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Construction history has experienced amazing momentum over the past 
decades. It has become a highly vibrant, independent discipline attracting 
much attention through its international networks. Although research pro-
jects at national level focus on different themes, they are united through 
the knowledge that their diversity in terms of content and methods, and 
hence the associated synthesizing potential, are precisely the strengths 
that shape this new field of research. Construction history opens up new 
ways of understanding construction between engineering and architecture,  
between the history of building and history of art, between the history 
of technology and history of science. Since the appearance of the first 
German edition in 2002, �The History of the Theory of Structures� has be-
come a standard work of reference for this latter field. It continues the 
series of great works on the history of civil and structural engineering by  
S. P. Timoshenko and I. Szabó right up to E. Benvenuto and J. Heyman, 
and enriches them by adding valuable new levels of interpretation and 
knowledge. We are delighted to be able to publish the second, considerably  
enlarged, English-language edition as part of the �Construction History Series /  
Edition Bautechnikgeschichte�.

	 Werner Lorenz and Karl-Eugen Kurrer
	 Series editors

Foreword of the series editors
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Foreword

Ten years after the first English edition of Dr. Kurrer’s �The History of the 
Theory of Structures�, he now presents us with a much enlarged edition, and 
with a new subtitle: �Searching for Equilibrium� – an addition that reminds 
us of that most important of all mechanical principles: no equilibrium, no 
loadbearing system! But the subtitle also expresses the constant search 
for a balance between theory of structures as a scientific discipline and 
its prime task in practical applications – totally in keeping with Leibniz’  
�Theoria cum Praxi�. This interaction has proved beneficial for both sides at 
all times in history, and runs like a thread through the entire book.

New content in this second edition includes: earth pressure theory, ul-
timate load method, an analysis of historical textbooks, steel bridges, light-
weight construction, plate and shell theory, computational statics, Green’s 
functions, computer-assisted graphical analysis and historical engineering 
science. Furthermore, the number of brief biographies has been increased 
from 175 to 260! Compared with the first English edition, the number of 
printed pages has increased by 50 % to a little over 1,200.

Right at the start we learn that the first conference on the history of 
theory of structures took place in Madrid in 2005. This theme, its parts 
dealt with many times, is simply crying out for a comprehensive treatment. 
However, this book is not a history book in which the contributions of our 
predecessors to this theme are listed chronologically and described syste-
matically. No, this is ‘Kurrer’s History of Theory of Structures’ with his in-
terpretations and classifications; luckily – because that makes it an exciting 
journey through time, with highly subjective impressions, more thematic 
and only roughly chronological, and with a liking for scientific theory. In-
deed, a description of the evolution of an important fundamental enginee-
ring science discipline with its many facets in teaching, research and, first 
and foremost, practice.

And what is “theory of structures” anyway? … Gerstner’s first book da-
ting from 1789 talks about the “statics of architecture” and Emil Winkler 
used the term “statics of structures” around 1880. Winkler’s term also in-
cluded earth pressure theory, the evolution of which from 1700 to the pre-
sent day is now the topic of a new chapter 5 in this second edition. 

The history of theory of structures is in the first place the history of 
mechanics and mathematics, which in earlier centuries were most defi
nitely understood to be applied sciences. Dr. Kurrer calls this period from 
1575 to 1825 the “preparatory period” – times in which structural design 
was still very much dominated by empirical methods. Nevertheless, it is 
worth noting that the foundations of many structural theories were laid 
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in this period. It is generally accepted that the structural report for the re-
pairs to the dome of St. Peter’s in Rome (1742/1743) by the �tre mattematici�  
represents the first structural calculations as we understand them today. 
In other words, dealing with a constructional task by the application of 
scientific methods – accompanied, characteristically, by the eternal dispute 
between theory and practice (see section 13.2.5). These days, the centu-
ries-old process of the theoretical abstraction of natural and technical 
processes in almost all scientific disciplines is called ‘modelling and simu-
lation’ – as though it had first been introduced with the invention of the 
computer and the world of IT, whereas, in truth, it has long since been the 
driving force behind humankind’s ideas and actions. Mapping the load
bearing properties of building structures in a theoretical model is a typi-
cal case. Classic examples are the development of masonry and elastic arch 
theories (see chapter 4) and the continuum mechanics models of earth 
pressure of Rankine and Boussinesq (see sections 5.4 and 5.5). It has be-
come customary to add the term ‘computational’ to these computer-orien-
ted fields in the individual sciences, in this case ‘computational mechanics’.

