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Preface

With this concise volume we hope to satisfy the needs of a large scientific community pre-
viously served mainly by huge encyclopedic references. Rather than aiming at a compre-
hensive coverage of our subject, we have concentrated on the most important topics, but
explained those as deeply as space has allowed. The result is a compact work which we trust
leaves no central topics out.
Entries have a rigid structure to facilitate the finding of information. Each term introduced
here includes a definition, history, mathematical details, limitations in using the terms fol-
lowed by examples, references and relevant literature for further reading. The reference
is arranged alphabetically to provide quick access to the fundamental tools of statistical
methodology and biographies of famous statisticians, including some currents ones who
continue to contribute to the science of statistics, such as Sir David Cox, Bradley Efron and
T.W. Anderson just to mention a few. The critera for selecting these statisticians, whether
living or absent, is of course rather personal and it is very possible that some of those famous
persons deserving of an entry are absent. I apologize sincerely for any such unintentional
omissions.
In addition, an attempt has been made to present the essential information about statistical
tests, concepts, and analytical methods in language that is accessible to practitioners and
students and the vast community using statistics in medicine, engineering, physical science,
life science, social science, and business/economics.
The primary steps of writing this book were taken in 1983. In 1993 the first French language
version was published by Dunod publishing company in Paris. Later, in 2004, the updated
and longer version in French was published by Springer France and in 2007 a student edition
of the French edition was published at Springer.
In this encyclopedia, just as with the Oxford Dictionary of Statistical Terms, published for
the International Statistical Institute in 2003, for each term one or more references are given,
in some cases to an early source, and in others to a more recent publication. While some
care has been taken in the choice of references, the establishment of historical priorities is
notoriously difficult and the historical assignments are not to be regarded as authoritative.
For more information on terms not found in this encyclopedia short articles can be found
in the following encyclopedias and dictionaries:
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Acceptance Region

The acceptance region is the interval within
the sampling distribution of the test statis-
tic that isconsistentwith thenull hypothesis
H0 from hypothesis testing.
It is the complementary region to the rejec-
tion region.
The acceptance region is associated with
a probability 1− α, where α is the signifi-
cance level of the test.

MATHEMATICAL ASPECTS
See rejection region.

EXAMPLES
See rejection region.

FURTHER READING
� Critical value
� Hypothesis testing
� Rejection region
� Significance level

Accuracy

The general meaning of accuracy is the prox-
imity of a value or a statistic to a refer-
encevalue.Morespecifically, itmeasures the
proximity of theestimatorT of theunknown
parameter θ to the true value of θ .

The accuracy of an estimator can be mea-
sured by the expected value of the squared
deviation between T and θ , in other words:

E
[
(T − θ)2

]
.

Accuracy should not be confused with the
termprecision,which indicates thedegreeof
exactnessofameasureand isusually indicat-
ed by the number of decimals after the com-
ma.

FURTHER READING
� Bias
� Estimator
� Parameter
� Statistics

Algorithm
An algorithm is a process that consists of
a sequence of well-defined steps that lead to
the solution of a particular type of problem.
This process can be iterative, meaning that
it is repeated several times. It is generally
a numerical process.

HISTORY
The term algorithm comes from the Latin
pronunciation of the nameof the ninth centu-
ry mathematician al-Khwarizmi, who lived
in Baghdad and was the father of algebra.
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DOMAINS AND LIMITATIONS
The word algorithm has taken on a different
meaning in recent years due to the advent of
computers. In thefield ofcomputing, it refers
to a process that is described in a way that can
be used in a computer program.
The principal goal of statistical software is
to develop a programming language capa-
ble of incorporating statistical algorithms,
so that these algorithms can then be pre-
sented in a form that is comprehensible to
the user. The advantage of this approach is
that the user understands the results pro-
duced by the algorithm and trusts the preci-
sion of the solutions. Among various sta-
tistical reviews that discuss algorithms,
the Journal of Algorithms from the Aca-
demic Press (New York), the part of the
Journal of the Royal Statistical Society
Series C (Applied Statistics) that focuses on
algorithms, Computational Statistics from
Physica-Verlag (Heidelberg) and Random
Structures and Algorithms edited by Wiley
(New York) are all worthy of special men-
tion.

EXAMPLES
We present here an algorithm that calculates
the absolute value of a nonzero number; in
other words |x|.
Process:

Step 1. Identify the algebraic sign of the
given number.

Step 2. If the sign is negative, go to step 3.
If the sign is positive, specify the
absolute value of the number as the
number itself:

|x| = x

and stop the process.

Step 3. Specify the absolute value of the
given number as its opposite num-
ber:

|x| = −x

and stop the process.

FURTHER READING
� Statistical software
� Yates’ algorithm

REFERENCES
Chambers, J.M.: Computational Methods

for Data Analysis. Wiley, New York
(1977)

Khwarizmi, Musa ibn Meusba (9th cent.).
Jabr wa-al-muqeabalah. The algebra of
Mohammed ben Musa, Rosen, F. (ed. and
transl.). Georg Olms Verlag, Hildesheim
(1986)

Rashed, R.: La naissance de l’algèbre. In:
Noël, E. (ed.) Le Matin des Mathémati-
ciens. Belin-Radio France, Paris (1985)

Alternative Hypothesis

An alternative hypothesis is the hypothesis
which differs from the hypothesis being test-
ed.
Thealternativehypothesis isusuallydenoted
by H1.

HISTORY
See hypothesis and hypothesis testing.

MATHEMATICAL ASPECTS
During the hypothesis testing of a param-
eter of a population, the null hypothesis is
presented in the following way:

H0 : θ = θ0 ,
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where θ is the parameter of the population
that is to be estimated, and θ0 is the pre-
sumed value of this parameter. The alterna-
tive hypothesis can then take three different
forms:
1. H1 : θ > θ0

2. H1 : θ < θ0

3. H1 : θ �= θ0

In the first two cases, the hypothesis test
is called the one-sided, whereas in the third
case it is called the two-sided.
Thealternativehypothesiscanalso take three
different forms during the hypothesis test-
ingofparametersof twopopulations. If the
null hypothesis treats the two parameters θ1

and θ2 equally, then:

H0 : θ1 = θ2 or

H0 : θ1 − θ2 = 0 .

The alternative hypothesis could then be
• H1 : θ1 > θ2 or H1 : θ1 − θ2 > 0
• H1 : θ1 < θ2 or H1 : θ1 − θ2 < 0
• H1 : θ1 �= θ2 or H1 : θ1 − θ2 �= 0
During the comparison of more than two
populations, the null hypothesis supposes
that the values of all of the parameters are
identical. If we want to compare k popula-
tions, the null hypothesis is the following:

H0 : θ1 = θ2 = . . . = θk .

The alternative hypothesis will then be for-
mulated as follows:

H1: the values of θi(i = 1, . . . , k) are not all
identical.

