to create the

illustrations and images you see in this book.

1.2 The Plotting Area
A computer display with a two-dimensional coordinate system is shown in Figure 1-2.

In this example, the origin of the x,y coordinate axes, (x=0, y=0), is located in the center

of the screen. The positive x axis runs from the origin to the right; the y axis runs from

the origin vertically downward. As you will see shortly, the location of the origin can be

changed as can the directions of the x and y axes. Also shown is a point p at coordinates

(x,y), which are in relation to the x and y axes.

The direction of the y axis pointing down in Figure 1-2 may seem a bit unusual.

When plotting data or functions such as y=cos(x) or y=exp(x), we usually think of y as

pointing up. But when doing technical graphics, especially in three dimensions, as you

will see later, it is more intuitive to have the y axis point down. This is also consistent

with older variants of BASIC where the x axis ran along the top of the screen from left to

right and the y axis ran down the left side. As you will see, you can define y to point up or

down, whichever best suits what you are plotting.

Chapter 1 essential python Commands and FunCtions

4

1.3 Establishing the Size of the Plotting Area
The plotting area contains the graphic image. It always appears the same physical size

when displayed in the Spyder output pane. Spyder is the programming environment

(see Appendix A). However, the numerical size of the plotting area, and of the values

of the point, line, and arrow definitions within the plotting area, can be specified to be

anything. Before doing any plotting, you must first establish the area’s numerical size.

You must also specify the location of the coordinate system’s origin and the directions

of the coordinate axes. As an illustration, Listing 1-1 uses the plt.axis([x1,x2,y1,y2])

function in line 8 to set up an area running from x=-10 to +10; y=−10 to +10. The rest of

the script will be explained shortly.

Figure 1-2. A two-dimensional x,y coordinate system with its origin (0,0) centered
in the screen. A point p is shown at coordinates (x,y) relative to x,y.

Listing 1-1. Program PLOTTING_AREA

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x1=-10

5 x2=10

6 y1=-10

7 y2=10

8 plt.axis([x1,x2,y1,y2])

9

10 plt.axis('on')

Chapter 1 essential python Commands and FunCtions

5

11 plt.grid(True)

12

13 plt.show()

Listing 1-1 produces the plotting area shown in Figure 1-3. It has a horizontal width

of 20 and a vertical height of 20. I could have made these numbers 200 and 200, and

the area would appear in an output pane as the same physical size but with different

numerical values on the axes. Line 13 contains the command plt.show(). The purpose

of this is to display the program’s results in the output pane. With modern versions of

Python it isn’t required since the plots are automatically displayed when the program is

run. With older versions it may or may not be displayed. plt.show() can also be placed

within a program in order to show plots created during execution. Even though it may

not be necessary, it’s a good idea to include this command at the end of your script since

it can serve as a convenient marker for the end of your program. Lines 1, 2, 10, and 11 in

Listing 1-1 will be explained in the following sections. These commands, or variations of

them, will appear in all of our programs.

Figure 1-3. Plotting area produced by Listing 1-1 with (0,0) located in the center
of the area

Chapter 1 essential python Commands and FunCtions

6

1.4 Importing Plotting Commands
While Python has many built-in commands and functions available, some math and

graphics commands must be imported. Lines 1 and 2 in Listing 1-1 do this. The import
numpy as np statement in line 1 imports math functions such as sin(ϕ), eα, and so on.

The np in this statement is an abbreviation that may be used when referring to a numpy

function. When used in a program, these functions must be identified as coming from

numpy. For example, if you were to code v=eα, the program statement would be v=np.
exp(α) where α would have been previously defined. You don’t have to write out the full

length numpy.exp(α) since you defined the shorthand np for numpy in line 1. Graphics

commands are handled similarly. The statement import matplotlib.pyplot as plt

imports the library pyplot, which contains graphics commands. plt is an abbreviation

for pyplot. For example, if you want to plot a dot at x,y you would write plt.scatter(x,y).

I will talk more about plt.scatter() shortly.

Functions may also be imported directly from numpy. The statement from numpy
import sin, cos, radians imports the sin(), cos(), and radians() functions. When

imported in this manner they may be used without the np prefix. There is also a math

library that operates in a similar way. For example, from math import sin, cos, radians

is equivalent to importing from numpy. You will be using all these variations in the

coming programs.

There is also a graphics library called glib that contains graphics commands. glib

uses a different syntax than pyplot. Since pyplot is used more widely, you will use it in

your work here.