The year 1825 has been fittingly chosen as the starting point of the dis-
cipline-formation period in theory of structures (see chapter 7). Theory 
of structures is not just the solving of an equilibrium problem, not just a 
computational process. Navier, whose importance as a mechanics theorist  
we still acknowledge today in the names of numerous theories (Navier 
stress distribution, Navier-Lamé and Navier-Stokes equations, etc.), was 
very definitely a practitioner. In his position as professor for applied me-
chanics at the École des Ponts et Chaussées, it was he who combined the 
subjects of applied mechanics and strength of materials in order to apply  
them to the practical tasks of building. For example, in his �Mechanik der 
Baukunst� of 1826, he describes the work of engineers thus: “... after the 
works have been designed and drawn, [they] investigate them to see if all 
conditions have been satisfied and improve their design until this is the 
case. Economy is one of the most important conditions here; stability and 
durability are no less important …” (see section 2.1.2.1). Navier was the 
first to establish theory of structures as an independent scientific disci
pline. Important structural theories and methods of calculation would 
be devised in the following years, linked with names such as Clapeyron, 
Lamé, Saint-Venant, Rankine, Maxwell, Cremona, Castigliano, Mohr and 
Winkler, to name but a few. The graphical statics of Culmann and its grad
ual development into graphical analysis are milestones in the history of 
theory of structures.

Already at this juncture, it is worth pointing out that the development 
did not always proceed smoothly – controversies concerning the content 
of theories, or competition between disciplines, or priority disputes raised  
their heads along the way. This exciting theme is explored in detail in 
chapter 13 by way of 13 examples.

In the following decades, the evolution of methods in theory of struc-
tures became strongly associated with specific structural systems and 
hence, quite naturally, with the building materials employed, such as iron 
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(steel) and later reinforced concrete (see chapters 8, 9 and 10). Independ
ent materials-specific systems and methods were devised. Expressed in 
simple terms, structural steelwork, owing to its modularity and the fabri-
cation methods, initially concentrated on assemblies of linear members, 
not embracing plate and shell structures until the 1950s. On the other 
hand, reinforced concrete preferred its own two-dimensional design lan-
guage, which manifested itself in slabs, plates and shells. Therefore, chap-
ters 8 and 10 in this second English edition have been considerably enlar-
ged by the addition of plate and shell structures. The space frames dealt 
with in chapter 9 represent a link to some extent. This materials-based 
split was also reflected in the teaching of theory of structures in the form 
of separate studies. It was not until many years later that the parts were 
brought together in a homogeneous theory of structures, albeit frequently 
‘neutralised’, i. e. no longer related to the specific properties of the particu-
lar building material – an approach that must be criticised in retrospect. 
Of course, the methods of structural analysis can encompass any material 
in principle, but in a specific case they must take account of the particular 
characteristics of the material.

Dr. Kurrer places the transition from the discipline-formation period –  
with its great successes in the shape of graphical statics and the systematic 
approach to methods of calculation in member analysis in the form of the 
force method – to the consolidation period around 1900. This latter pe-
riod, which lasted until 1950, is characterised by refinements and exten
sions, e. g. a growing interest in plate and shell structures and the conside-
ration of non-linear effects. Only after this does the ‘modern’ age of theory 
of structures begin – designated the integration period in this instance and 
typified by the use of modern computers and powerful numerical methods. 
Theory of structures is integrated into the structural planning process 
of draft design – analysis – detailed design – construction in this period. 
Have we reached the end of the evolutionary road? Does this development 
mean that theory of structures, as an independent engineering science, is 
losing its profile and its justification? The tendencies of recent years in
dicate the opposite.