This means that only one parameter needs
to have a different value to those of the other
parametersinorder toreject thenull hypoth-
esis and accept the alternative hypothesis.

EXAMPLES
We are going to examine the alternative
hypotheses for threeexamplesofhypothesis
testing:
1. Hypothesis testing on the percentage of

a population
An election candidate wants to know if he
will receive more than 50% of the votes.
The null hypothesis for this problem can
be written as follows:

H0 : π = 0.5 ,

where π is the percentage of the popu-
lation to be estimated.
Wecarry outaone-sided teston the right-
hand side that allows us to answer the can-
didate’s question. The alternative hypoth-
esis will therefore be:

H1 : π > 0.5 .

2. Hypothesis testing on the mean of a pop-
ulation
A bolt maker wants to test the precision
of a new machine that should make bolts
8 mm in diameter.
We can use the following null hypothe-
sis:

H0 : μ = 8 ,

where μ is the mean of the population
that is to be estimated.
We carry out a two-sided test to check
whether the bolt diameter is too small or
too big.
The alternative hypothesis can be formu-
lated in the following way:

H1 : μ �= 8 .

3. Hypothesis testing on a comparison of
the means of two populations
An insurance company decided to equip
its offices with microcomputers. It wants
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to buy these computers from two differ-
ent companies so long as there is no sig-
nificant difference in durability between
the two brands. It therefore tests the time
that passes before the first breakdown on
a sample of microcomputers from each
brand.
According to the null hypothesis, the
mean of the elapsed time before the first
breakdown is the same for each brand:

H0 : μ1 − μ2 = 0 .

Here μ1 and μ2 are the respective means
of the two populations.
Since we do not know which mean will
be the highest, we carry out a two-sided
test. Therefore the alternative hypothesis
will be:

H1 : μ1 − μ2 �= 0 .

FURTHER READING
� Analysis of variance
� Hypothesis
� Hypothesis testing
� Null hypothesis

REFERENCE
Lehmann, E.I., Romann, S.P.: Testing Statis-

tical Hypothesis, 3rd edn. Springer, New
York (2005)

Analysis of Binary Data
The study of how the probability of success
depends on expanatory variables and group-
ing of materials.
The analysis of binary data also involves
goodness-of-fit tests of a sample of binary
variables to a theoretical distribution, as well
as the study of 2 × 2 contingency tables

and their subsequent analysis. In the latter
case we note especially independence tests
between attributes, and homogeneity tests.

HISTORY
See data analysis.

MATHEMATICAL ASPECTS
Let Y be a binary random variable and
X1, X2, . . . , Xk besupplementarybinaryvari-
ables. So the dependence of Y on the vari-
ablesX1, X2, . . . , Xk is represented by the fol-
lowing models (the coefficients of which are
estimated via the maximum likelihood):
1. Linear model: P(Y = 1) is expressed as

a linear function (in the parameters) of Xi.
2. Log-linear model: log P(Y = 1) is

expressed as a linear function (in the
parameters) of Xi.

3. Logistic model: log
(

P(Y=1)
P(Y=0)

)
is

expressed as a linear function (in the
parameters) of Xi.

Models 1 and 2 are easier to interpret. Yet
the last one has the advantage that the quan-
tity to be explained takes all possible values
of the linear models. It is also important to
pay attention to the extrapolation of themod-
eloutsideof thedomain inwhich it isapplied.
It is possible that among the independent
variables (X1, X2, . . . , Xk), there are cate-
gorical variables (eg. binary ones). In this
case, it is necessary to treat the nonbinary
categorical variables in the following way:
let Z be a random variable with m cate-
gories. We enumerate the categories from 1
to m and we define m − 1 random vari-
ables Z1, Z2, . . . , Zm−1. So Zi takes the val-
ue 1 if Z belongs to the category represent-
ed by this index. The variable Z is there-
fore replaced by these m − 1 variables, the
coefficientsofwhich express the influenceof



A

Analysis of Residuals 5

the considered category. The reference (used
in order to avoid the situation of collinear-
ity) will have (for the purposes of compar-
ison with other categories) a parameter of
zero.

FURTHER READING
� Binary data
� Data analysis

REFERENCES
Cox, D.R., Snell, E.J.: The Analysis of Bina-

ry Data. Chapman & Hall (1989)

Analysis of Categorical Data

The analysis of categorical data involves
the following methods:

(a) A study of the goodness-of-fit test;

(b) Thestudy ofacontingency tableand its
subsequent analysis, which consists of
discovering and studying relationships
between the attributes (if they exist);

(c) An homogeneity test of some pop-
ulations, related to the distribution of
a binary qualitative categoricalvariable;

(d) An examination of the independence
hypothesis.

HISTORY
The term “contingency”, used in the rela-
tion to cross tables of categorical data was
probablyfirstusedbyPearson, Karl (1904).
The chi-square test, was proposed by Bar-
lett, M.S. in 1937.

MATHEMATICAL ASPECTS
See goodness-of-fit and contingency table.

FURTHER READING
� Data
� Data analysis
� Categorical data
� Chi-square goodness of fit test
� Contingency table
� Correspondence analysis
� Goodness of fit test
� Homogeneity test
� Test of independence

REFERENCES
Agresti, A.: Categorical Data Analysis.

Wiley, New York (1990)

Bartlett, M.S.: Properties of sufficiency and
statistical tests. Proc. Roy. Soc. Lond.
Ser. A 160, 268–282 (1937)

Cox, D.R., Snell, E.J.: Analysis of Binary
Data, 2nd edn. Chapman & Hall, London
(1990)

Haberman, S.J.: Analysis of Qualitative
Data. Vol. I: Introductory Topics. Aca-
demic, New York (1978)

Pearson, K.: On the theory of contingency
and its relation to association and normal
correlation. Drapers’ Company Research
Memoirs, Biometric Ser. I., pp. 1–35
(1904)

Analysis of Residuals

An analysis of residuals is used to test the
validity of thestatisticalmodeland to control
the assumptions made on the error term. It
may be used also for outlier detection.

HISTORY
The analysis of residuals dates back to Euler
(1749) and Mayer (1750) in the middle of
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the eighteenth century, who were confront-
ed with the problem of the estimation of
parameters from observations in the field
of astronomy. Most of the methods used to
analyze residuals are based on the works of
Anscombe (1961) and Anscombeand Tukey
(1963). In 1973, Anscombe also presented
an interesting discussion on the reasons for
using graphical methods of analysis. Cook
and Weisberg (1982) dedicated a complete
book to the analysis of residuals. Draper and
Smith (1981) also addressed this problem in
a chapter of their work Applied Regression
Analysis.