Line 8 in Listing 1-1, plt.axis([x1,x2,y1,y2]), is the standard form of the command

that sets up the plotting area. This is from the pyplot library and is preceded by the

plt. prefix. There are attributes to this command and there are other ways of defining

a plotting area, notably the linspace() command, but the form in line 8 is sufficient

for most purposes and is the one you will use. x1 and x2 define the values of the left

and right sides, respectively, of the plotting area; y1 and y2 define the bottom and top,

respectively. With the numeric values in lines 8-11 you get the plotting area shown in

Figure 1-3. x1,x2,y1, and y2 always have the locations shown in Figure 1-3. That is, x1 and

y1 always refer to the lower left corner, y2 to other end of the y axis, and x2 to the other

end of the x axis. Their values can change, but they always refer to these locations. They

may be negative, as shown in Figure 1-4.

Chapter 1 essential python Commands and FunCtions

7

Because the x and y values specified in lines 4-7 are symmetric in both the x and y

directions (i.e. −10, +10), this plotting area has the (x=0, y=0) point halfway between.

In this case, the center of the area will be the origin used as reference for plotting

coordinates. Since x1 < x2, the positive direction of the x axis will run horizontally from

left to right. Similarly, since y1 < y2, the positive direction of the y axis will go vertically

up. But earlier I said we want the positive y direction to go vertically down. You can do

that by reversing the y values to y1=10, y2=−10. In this case, you get the area shown in

Figure 1-4 where the positive x axis still goes from left to right but the positive y axis now

points down. The center is still in the middle of the plotting area.

You could move the origin of the coordinate system off center by manipulating x1,

x2,y1, and y2. For example, to move the x=0 point all the way to the left side, you could

specify x1=0, x2=20. To move the (x=0, y=0) point to the lower left corner, you could

specify x1=0, x2=20, y1=0, y2=20. But that would make the positive y direction point up;

you want it to point down, which you can do by making y2=0, y1=20. This will make the

origin appear in the upper left corner. You are free to position the (0,0) point anywhere,

change the direction of positive x and y, and scale the numerical values of the coordinate

axes to suit the image you will be trying to create. The numerical values you are using

here could be anything. The physical size of the plot produced by Python will be the

same; only the values of the image coordinates will change.

Figure 1-4. Plotting area with (0,0) located in the center, positive y direction
pointing down

Chapter 1 essential python Commands and FunCtions

8

1.5 Displaying the Plotting Area
In line 10 of Listing 1-1 the statement plt.axis('on') displays the plotting area with its

frame and numerical values. If you omit this command, the frame will still be displayed

with numerical values. So why include this command? Because, when creating a plot it

is sometimes desirable to turn the frame off. To do that, replace plt.axis('on') with plt.
axis('off '). Having the command there ahead of time makes it easy to type 'off ' over

'on' and vice versa to switch between the frame showing and not showing. Also, after

you have finished with a plot, you may wish to use it in a document, in which case you

may not want the frame. Note that 'on' and 'off ' must appear in quotes, either single or

double.

1.6 The Plotting Grid
Line 11 of Listing 1-1, plt.grid(True), turns on the dotted grid lines, which can be an aid

when constructing a plot, especially when it comes time to position textual information.

If you do not include this command, the grid lines will not be shown. To turn off the

grid lines, change the True to False. Note the first letter in True and False is capitalized.

True and False do not appear in quotations marks. As with plt.axis(), having the plt.
grid(True) and plt.grid(False) commands there makes it easy to switch back and forth.

Again, note that both True and False must have the first letter capitalized and do not

appear in quotes.

1.7 Saving a Plot
The easiest way to save a plot that appears in the output pane is to put your cursor over it

and right-click. A window will appear allowing you to give it a name and specify where it

is to be saved. It will be saved the .png format. If you are planning to use it in a program

such as Photoshop, the .png format works. Some word processing and document

programs may require the .eps (encapsulated Postscript) format. If so, save it in the .png

format, open it in Photoshop, and resave it in the .eps format. It’s a bit cumbersome but

it works.

Chapter 1 essential python Commands and FunCtions

9

1.8 Grid Color
There are some options to the plt.grid() command. You can change the color of the grid

lines with the color='color' attribute. For example, plt.grid(True, color='b') plots a

blue grid. More color options will be defined shortly.