The story of yesterday and today is also the story of tomorrow. In the 
world of data processing and information technology, theory of structures 
has undergone rapid progress in conjunction with numerous paradigm 
changes. It is no longer the calculation process and method issues, but 
rather principles, modelling, realism, quality assurance and many other as-
pects that form the focus of our attention. The remit includes dynamics 
alongside statics; in terms of the role they play, plate and shell structures 
are almost equal to trusses, and taking account of true material behaviour 
is obligatory these days. During its history so far, theory of structures was 
always the trademark of structural engineering; it was never the discipline 
of ‘number crunchers’, even if this was and still is occasionally proclaimed 
as such when launching relevant computer programs. Theory of structu-
res continues to play an important mediating role between mechanics on 
the one side and the draft and detailed design subjects on the other side 
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in teaching, research and practice. Statics and dynamics have in the mean-
time advanced to what is known internationally as ‘computational structu-
ral mechanics’, a modern application-related structural mechanics.

The author takes stock of this important development in chapters 11  
and 12. He mentions the considerable rationalisation and formalisation –  
the foundations for the subsequent automation. It was no surprise when, 
as early as the 1930s, the structural engineer Konrad Zuse began to de-
velop the first computer (see section 11.4). However, the rapid develop-
ment of numerical methods for structural calculations in later years could 
not be envisaged at that time. J. H. Argyris, one of the founding fathers of 
the modern finite element method, recognised this at an early stage in his 
visionary remark “the computer shapes the theory” (1965): Besides theory 
and experimentation, there is a new pillar – numerical simulation (see sec-
tion 12.1).

By their very nature, computers and programs have revolutionised 
the work of the structural engineer. Have we not finally reached the stage 
where we are liberated from the craftsman-like, formula-based business so 
that we can concentrate on the essentials? The role of modern theory of 
structures is discussed in section 14.1, also in the context of the relation
ship between the structural engineer and the architect. A new graphical 
statics has appeared, not in the sense of the automation and visual presen-
tation of Culmann’s graphical statics, but rather in the form of graphic dis-
plays and animated simulations of mechanical relationships and processes. 
This is a decisive step towards the evolution of structures and to loadbea-
ring structure synthesis, to a new way of teaching structural engineering 
(see section 14.1.4). This potential as a living interpretation and design 
tool has not yet been fully exploited. It is also worth mentioning that the 
boundaries to the other construction engineering disciplines (mechanical 
engineering, automotive engineering, shipbuilding, aerospace, biomecha-
nics) are becoming more and more blurred in the field of computational 
mechanics; the relevant conferences no longer make any distinctions. The 
concepts, methods and tools are universal. And we are witnessing similar 
developments in teaching, too. No wonder Dr. Kurrer also refers to lea-
ding figures from these disciplines. That fact becomes particularly clear in 
chapter 15, which contains 260 brief biographies of persons who have fea-
tured prominently in the theory of structures. 

In terms of quality and quantity, this second English edition of �The 
History of the Theory of Structures� goes way beyond the first edition. This 
book could only have been written by an expert, an engineer who knows 
the discipline inside out. Engineering scientists getting to grips with their 
own history so intensely is a rare thing. But this is one such lucky instance. 
We should be very grateful to Dr.-Ing. Dr.-Ing. E. h. Karl-Eugen Kurrer, 
and also ‘his’ publisher, Ernst & Sohn (John Wiley & Sons), for his �mag-
num opus�.

Stuttgart, February 2018
Ekkehard Ramm, University of Stuttgart
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Encouraged by the positive feedback from the engineering world regarding 
the first German edition of my �Geschichte der Baustatik� (2002) and the first 
English edition �The History of the Theory of Structures� (2008), two years  
ago I set myself the task of revising my manuscripts, adding new material 
once again and bringing everything up to date. Increasing the number of 
pages by a little over 50% was unavoidable, because my goal now was to 
present a total picture of the evolution of the theory of structures.