MATHEMATICAL ASPECTS
Consider a general model of multiple linear
regression:

Yi = β0 +
p−1∑
j=1

βjXij + εi , i = 1, . . . , n ,

where εi is the nonobservable random error
term.
The hypotheses for the errors εi are gener-
ally as follows:
• The errors are independent;
• They are normally distributed (they fol-

low a normal distribution);
• Their mean is equal to zero;
• Their variance is constant and equal to

σ 2.
Regression analysisgivesanestimation for
Yi,denoted Ŷi. If the chosen model is ade-
quate, the distribution of the residuals or
“observed errors” ei = Yi − Ŷi should con-
firm these hypotheses.
Methods used to analyze residuals are main-
ly graphical. Such methods include:
1. Representing the residuals by a frequency

chart (for example a scatter plot).

2. Plotting the residuals as a function of time
(if the chronological order is known).

3. Plotting the residuals as a function of the
estimated values Ŷi.

4. Plotting the residuals as a function of the
independent variables Xij.

5. Creating a Q–Q plot of the residuals.

DOMAINS AND LIMITATIONS
Tovalidatetheanalysis,someofthehypothe-
ses need to hold (like for example the nor-
mality of the residuals in estimations based
on the mean square).
Consider a plot of the residuals as a function
of the estimated values Ŷi. This is one of the
most commonly used graphical approaches
to verifying the validity of a model. It con-
sists of placing:
• The residuals ei = Yi − Ŷi in increasing

order;
• The estimated values Ŷi on the abscissa.
If the chosen model is adequate, the residu-
als are uniformly distributed on a horizontal
band of points.

However, if the hypotheses for the residu-
als are not verified, the shape of the plot can
be different to this. The three figures below
show the shapes obtained when:
1. The variance σ 2 is not constant. In this

case, it is necessary to perform a trans-
formation on the data Yi before tackling
the regression analysis.
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2. The chosen model is inadequate (for
example, the model is linear but the con-
stant term was omitted when it was nec-
essary).

3. The chosen model is inadequate
(a parabolic tendency is observed).

Different statistics have been proposed in
order topermitnumericalmeasurements that
are complementary to the visual techniques

presented above, which include those giv-
en by Anscombe (1961) and Anscombe and
Tukey (1963).

EXAMPLES
In thenineteenthcentury,aScottishphysicist
named Forbe, James D. wanted to estimate
the altitude above sea level by measuring the
boiling point of water. He knew that the alti-
tude could be determined from the atmos-
pheric pressure; he then studied the relation
between pressure and the boiling point of
water. Forbe suggested that for an interval
of observed values, a plot of the logarithm of
the pressure as a function of the boiling point
of water should give a straight line. Since
the logarithm of these pressures is small and
varies little, we have multiplied these values
by 100 below.

X boiling point Y 100 · log (pressure)

194.5 131.79

194.3 131.79

197.9 135.02

198.4 135.55

199.4 136.46

199.9 136.83

200.9 137.82

201.1 138.00

201.4 138.06

201.3 138.05

203.6 140.04

204.6 142.44

209.5 145.47

208.6 144.34

210.7 146.30

211.9 147.54

212.2 147.80

Thesimple linear regression modelfor this
problem is:

Yi = β0 + β1Xi + εi , i = 1, . . . , 17 .
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Using the least squares method, we can find
the following estimation function:

Ŷi = −42.131+ 0.895Xi

where Ŷi is the estimated value of variable Y
for a given X.
For each of these 17 values of Xi, we have
an estimated value Ŷi. We can calculate the
residuals:

ei = Yi − Ŷi .

These results are presented in the following
table:

i Xi Yi Ŷi ei =
Yi − Ŷi

1 194.5 131.79 132.037 −0.247

2 194.3 131.79 131.857 −0.067

3 197.9 135.02 135.081 −0.061

4 198.4 135.55 135.529 0.021

5 199.4 136.46 136.424 0.036

6 199.9 136.83 136.872 −0.042

7 200.9 137.82 137.768 0.052

8 201.1 138.00 137.947 0.053

9 201.4 138.06 138.215 −0.155

10 201.3 138.05 138.126 −0.076

11 203.6 140.04 140.185 −0.145

12 204.6 142.44 141.081 1.359

13 209.5 145.47 145.469 0.001

14 208.6 144.34 144.663 −0.323

15 210.7 146.30 146.543 −0.243

16 211.9 147.54 147.618 −0.078

17 212.2 147.80 147.886 −0.086

Plotting the residuals as a function of the
estimated values Ŷi gives the previous
graph.
It is apparent from this graph that, except for
one observation (the 12th), where the value
of the residual seems to indicate an outli-
er, the residuals are distributed in a very thin
horizontal strip. In this case the residuals do
not provide any reason to doubt the validity
of the chosen model. By analyzing the stan-
dardizedresidualswecandeterminewhether
the 12th observation is an outlier or not.

FURTHER READING
� Anderson–Darling test
� Least squares
� Multiple linear regression
� Outlier
� Regression analysis
� Residual
� Scatterplot
� Simple linear regression

REFERENCES
Anscombe, F.J.: Examination of residuals.

Proc. 4th Berkeley Symp. Math. Statist.
Prob. 1, 1–36 (1961)

Anscombe, F.J.: Graphs in statistical analy-
sis. Am. Stat. 27, 17–21 (1973)

Anscombe, F.J., Tukey, J.W.: Analysis of
residuals. Technometrics 5, 141–160
(1963)

Cook, R.D., Weisberg, S.: Residuals and
Influence inRegression.Chapman&Hall,
London (1982)

Cook, R.D., Weisberg, S.: An Introduction
to Regression Graphics. Wiley, New York
(1994)

Cook, R.D., Weisberg, S.: Applied Regres-
sion Including Computing and Graphics.
Wiley, New York (1999)



A

Analysis of Variance 9

Draper, N.R., Smith, H.: Applied Regres-
sion Analysis, 3rd edn. Wiley, New York
(1998)

Euler, L.: Recherches sur la question des iné-
galités du mouvement de Saturne et de
Jupiter, pièce ayant remporté le prix de
l’année 1748, par l’Académie royale des
sciences de Paris. Republié en 1960, dans
Leonhardi Euleri, Opera Omnia, 2ème
série. Turici, Bâle, 25, pp. 47–157 (1749)

Mayer,T.:AbhandlungüberdieUmwälzung
desMondsumseineAchseunddieschein-
bare Bewegung der Mondflecken. Kos-
mographische Nachrichten und Samm-
lungen aufdasJahr17481, 52–183(1750)

Analysis of Variance

The analysis of variance is a technique that
consists of separating the total variation of
data set into logical components associat-
ed with specific sources of variation in order
to compare the mean of several popula-
tions. This analysis also helps us to test
certain hypotheses concerning the param-
eters of the model, or to estimate the compo-
nents of the variance. The sources of vari-
ation are globally summarized in a compo-
nent called error variance, sometime called
within-treatment mean square and another
component that is termed “effect” or treat-
ment, sometime called between-treatment
mean square.

HISTORY
Analysis of variance dates back to Fish-
er, R.A. (1925). He established the first fun-
damental principles in this field. Analysis of
variancewasfirst applied in thefieldsofbiol-
ogy and agriculture.