1.9 Tick Marks
The plt.grid(True) command will create a grid with Python’s own choice of spacing,

which may not be convenient. You can alter the spacings with the plt.xticks(xmin,
xmax, dx) and plt.yticks(ymin, ymax, dy) commands. min and max are the range of

the ticks; dx and dy are the spacing. While normally you want the tick marks to appear

over the full range of x and y, you can have them appear over a smaller range if you wish.

These commands appear in lines 23 and 24 of Listing 1-2.

Listing 1-2. Program TICK_MARKS

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 #————————————————plotting area

5 x1=-10

6 x2=140

7 y1=90

8 y2=-10

9 plt.axis([x1,x2,y1,y2])

10 plt.axis('on')

11

12 #——————————————————grid

13 plt.grid(True,color='b')

14 plt.title('Tick Mark Sample')

15

16 #————————————————tick marks

Chapter 1 essential python Commands and FunCtions

10

17 xmin=x1

18 xmax=x2

19 dx=10

20 ymin=y1

21 ymax=y2

22 dy=-5

23 plt.xticks(np.arange(xmin, xmax, dx))

24 plt.yticks(np.arange(ymin, ymax, dy))

25

26 plt.show()

The output is shown in Figure 1-5. In line 23, xmin and xmax are the beginning and

end of the range of ticks along the x axis, similarly for line 24, which controls the y axis

ticks. dx in line 19 spaces the marks 10 units apart from x1=-10 (line 5) to x2=140 (line 6).

dy in line 22 is -5. It is negative because y2=−10 (line 8) while y1=+90 (line 7). Thus, as

the program proceeds from y1 to y2, y decreases in value; hence dy must be negative.

Figure 1-5. User-defined tick mark

Chapter 1 essential python Commands and FunCtions

11

1.10 Custom Grid Lines
The automatically generated grid that is produced by the plt.grid(True) command is

not always satisfactory especially if you want to include text in your plot. It is often not

fine enough to accurately place text elements. But if the xtick() and ytick() commands

are used to reduce the spacing, the numbers along the axes can become cluttered.

The numbers can be eliminated but then you do not have the benefit of using them to

position textual information such as when labelling items on a plot. The grid shown in

Figure 1-3 would be more helpful if the increments were smaller. You can produce your

own grid lines and control them any way you want. The code in Listing 1-3 produces

Figure 1-6, a plotting area with finer spacing between grid lines.

Listing 1-3. Program CUSTOM_GRID

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 x1=-5

5 x2=15

6 y1=-15

7 y2=5

8 plt.axis([x1,x2,y1,y2])

9

10 plt.axis('on')

11

12 dx=.5 #x spacing

13 dy=.5 #y spacing

14 for x in np.arange(x1,x2,dx): #x locations

15 for y in np.arange(y1,y2,dy): #y locations

16 plt.scatter(x,y,s=1,color='grey') #plot a grey point at x,y

17

18 plt.show()

Chapter 1 essential python Commands and FunCtions

12

The scatter() function in line 16 of Listing 1-3 plots a grey dot at every x,y location.

I will discuss scatter() in more depth later. Note that plt.grid(True) is not used in this

program. Lines 1-10 produce the plotting area with axes as before. This time, instead of

using the plt.grid(True) command, you produce your own custom grid in lines 12-16.

Lines 12 and 13 specify the spacing. The loop beginning at line 14 advances horizontally

from left to right in steps dx. The loop beginning at line 15 does the same in the vertical

direction. The size of the dot is specified as 1 by the s=1 attribute in line 16. This could

be changed: s=.5 will give a smaller dot; s=5 will give a larger one. The color='grey'

attribute sets the dot color to grey. You can experiment with different size dots, colors,

and spacings. Sometimes it can be beneficial to use the grid produced by Grid(True)

along with a custom grid.

Figure 1-6. Plotting area with custom grid

Chapter 1 essential python Commands and FunCtions

13

1.11 Labelling the Axes
Axes can be labelled with the plt.xlabel('label') and plt.ylabel('label') functions. As

an example, the lines

plt.xlabel('this is the x axis')

plt.ylabel('this is the y axis')

when added to Listing 1-3 after line 10 produce Figure 1-7 where the custom grid dots

have been changed to a lighter grey by using the attribute color='lightgrey' in the plt.
scatter() function.

Figure 1-7. Plotting area with axis labels and custom grid

Chapter 1 essential python Commands and FunCtions

14

In Figure 1-8 you can see the matplotlib grid. This combination of Python’s grid plus

a custom grid makes a convenient working surface for locating elements.