But that goal did not just consist of including the research findings 
of the past few years. Instead, I would now be devoting more space to a 
detailed treatment of the development of modern numerical methods 
of structural analysis and structural mechanics as well as the connection 
between the formation of structural analysis theories and constructio-
nal-technical progress. It is for this reason that, for example, plate, shell 
and stability theories have been paid particular attention, as these theories 
played an important part in the development of the design languages of 
steel, reinforced concrete, aircraft, vehicles and ships. As a result, the chap-
ters on steel (chapter 8) and reinforced concrete (chapter 10) have been  
greatly enlarged. Without doubt, the finite element method (FEM), 
spawned by structural mechanics and numerical mathematics, was the 
most important intellectual technology of the second half of the 20th cen-
tury. Therefore, the historico-logical sources of computational statics plus  
their development and establishment are now presented in detail separately  
in chapter 12. Also new is the substantial chapter on the 300-year-old 
history of earth pressure theory (chapter 5). Earth pressure theory was 
the first genuine engineering science theory that shaped the scientific 
self-conception of modern civil engineering, a profession that was begin-
ning to emerge in 18th-century France. It is the reference theory for this 
profession, and not beam theory, as is often assumed. Not until the 20th 
century did earth pressure theory gradually become divorced from theory 
of structures. As in earth pressure theory, it is the search for equilibrium 
that grabs our historico-logical attention in masonry arch theory. Chap-
ter 4, “From masonry arch to elastic arch”, has therefore been expanded. 
The same is true for chapter 3, which covers the development of theory 
of structures and applied mechanics as the first fundamental engineering 
science disciplines. That chapter not only contains the first analysis of text-
books on these two sciences published in the 19th and 20th centuries, but 
also attempts to extract the scientific and epistemological characteristics of 
theory of structures and applied mechanics. That therefore also forms the 
starting point for chapter 14, “Perspectives for a historical theory of struc-
tures”, the integral constituent of my concept for a historical engineering 
science, which is explained in detail in this book. Current research into 
graphical statics is one example mentioned in this chapter, which I sum-
marise under the term “computer-aided graphic statics” (CAGS). The 
number of brief biographies of the protagonists of theory of structures and 
structural mechanics has increased by 85 to 260, and the bibliography also 
contains many new additions.   

Preface to the second  
English edition
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was to create a deeper sense of the motivation for and enjoyment of the 
learning of structural analysis. It was crucial to overcome the formula-type 
acquisition of the subject matter by introducing a didactic approach to the 
fundamentals of theory of structures through their historical appreciation. 
By 1998 this had evolved into a plea for a historico-genetic approach to the 
teaching of theory of structures.

His dissertation “Entwicklung der Gewölbetheorie vom 19. Jahrhun- 
dert bis zum heutigen Stand der Wissenschaft am Beispiel der Berech-
nung einer Bogenbrücke” (the development of vault theory from the  
19th century to today using the example of structural calculations for an 
arch bridge) was completed in 1981. Since 1980, his many articles on the 
history of science and technology in general and construction history in 
particular have appeared in journals, newspapers, books and exhibition 
publications.

Karl-Eugen Kurrer completed his PhD – on the internal kinematic and 
kinetic of tube vibratory mills (advisers: Eberhard Gock, Wolfgang Simonis,  
Gerd Brunk) – with the highest level of distinction, �summa cum laude�, at 
TU Berlin in 1986 and went on to carry out externally funded research on 
energy efficiency in industry. He contributed to the development of a new 
eccentric vibratory mill that uses 50% less energy than comparable models. 
After 1995 the design successfully established itself on the international  
machine market (US and EU patents). The head of the “Eccentric vibratory  
mill” team at Clausthal University of Technology, Prof. Dr. Eberhard Gock 
(1937 – 2016), received an innovation award (“Technologietransferpreis 
der Industrie- und Handelskammer Braunschweig”) for this work in 1998.