MATHEMATICAL ASPECTS
The analysis of variance compares the
means of three or more random samples
and determines whether there is a signif-
icant difference between the populations
from which the samples are taken. This
technique can only be applied if the random
samples are independent, if the population
distributions are approximately normal and
all have the same variance σ 2.
Having established that the null hypothesis,
assumes that the means are equal, while the
alternative hypothesis affirms that at least
one of them is different, we fix a significant
level. We then make two estimates of the
unknown variance σ 2:
• The first, denoted s2

E, corresponds to the
mean of the variances of each sample;

• The second, s2
Tr, is based on the variation

between the means of the samples.
Ideally, if the null hypothesis is verified,
these two estimationswillbeequal, and theF
ratio (F = s2

Tr/s2
E, as used in the Fisher test

and defined as thequotientof thesecond esti-
mation of σ 2 to the first) will be equal to 1.
The value of the F ratio, which is generally
more than 1 because of the variation from the
sampling, must be compared to the value in
the Fisher table corresponding to the fixed
significant level. The decision rule consists
of either rejecting the null hypothesis if the
calculated value isgreater thanorequal to the
tabulated value, or else the means are equal,
which shows that the samples come from the
same population.
Consider the following model:

Yij = μ+ τi + εij ,

i = 1, 2, . . . , t , j = 1, 2, . . . , ni .

Here

Yij represents the observation j receiving
the treatment i,
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μ is the general mean common to all treat-
ments,

τi is the actual effect of treatment i on the
observation,

εij is the experimental error for observa-
tion Yij.

In this case, the null hypothesis is expressed
in the following way:

H0 : τ1 = τ2 = . . . = τt ,

which means that the t treatments are iden-
tical.
The alternative hypothesis is formulated in
the following way:

H1 : the values of τi(i = 1, 2, . . . , t)

are not all identical .

The following formulae are used:

SSTr =
t∑

i=1

ni(Ȳi. − Ȳ..)
2 , s2

Tr =
SSTr

t − 1
,

SSE =
t∑

i=1

ni∑
j=1

(Yij − Ȳi.)
2 , s2

E =
SSE

N − t
,

and

SST =
t∑

i=1

ni∑
j=1

(Yij − Ȳ..)
2

or
SST = SSTr + SSE .

where

Ȳi. =
ni∑

j=1

Yij

ni
is the mean of
the ith set

Ȳ.. = 1

N

t∑
i=1

ni∑
j=1

Yij is the global mean
taken on all the
observations, and

N =
t∑

i=1

ni is the total number
of observations.

and finally the value of the F ratio

F = s2
Tr

s2
E

.

It iscustomary to summarize the information
from the analysis of variance in an analysis
of variance table:

Source
of varia-
tion

Degrees
of
freedom

Sum of
squares

Mean
of
squares

F

Among
treat-
ments

t − 1 SSTr s2
Tr

s2
Tr

s2
E

Within
treat-
ments

N − t SSE s2
E

Total N − 1 SST

DOMAINS AND LIMITATIONS
An analysis of variance is always associat-
ed with a model. Therefore, there is a dif-
ferent analysis of variance in each distinct
case. For example, consider the case where
the analysis of variance is applied to factori-
al experiments with one or several factors,
and these factorial experiments are linked to
several designs of experiment.
We can distinguish not only the number of
factors in the experiment but also the type
of hypotheses linked to the effects of the
treatments.Wethenhaveamodelwithfixed
effects, a model with variable effects and
a model with mixed effects. Each of these
requires a specific analysis, but whichev-
er model is used, the basic assumptions of
additivity, normality, homoscedasticity and
independencemustberespected.Thismeans
that:
1. The experimental errors of the model are

random variables that are independent
of each other;
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2. All of the errors follow a normal distri-
bution with a mean of zero and an
unknown variance σ 2.

All designs of experiment can be analyzed
using analysis of variance. The most com-
mon designs are completely randomized
designs, randomized block designs and
Latin square designs.
An analysis of variance can also be per-
formed with simple or multiple linear
regression.
If during an analysis of variance the null
hypothesis (the case for equality of means) is
rejected, a least significant difference test
is used to identify the populations that have
significantlydifferentmeans,which issome-
thing that an analysis of variance cannot do.

EXAMPLES
See two-way analysis of variance, one-
way analysis of variance, linear multiple
regression and simple linear regression.

FURTHER READING
� Design of experiments
� Factor
� Fisher distribution
� Fisher table
� Fisher test
� Least significant difference test
� Multiple linear regression
� One-way analysis of variance
� Regression analysis
� Simple linear regression
� Two-way analysis of variance

REFERENCES
Fisher, R.A.: Statistical Methods for

Research Workers. Oliver & Boyd, Edin-
burgh (1925)

Rao, C.R.: Advanced Statistical Methods
in Biometric Research. Wiley, New York
(1952)

Scheffé, H.: The Analysis of Variance.
Wiley, New York (1959)

Anderson, Oskar

Anderson, Oskar (1887–1960) was an
importantmemberof theContinentalSchool
of Statistics; his contributions touched upon
a wide range of subjects, including corre-
lation, time series analysis, nonparamet-
ric methods and sample survey, as well as
econometrics and statistical applications in
social sciences.
Anderson, Oskar received a bachelor degree
with distinction from the Kazan Gymnasium
and then studied mathematics and physics
for a year at the University of Kazan. He
then entered the Faculty of Economics at
the Polytechnic Institute of St. Petersburg,
where he studied mathematics, statistics and
economics.
The publications of Anderson, Oskar com-
bine the traditions of the Continental School
of Statistics with the concepts of the English
Biometric School, particularly in two of
his works: “Einführung in die mathema-
tische Statistik” and “Probleme der statis-
tischen Methodenlehre in den Sozialwis-
senschaften”.
In 1949, he founded the journal Mitteilungs-
blatt für Mathematische Statistik with
Kellerer, Hans and Münzner, Hans.

Some principal works of Anderson, Oskar:

1935 Einführung in die Mathematische
Statistik. Julius Springer, Wien

1954 Probleme der statistischen Metho-
denlehre in den Sozialwissenschaf-
ten. Physica-Verlag, Würzberg
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Anderson, Theodore W.
Anderson, Theodore Wilbur was born on
the 5th of June 1918 in Minneapolis, in the
state of Minnesota in the USA. He became
a Doctor of Mathematics in 1945 at the
University of Princeton, and in 1946 he
became a member of the Department of
Mathematical Statistics at the University of
Columbia, where he was named Professor
in 1956. In 1967, he was named Professor
of Statistics and Economics at Stanford Uni-
versity. He was, successively: Fellow of the
Guggenheim Foundation between 1947 and
1948; Editor of the Annals of Mathematical
Statistics from 1950 to 1952; Presidentof the
Institute of Mathematical Statistics in 1963;
and Vice-President of the American Statis-
tical Association from 1971 to 1973. He is
a member of the American Academy of Arts
and Sciences, of the National Academy of
Sciences, of the Institute of Mathematical
Statistics and of the Royal Statistical Soci-
ety. Anderson’s most important contribution
to statistics is surely in the domain of mul-
tivariate analysis. In 1958, he published the
book entitled An Introduction to Multivari-
ate Statistical Analysis. This book was the
reference work in this domain for over forty
years. It has been even translated into Rus-
sian.