Figure 1-8. Plotting area with axis labels, the Python grid, and a custom grid

1.12 The Plot Title
Your plot can be titled easily with the plt.title('title') statement. Inserting the following

line produces Figure 1-9:

plt.title('this is my plot')

Chapter 1 essential python Commands and FunCtions

15

1.13 Colors
As you move along in this book, you will make good use of Python’s ability to plot in

color. Some of the colors available are

'k' for black

'b' for blue

'c' for cyan

'g' for green

'm' for magenta

'r' for red

'y' for yellow

'gray' or 'grey'

'lightgray' or 'lightgrey'

Figure 1-9. Plotting area with axis labels, Python grid, custom grid, and title

Chapter 1 essential python Commands and FunCtions

16

For example, the following statement will plot a green dot at coordinates x,y:

plt.scatter(x,y,color='g')

A swatch of many more colors can be found at

https://matplotlib.org/examples/color/named_colors.html.

The color attribute may be used in the scatter(), plot(), and arrow() functions along

with other attributes.

1.13.1 Color Mixing
You can mix your own hues from the primary colors of red (r), green (g), and blue (b)

with the specification color=(r,g,b) where r,g,b are the values of red, green, and blue

in the mix, with values of each ranging from 0 to 1. For example color=(1,0,0) gives

pure red; color=(1,0,1) gives magenta, a purplish mix of red and blue; color=(0,1,0)

gives green; color(.5,0.1) gives more red and less blue in the magenta; color(0,0,0)

gives black; and color(1,1,1) gives white. Keeping the r,g,b values the same gives a grey

progressing from black to white as the values increase. That is, color=(.1,.1,.1) produces

a dark grey, color(.7,.7,.7) gives a lighter grey, and color(.5,.9,.5) gives a greenish grey.

Note that when specifying 'grey' it can also be spelled 'gray'.
Listing 1-4 shows how to mix colors in a program. Lines 7-9 establish the fraction of

each color ranging from 0-1. The red component in line 7 depends on x, which ranges

from 1-100. The green and blue components each have a value of 0 in this mix. Line

10 draws a vertical line at x from top to bottom having the color mix specified by the

attribute color=(r,g,b). The results are shown in Figure 1-10. The hue on the left side

is almost black. This is because the amount of each color in the mix is 0 or close to it

(r=.01,g=0,b=0). The hue on the right is pure red since on that side r=1,g=0,b=0; that is,

the red is full strength and is not contaminated by green or blue.

Listing 1-4. Program COLORS

1 import numpy as np

2 import matplotlib.pyplot as plt

3

Chapter 1 essential python Commands and FunCtions

https://matplotlib.org/examples/color/named_colors.html

17

4 plt.axis([0,100,0,10])

5

6 for x in np.arange(1,100,1):

7 r=x/100

8 g=0

9 b=0

10 plt.plot([x,x],[0,10],linewidth=5,color=(r,g,b))

11

12 plt.show()

Figure 1-10. Red color band produced by Listing 1-4 with r=x/100, g=0, b=0

Figure 1-11 shows the result of adding blue to the mix. Figure 1-12 shows the

result of adding green to the red. Mixing all three primary colors equally gives shades

of grey ranging from black to white, as shown in Figure 1-13.

Chapter 1 essential python Commands and FunCtions

18

Figure 1-12. Yellow color band with r=x/100, g=x/100, b=0

Figure 1-11. Purple color band with r=x/100, g=0, b=x/100

Chapter 1 essential python Commands and FunCtions

19

There are 256 values of each primary color available. Mixing them, as I did here,

gives 2563, which is almost 17 million different hues.

1.13.2 Color Intensity
The intensity of a color can be controlled with the alpha attribute, as shown in lines

6-8 in Listing 1-5, which produced Figure 1-14. alpha can vary from 0 to 1, with 1

producing the strongest hue and 0 the weakest.

Listing 1-5. Program COLOR_INTENSITY

1 import numpy as np

2 import matplotlib.pyplot as plt

3

4 plt.axis([0,100,0,10])

5

6 plt.scatter(60,50,s=1000,color='b',alpha=1)

7 plt.scatter(80,50,s=1000,color='b',alpha=.5)

8 plt.scatter(100,50,s=1000,color='b',alpha=.1)

9

10 plt.show()

Figure 1-13. Grey color band with r=x/100, g=x/100, b=x/100

Chapter 1 essential python Commands and FunCtions