Some of the principal works and articles of
Theodore Wilbur Anderson:

1952 (with Darling, D.A.) Asymptotic the-
ory of certain goodness of fit criteria
based on stochastic processes. Ann.
Math. Stat. 23, 193–212.

1958 An Introduction to Multivariate Sta-
tistical Analysis. Wiley, New York.

1971 The Statistical Analysis of Time
Series. Wiley, New York.

1989 Linear latent variable models and
covariance structures. J. Economet-
rics, 41, 91–119.

1992 (with Kunitoma, N.) Asymptotic
distributions of regression and auto-
regression coefficients with Martin-
gale difference disturbances. J. Mul-
tivariate Anal., 40, 221–243.

1993 Goodness of fit tests for spectral dis-
tributions. Ann. Stat. 21, 830–847.

FURTHER READING
� Anderson–Darling test

Anderson–Darling Test
TheAnderson–Darling test isagoodness-of-
fit test which allows to control the hypothe-
sis that the distribution of a random variable
observed in a sample follows a certain the-
oretical distribution. In particular, it allows
us to test whether the empirical distribution
obtained corresponds to a normal distri-
bution.

HISTORY
Anderson, Theodore W. and Darling D.A.
initially used Anderson–Darling statistics,
denoted A2, to test the conformity of a distri-
bution with perfectly specified parameters
(1952 and 1954). Later on, in the 1960s
and especially the 1970s, some other authors
(mostly Stephens) adapted the test to a wider
range of distributions where some of the
parameters may not be known.

MATHEMATICAL ASPECTS
Let us consider the random variable X,
which follows the normal distribution with
an expectation μ and a variance σ 2, and
has a distribution function FX(x; θ), where θ

is a parameter (or a set of parameters) that
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determine, FX . We furthermore assume θ to
be known.
An observation of a sample of size n issued
from the variable X gives a distribution func-
tion Fn(x). The Anderson–Darling statistic,
denoted by A2, is then given by the weight-
ed sum of the squared deviations FX(x; θ)−
Fn(x):

A2 = 1

n

(
n∑

i=1

(FX (x; θ)− Fn (x))2

)
.

Starting from the fact that A2 is a random
variable that follows a certain distribution
over the interval [0; +∞[, it is possible to
test, for a significance level that is fixed a pri-
ori, whether Fn(x) is the realization of the
random variable FX(X; θ); that is, whether X
follows the probability distribution with the
distribution function FX(x; θ).

Computation of A 2 Statistic
Arrange the observations x1, x2, . . . , xn in the
sample issued from X in ascending order i.e.,
x1 < x2 < . . . < xn. Note that zi =
FX(xi; θ), (i = 1, 2, . . . , n). Then compute,
A2 by:

A2 = −1

n

( n∑
i=1

(2i− 1) (ln (zi)

+ ln(1− zn+1−i))

)
− n .

For the situation preferred here (X follows
the normal distribution with expectation μ

and varianceσ 2),wecan enumerate fourcas-
es, depending on the known parameters μ

and σ 2 (F is the distribution function of the
standard normal distribution):
1. μ and σ 2 are known, so FX(x; (μ, σ 2))

is perfectly specified. Naturally we then
have zi = F(wi) where wi = xi−μ

σ
.

2. σ 2 is known but μ is unknown and is esti-
mated using x = 1

n

(∑
i xi

)
, the mean of

the sample. Then, let zi = F(wi), where
wi = xi−x

σ
.

3. μ is known but σ 2 is unknown and is esti-
mated using s′2 = 1

n

(∑
i(xi − u)2

)
. In

this case, let zi = F(wi), where wi =
x(i)−μ

s′ .
4. μ and σ 2 are both unknown and are esti-

mated respectively using x and s2 =
1

n−1 (
∑

i(xi − x)2). Then, let zi = F(wi),

where wi = xi−x
s .

Asymptotic distributions were found for A2

by Anderson and Darling for the first case,
and by Stephens for the next two cases. For
last case, Stephens determined an asymptot-
ic distribution for the transformation: A∗ =
A2(1.0+ 0.75

n + 2.25
n2 ).

Therefore, as shown below, we can construct
a table that gives, depending on the case and
the significance level (10%, 5%, 2.5% or 1%
below), the limiting values of A2 (and A∗
for the case 4) beyond which the normality
hypothesis is rejected:

Significance level

Case: 0.1 0.050 0.025 0.01

1: A2 = 1.933 2.492 3.070 3.857

2: A2 = 0.894 1.087 1.285 1.551

3: A2 = 1.743 2.308 2.898 3.702

4: A∗ = 0.631 0.752 0.873 1.035

DOMAINS AND LIMITATIONS
As the distribution of A2 is expressed asymp-
totically, the testneeds thesamplesizen to be
large. If this is not the case then, for the first
two cases, the distribution of A2 is not known
and it is necessary to perform a transforma-
tion of the type A2 �−→ A∗, from which A∗
can be determined. When n > 20, we can
avoid such a transformation and so the data
in the above table are valid.
The Anderson–Darling test has the advan-
tage that it can be applied to a wide range
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of distributions (not just a normal distri-
bution but also exponential, logistic and
gamma distributions, among others). That
allowsusto tryoutawiderangeofalternative
distributions if the initial test rejects the null
hypothesis for the distribution of a random
variable.

EXAMPLES
The following data illustrate the application
of the Anderson–Darling test for the normal-
ity hypothesis:
Consider a sample of the heights (in cm) of
25 male students. The following table shows
the observations in the sample, and also wi

and zi. We can also calculate x and s from
these data: x = 177.36 and s = 4.98.
Assuming that F is a standard normal distri-
bution function, we have:

Obs: xi wi = xi −x
s zi = F

(
wi

)

1 169 −1.678 0.047

2 169 −1.678 0.047

3 170 −1.477 0.070

4 171 −1.277 0.100

5 173 −0.875 0.191

6 173 −0.875 0.191

7 174 −0.674 0.250

8 175 −0.474 0.318

9 175 −0.474 0.318

10 175 −0.474 0.318

11 176 −0.273 0.392

12 176 −0.273 0.392

13 176 −0.273 0.392

14 179 0.329 0.629

15 180 0.530 0.702

16 180 0.530 0.702

17 180 0.530 0.702

18 181 0.731 0.767

19 181 0.731 0.767

20 182 0.931 0.824

21 182 0.931 0.824

Obs: xi wi = xi −x
s zi = F

(
wi

)

22 182 0.931 0.824

23 185 1.533 0.937

24 185 1.533 0.937

25 185 1.533 0.937

We then get A2 ∼= 0.436, which gives

A∗ = A2 ·
(

1.0+ 0.75

25
+ 0.25

625

)

= A2 · (1.0336) ∼= 0.451 .

Since we have case 4, and a significance lev-
el fixed at 1%, the calculated value of A∗ is
much less then the value shown in the table
(1.035). Therefore, thenormality hypothesis
cannot be rejected at a significance level of
1%.

FURTHER READING
� Goodness of fit test
� Histogram
� Nonparametric statistics
� Normal distribution
� Statistics

REFERENCES
Anderson, T.W., Darling, D.A.: Asymptot-

ic theory of certain goodness of fit criteria
based on stochastic processes. Ann.Math.
Stat. 23, 193–212 (1952)

Anderson, T.W., Darling, D.A.: A test of
goodness of fit. J. Am. Stat. Assoc. 49,
765–769 (1954)

Durbin, J., Knott, M., Taylor, C.C.: Com-
ponents of Cramer-Von Mises statistics,
II. J. Roy. Stat. Soc. Ser. B 37, 216–237
(1975)

Stephens, M.A.: EDF statistics for goodness
of fit and some comparisons. J. Am. Stat.
Assoc. 69, 730–737 (1974)
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Arithmetic Mean
The arithmetic mean is a measure of cen-
tral tendency. It allows us to characterize
the center of the frequency distribution of
a quantitative variable by considering all
of the observations with the same weight
afforded to each (in contrast to the weighted
arithmetic mean).
It is calculated by summing the observations
and then dividing by the number of observa-
tions.

HISTORY
The arithmetic mean is one of the oldest
methods used to combine observations in
order to give a unique approximate val-
ue. It appears to have been first used by
Babylonian astronomers in the third centu-
ry BC. The arithmetic mean was used by the
astronomers to determine thepositionsof the
sun, the moon and the planets. According to
Plackett (1958), theconceptof thearithmetic
mean originated from the Greek astronomer
Hipparchus.
In 1755 Thomas Simpson officially pro-
posed the use of the arithmetic mean in a let-
ter to the President of the Royal Society.

MATHEMATICAL ASPECTS
Let x1, x2, . . . , xn be a set of n quantities
or n observations relating to a quantitative
variable X.
The arithmetic mean x̄ of x1, x2, . . . , xn is
the sum of these observations divided by the
number n of observations:

x̄ =

n∑
i=1

xi

n
.

When the observations are ordered in the
form of a frequency distribution, the arith-

metic mean is calculated in the following
way:

x̄ =

k∑
i=1

xi · fi
k∑

i=1
fi

,

where xi are the different values of the vari-
able, fi are the frequencies associated with
these values, k is the number of different val-
ues, and thesum of thefrequenciesequals the
number of observations:

k∑
i=1

fi = n .

To calculate the mean of a frequency distri-
bution where values of the quantitative vari-
able X are grouped in classes, we consid-
er that all of the observations belonging
to a certain class take the central value of
the class, assuming that the observations
are uniformly distributed inside the classes
(if this hypothesis is not correct, the arith-
metic mean obtained will only be an appro-
ximation.)
Therefore, in this case we have:

x̄ =

k∑
i=1

xi · fi
k∑

i=1
fi

,

where the xi are the class centers, the fi are
the frequencies associated with each class,
and k is the number of classes.

Properties of the Arithmetic Mean
• The algebraic sum of deviations between

every value of the set and the arithmetic
mean of this set equals 0:

n∑
i=1

(xi − x̄) = 0 .
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• The sum of square deviations from every
value to a given number “a” is smallest
when “a” is the arithmetic mean:

n∑
i=1

(xi − a)2 ≥
n∑

i=1

(xi − x̄)2 .

Proof:
We can write:

xi − a = (xi − x̄)+ (x̄− a) .

Finding the squares of both members of
the equality, summarizing them and then
simplifying gives:

n∑
i=1

(xi − a)2

=
n∑

i=1

(xi − x̄)2 + n · (x̄− a)2 .

As n · (x̄ − a)2 is not negative, we have
proved that:

n∑
i=1

(xi − a)2 ≥
n∑

i=1

(xi − x̄)2 .

• The arithmetic mean x̄ of a sample
(x1, . . . , xn) is normally considered to
be an estimator of the mean μ of the
population from which the sample was
taken.

• Assuming that xi are independent ran-
dom variables with the same distribution
function for the mean μ and the vari-
ance σ 2, we can show that
1. E [x̄] = μ,
2. Var (x̄) = σ 2

n ,
if these moments exist.
Since the mathematical expectation of
x̄ equals μ, the arithmetic mean is an esti-
matorwithoutbiasof themeanof thepop-
ulation.

• If thexi result from therandom sampling
without replacementofafinitepopulation
with a mean μ, the identity

E [x̄] = μ

is still valid, but the variance of x̄ must be
adjusted by a factor that depends on the
size N of the population and the size n of
the sample:

Var (x̄) = σ 2

n
·
[

N − n

N − 1

]
,

whereσ 2 is thevarianceof thepopulation.

Relationship Between the Arithmetic Mean
and Other Measures of Central Tendency
• Thearithmeticmeanisrelated to twoprin-

cipal measures of central tendency: the
mode Mo and the median Md.
If the distribution is symmetric and uni-
modal:

x̄ = Md = Mo .

If the distribution is unimodal, it is nor-
mally true that:
x̄ ≥ Md ≥ Mo if the distribution is
stretched to the right,
x̄ ≤ Md ≤ Mo if the distribution is
stretched to the left.
For a unimodal, slightly asymmetric
distribution, these three measures of the
central tendency often approximately
satisfy the following relation:

(x̄−Mo) = 3 · (x̄−Md) .

• In the same way, for a unimodal distri-
bution, if we consider a set of posi-
tive numbers, the geometric mean G is
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always smaller than or equal to the arith-
metic mean x̄, and is always greater than
or equal to the harmonic mean H. So we
have:

H ≤ G ≤ x̄ .

These three means are identical only if all
of the numbers are equal.

DOMAINS AND LIMITATIONS
The arithmetic mean is a simple measure
of the central value of a set of quantitative
observations. Finding the mean can some-
times lead to poor data interpretation:

If the monthly salaries (in Euros) of
5 people are 3000, 3200, 2900, 3500
and 6500, the arithmetic mean of the
salary is 19100

5 = 3820. This mean
gives us some idea of the sizes of the
salaries sampled, since it is situated
between the biggest and the smallest
one. However, 80% of the salaries are
smaller then the mean, so in this case
it is not a particularly good representa-
tion of a typical salary.

This case shows that we need to pay attention
to the form of the distribution and the relia-
bility of the observations before we use the
arithmetic mean as the measure of central
tendency for a particular set of values. If an
absurdobservationoccurs in thedistribution,
the arithmetic mean could provide an unrep-
resentative value for the central tendency.
If some observations are considered to be
less reliable then others, it could be useful
to make them less important. This can be
done by calculating a weighted arithmetic
mean, or by using the median, which is not
strongly influenced by any absurd observa-
tions.

EXAMPLES
In company A, nine employees have the fol-
lowing monthly salaries (in Euros):

3000 3200 2900 3440 5050

4150 3150 3300 5200

The arithmetic mean of these monthly
salaries is:

x̄ = (3000+ 3200+ · · · + 3300+ 5200)

9

= 33390

9
= 3710 Euros .

We now examine a case where the data are
presented in the form of a frequency distri-
bution.
The following frequency table gives the
number of days that 50 employees were
absent on sick leave during a period of one
year:

xi : Days of illness fi : Number of
employees

0 7

1 12

2 19

3 8

4 4

Total 50

Let us try to calculate the mean number of
days that the employees were absent due to
illness.
The total number of sick days for the
50 employees equals the sum of the product
of each xi by its respective frequency fi:

5∑
i=1

xi · fi = 0 · 7+ 1 · 12+ 2 · 19+ 3 · 8

+ 4 · 4 = 90 .
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The total number of employees equals:

5∑
i=1

fi = 7+ 12+ 19+ 8+ 4 = 50 .

L The arithmetic mean of the number of sick
days per employee is then:

x̄ =

5∑
i=1

xi · fi
5∑

i=1
fi

= 90

50
= 1.8

which means that, on average, the
50 employees took 1.8 days off for sick-
ness per year.
In the following example, the data are
grouped in classes.
We want to calculate the arithmetic mean of
the daily profits from the sale of 50 types of
grocery. The frequency distribution for the
groceries is given in the following table:

Classes
(profits
in Euros)

Mid-
points
xi

Frequencies
fi (number
of groceries)

xi · fi

500–550 525 3 1575

550–600 575 12 6900

600–650 625 17 10625

650–700 675 8 5400

700–750 725 6 4350

750–800 775 4 3100

Total 50 31950

The arithmetic mean of the profits is:

x̄ =

6∑
i=1

xi · fi
6∑

i=1
fi

= 31950

50
= 639 ,

which means that, on average, each of
the 50 groceries provide a daily profit of
639 Euros.

FURTHER READING
� Geometric mean
� Harmonic mean
� Mean
� Measure of central tendency
� Weighted arithmetic mean
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Arithmetic Triangle

The arithmetic triangle is used to determine
binomial coefficients (a + b)n when cal-
culating the number of possible combina-
tions of k objects out of a total of n objects
(Ck

n).

HISTORY
The notion of finding the number of combi-
nations of k objects from n objects in total
has been explored in India since the ninth
century. Indeed, there are traces of it in the
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Meru Prastara written by Pingala in around
200 BC.
Between the fourteenth and thefifteenth cen-
turies, al-Kashi, a mathematician from the
Iranian city of Kashan, wrote The Key to
Arithmetic. In this work he calls binomial
coefficients “exponent elements”.
In his work Traité du Triangle Arithmétique,
published in 1665, Pascal, Blaise (1654)
defined the numbers in the “arithmetic tri-
angle”, and so this triangle is also known as
Pascal’s triangle.
We should also note that the triangle was
made popular by Tartaglia, Niccolo Fontana
in 1556, and so Italians often refer to it as
Tartaglia’s triangle, even though Tartaglia
did not actually study the arithmetic triangle.

MATHEMATICAL ASPECTS
The arithmetic triangle has the following
form:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

. . .

Each element is a binomial coefficient

Ck
n =

n!

k! (n− k)!

= n · (n− 1) · . . . · (n− k+ 1)

1 · 2 · . . . · k .

This coefficient corresponds to the element
k of the line n+ 1, k = 0, . . . , n.
Any particular number is obtained by adding
together its neighboring numbers in the pre-
vious line.

For example:

C4
6 = C3

5 + C4
5 = 10+ 5 = 15 .

More generally, we have the relation:

Ck
n + Ck+1

n = Ck+1
n+1 ,

because:

Ck
n + Ck+1

n = n!

(n− k)! · k!

+ n!

(n− k − 1)! · (k + 1)!

= n! · [(k + 1)+ (n− k)]

(n− k)! · (k + 1)!

= (n+ 1)!

(n− k)! · (k + 1)!

= Ck+1
n+1 .

FURTHER READING
� Binomial
� Binomial distribution
� Combination
� Combinatory analysis
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ARMA Models

ARMA models (sometimes called Box-
Jenkins models) are autoregressive moving
average models used in time series analy-
sis. The autoregressive part, denoted AR,
consists of a finite linear combination of
previous observations. The moving aver-
age part, MA, consists of a finite linear
combination in t of the previous values for
a white noise (a sequence of mutually inde-
pendent and identically distributed random
variables).

MATHEMATICAL ASPECTS
1. AR model (autoregressive)

In an autoregressive process of order p,
the present observation yt is generated by
a weighted mean of the past observations
up to the pth period. This takes the follow-
ing form:

AR(1) : yt = θ1yt−1 + εt ,

AR(2) : yt = θ1yt−1 + θ2yt−2 + εt ,

...

AR(p) : yt = θ1yt−1 + θ2yt−2 + . . .

+ θpyt−p + εt ,

where θ1, θ2, . . . , θp are the positive or
negative parameters to be estimated and
εt is the error factor, which follows a nor-
mal distribution.

2. MA model (moving average)
In a moving average process of order q,
each observation yt is randomly generat-
ed by a weighted arithmetic mean until
the qth period:

MA(1) : yt = εt − α1εt−1

MA(2) : yt = εt − α1εt−1 − α2εt−2

· · ·
MA(p) : yt = εt − α1εt−1 − α2εt−2

− . . .− αqεt−q ,

where α1, α2, . . . , αq are positive or nega-
tive parameters and εt is the Gaussian ran-
dom error.
The MA model represents a time series
fluctuating about its mean in a random
manner, which gives rise to the term
“moving average”, because it smoothes
theseries, subtracting thewhitenoisegen-
erated by the randomness of the element.

3. ARMA model (autoregressive moving
average model)
ARMA models represent processes gen-
erated from a combination of past values
and past errors. They are defined by the
following equation:

ARMA(p, q) :

yt = θ1yt−1 + θ2yt−2 + . . .

+ θpyt−p + εt − α1εt−1 − α2εt−2

− . . .− αqεt−q ,

with θp �= 0, αq �= 0, and (εt, t ∈ Z) is
a weak white noise.
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FURTHER READING
� Time series
� Weighted arithmetic mean

REFERENCES
Box, G.E.P., Jenkins, G.M.: Time Series

Analysis: Forecasting and Control (Series
inTimeSeriesAnalysis).HoldenDay,San
Francisco (1970)

Arrangement
Arrangements are a concept found in com-
binatory analysis.
The number of arrangements is the number
of ways drawing k objects from n objects
where the order in which the objects are
drawn is taken into account (in contrast to
combinations).

HISTORY
See combinatory analysis.

MATHEMATICAL ASPECTS
1. Arrangements without repetitions

An arrangement without repetition refers
to the situation where the objects drawn
are not placed back in for the next draw-
ing. Each object can then only be drawn
once during the k drawings.
The number of arrangements of k objects
amongst n without repetition is equal to:

Ak
n =

n!

(n− k)!
.

2. Arrangements with repetitions
Arrangementswith repetition occurwhen
each object pulled out is placed back in
for the next drawing. Each object can then
be drawn r times from k drawings, r =
0, 1, . . . , k.

The number of arrangements of k objects
amongst n with repetitions is equal to n to
the power k:

Ak
n = nk .

EXAMPLES
1. Arrangements without repetitions

Consider an urn containing six balls num-
bered from 1 to 6. We pull out four balls
from the urn in succession, and wewant to
know how many numbers it is possible to
form from the numbers of the balls drawn.
We are then interested in the number of
arrangements (since we take into account
the order of the balls) without repetition
(since each ball can be pulled out only
once) of four objects amongst six. We
obtain:

Ak
n =

n!

(n− k)!
= 6!

(6− 4)!
= 360

possible arrangements. Therefore, it is
possible to form 360 different numbers
by drawing four numbers from the num-
bers 1,2,3,4,5,6 when each number can
appear only once in the four-digit number
formed.
Asasecond example, letus investigate the
arrangements without repetitions of two
letters from the letters A, B and C. With
n = 3 and k = 2 we have:

Ak
n =

n!

(n− k)!
= 3!

(3− 2)!
= 6 .

We then obtain:
AB, AC, BA, BC, CA, CB.

2. Arrangements with repetitions
Consider the same urn as described previ-
ously. We perform four successive draw-
ings, but this time we put each ball drawn
back in the urn.



22 Attributable Risk

We want to know how many four-digit
numbers (or arrangements) are possible if
four numbers are drawn.
In thiscase,weare investigatingfthenum-
ber of arrangements with repetition (since
each ball is placed back in the urn before
the next drawing). We obtain

Ak
n = nk = 64 = 1296

different arrangements. It is possible to
form 1296 four-digit numbers from the
numbers 1,2,3,4,5,6 if each number can
appear more than once in the four-digit
number.
As a second example we again take the
three letters A, B and C and form an
arrangement of two letters with repeti-
tions. With n = 3 and k = 2, we have:

Ak
n = nk = 32 = 9 .

We then obtain:
AA, AB, AC, BA, BB, BC, CA, CB, CC.

FURTHER READING
� Combination
� Combinatory analysis
� Permutation

REFERENCES
See combinatory analysis.

Attributable Risk
The attributable risk is the difference
between the risk encountered by individ-
uals exposed to a particular factor and the
risk encountered by individuals who are not
exposed to it. This is the opposite to avoid-
able risk. It measures the absolute effect of
a cause (that is, the excess risk or cases of
illness).

HISTORY
See risk.

MATHEMATICAL ASPECTS
By definition we have:

attributable risk = risk for those exposed

− risk for those not exposed .

DOMAINS AND LIMITATIONS
The confidence interval of an attributable
risk is equivalent to the confidence interval
of the difference between the proportions
pE and pNE, where pE and pNE represent
the risksencountered by individualsexposed
and not exposed to the studied factor, respec-
tively. Take nE and nNE to be, respective-
ly, the size of the exposed and nonexposed
populations. Then, for a confidence level of
(1− α), is given by:

(pE − pNE)± zα

√
pE·(1−pE)

nE
+ pNE·(1−pNE)

nNE
,

wherezα thevalueobtainedfromthenormal
table (for example, for a confidence interval
of 95%, α = 0.05 and zα = 1.96). The con-
fidence interval for (1− α) for an avoidable
risk has bounds given by:

(pNE − pE)± zα

√
pE·(1−pE)

nE
· pNE·(1−pNE)

nNE
.

Here, nE and nNE need to be large. If the con-
fidence interval includeszero,wecannotrule
out an absence of attributable risk.

EXAMPLES
As an example, we consider a study of the
risk of breast cancer in women due to smok-
ing:



A

Attributable Risk 23

Group Incidence
rate

Attributable to risk
from smoking

(/100000
/year)

(A) (/100000 /year)

Nonex-
posed

57.0 57.0− 57.0 = 0

Passive
smokers

126.2 126.2− 57.0 = 69.2

Active
smokers

138.1 138.1− 57.0 = 81.1

Total 114.7 114.7− 57.0 = 57.7

The risks attributable to passive and
active smoking are respectively 69 and 81
(/100000 year). In other words, if the
exposure to tobacco was removed, the
incidence rate for active smokers (138/

100000 per year) could be reduced by
81/100000 per year and that for pas-
sive smokers (126/100000 per year) by
69/100000 per year. The incidence rates in
both categories of smokers would become
equal to the rate for nonexposed women
(57/100000 per year). Note that the inci-
dence rate for nonexposed women is not
zero, due to the influence of other factors
aside from smoking.

Group No.
indiv.
observed
over two
years

Cases
attrib. to
smoking
(for
two-year
period)

Cases
attrib. to
smoking
(per
year)

Nonex-
posed

70160 0.0 0.0

Passive
smok-
ers

110860 76.7 38.4

Active
smok-
ers

118636 96.2 48.1

Total 299656 172.9 86.5

We can calculate the number of cases of
breast cancer attributable to tobacco expo-
sure by multiplying the number of individ-
uals observed per year by the attributable
risk. By dividing the number of incidents
attributable to smoking in the two-year peri-
od by two, we obtain the number of cases
attributable to smoking per year, and we can
then determine the risk attributable to smok-
ing in thepopulation,denotedPAR,asshown
in the following example. The previous table
shows the details of the calculus.
We describe the calculus for the pas-
sive smokers here. In the two-year study,
110860 passive smokers were observed.
The risk attributable to the passive smoking
was 69.2/100000 per year. This means that
the number of cases attributable to smok-
ing over the two-year period is (110860 ·
69.2)/100000 = 76.7. If we want to calcu-
late the number of cases attributable to pas-
sive smoking per year, we must then divide
the last value by 2, obtaining 38.4. More-
over, we can calculate the risk attributable
to smoking per year simply by dividing the
number of cases attributable to smoking for
the two-year period (172.9) by the number
of individuals studied during these two years
(299656 persons). We then obtain the risk
attributable to smoking as 57.7/100000 per
year. We note that we can get the same result
by taking the difference between the total
incidence rate (114.7/100000 per year, see
the examples under the entries for incidence
rate, prevalence rate) and the incidence
rate of the nonexposed group (57.0/100000
per year).
The risk of breast cancer attributable to
smoking in the population (PAR) is the ratio
of the number of the cases of breast can-
cer attributable to exposure to tobacco and
the number of cases of breast cancer diag-


