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Observations from space have been an important component in a number of research

projects of the European Commission aiming, in the context of “Global Change”, at

the assessment of land-surface processes and their changes  in the Mediterranean

area. With the new generation of satellites, carrying improved instrumentation, these

observations will gain in importance in the future. Changes in the Mediterranean

environment are linked to the global climate system which is characterized by a

strong inherent interannual variability but may, in addition, undergo trends that

develop slowly in time. To assess, to which degree Mediterranean land-surface

processes such as aridification, desertification, soil quality and changes of water

resources are affected by the development of the global climate system, it is

necessary to extend such studies over long time periods which would allow to

average over the “noise” in the signals caused by its natural variability. Presently

time series of thirty years are found adequate to distinguish shorter term fluctuations

from long term trends and to draw reliable conclusions from those data. 

For two reasons it seems now timely to summarize recent experience in dealing

with satellite data when studying changes at the land surfaces. Firstly, to document

the results obtained so far and secondly to pave the ground for a smooth transition

from old sensor systems to the advanced ones which are already available or will

soon become operational. From the new sensor systems, reliable long time series will

become available only thirty years from now. In combination with existing data sets

this goal can be accomplished in fifteen years from now. To create a coherent data

set of the required length it is mandatory to fit the new measurements with their

different instrumental parameters to the present data series.

The information content of measurements made from space can only fully be

understood and applied if the physical and - in the case of vegetation - also the

biological limitations are kept in mind. This knowledge sometimes gets lost as the

applications diverge from the objective of original data. It was therefore found

formative to combine in one volume background information of both the measuring

systems and the objects of investigation with the methodology that leads to

applications. Newcomers and students in this field may also be interested in how

research can be organized to validate and support the inferred information by

corroborative measurements made at the surface. Experiences gained during field

experiments therefore are described to some detail and useful supplemental

information is given in appendices.
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August 2006
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Most of the results reported here originate from a series of EC projects that started in

1987 with Remote Sensing of Energy and Mass Exchanges at the Surface of the
Earth (Twinning project no. ST 2 J 0222) and continued with The ECHIVAL Field
Experiment in a Desertification-threatened Area - EFEDA (EPOC-CT 90-0030),

Remote Sensing and Radiometric Properties of the Surface: Assessment of
Desertification from Space - EFEDA Phase II (EV5V-CT93-0284), An Integrated
Monitoring and Modelling Study of Desertification and Climatic Change Impacts in
the Messara Valley of Crete (EV5V-CT94-0466), Remote Sensing of Mediterranean
Desertification and Environmental Changes - RESMEDES (ENV4-CT95-0094), and

finally Synthesis of Change Detection Parameters Into A Land-surface Change
Indicator for Long Term Desertification Studies in the Mediterranean Area -
RESYSMED (ENV4-CT97-0683). EFEDA was launched by the EC under the

Directorate of Scientific Research and Development, Director R.Fantechi, as

European contribution to the International Satellite Land-surface Climatology

Project (ISLSCP) which was established 1983 and developed its momentum at the

International ISLSCP Conference held in Rome, December 1985. The activities were

continued under the Director for Research, C. Patermann, and the Head of the Unit

for Global Change, DG Research, A. Ghazi, about whose early death in 2005 we

deeply mourn for. The projects were supervised by the Officers P. Balabanis and D.

Peter

The research community participating in the European activities is deeply

indebted to the EC for sponsoring this research into which in addition substantial

national funds were invested from the participating countries. More than 35 research

groups, including one of the U.S.A., participated in this research of which about one

half used  satellite data. The book is a recognition of the dedicated work of the many

scientists,  technicians and administrators that led these EC projects to success. The

list of authors includes those scientists, who, in addition to the editors, wrote

substantial parts of the book. They were supported as documented in the official

project reports by the work of many colleagues to whom editors and authors express

their sincere thanks.

These are, in addition to the editors and authors, the initial EFEDA participants:

J.-C. André, J. L. Arrué, H. K. Barth, G. Bergkamp, P. Bessemoulin, A. Brasa, J.

Bromley, H. A. R. de Bruin, J. Cruces, G. Dugdale, E. T. Engman, D. L. Evans, F.

Fiedler, G. Folloni, J.-P. Goutorbe, R. Harding, A. C. Imeson, A.M. Jochum, P.

Kabat, T. Kratzsch, J. P. Lagouarde, I. Langer, R. Llamas, L. S. Muniosguren, J.

Noilhan, H. R. Oliver, R. Roth, S. S. Saatchi, J. Sanchez Diaz, F. Martin de Santa

Olalla, W. J. Shuttleworth, H. Sogaard, H. Stricker, J. Thornes, E. Todini, I.
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Symbol Definition Dimension, Value

downwelling (incident) radiation flux -

upwelling (reflected) radiation flux -

* “ net” in connection with fluxes -

penetration depth (of heat wave in soils) m

line halfwidth cm-1

absorptance ( a/ 0) -

polarizability A s m2 V-1

Bowen ratio ( SH/ LH) -

aerosol type factor -

psychometric constant 0.67 hPa K-1 at STP

 ( )
instrumental response factor for direct solar

radiation
-

m mean atmospheric temperature gradient K  m-1

, ( )
(vertical)optical depth at wavelength  of scattering

( scat) and Rayleigh  ( R) atmospheres
-

T temperature amplitude K

specific kinetic energy dissipation m2s-3

permittivity, dielectric constant A s V-1 m-1

emissivity (M/MBlack Body); w microwave

emissivity, IR thermal infrared emissivity

-

0 permittivity of vacuum
8.8542  10-12

F m-1 = A s V-1 m-1

sun, solar zenith angle degree

characteristic length of the inner scale (turbulence

theory)

mm

zenith angle of the reflected radiation degree
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zenith angle of the received radiation degree

obs observation nadir angle degree

temperature in degree Celsius °C

specific volumetric soil water content m3 m-3

instrumental response factor for diffuse radiation -

attenuation index, extinction coefficient -

wavelength nm, µm

’ local longitude degree

ref longitude from where the reference time is counted degree

0 , ( ) cosine of solar( observation) angle -

µ magnetic permeability V A-1 s m-1

µ0 permeability of vacuum
1.25664  10-6

H m-1 = V s A-1 m-1

kinematic viscosity m2 s-1

i
ai temperature Independent Spectral Index (TISI) -

[ ( ), ]

general symbol for reflectance [spectral

reflectance] and albedo ( r/ 0) [spectral albedo] 1)
-

( , ) BDRF (Bi-Directional Reflection Factor) -

(d , d ) BRDF (Bi-directional Reflectance Distribution

Function)

sr-1

(z) air density at height z above mean sea level kg m-3

air, dry air density (0.06% CO2)

[1.2932/(1+0.00367 )](p/p0)

1226 kg m-3 at

15°C, 1013 hPa

p planetary albedo -

sa spherical albedo of the atmosphere -

specific conductivity A V-1 m-1

R( ) Rayleigh scattering coefficient 1.06  10-8 -4.09 m-1

transmittance ( t/ 0) -

(m) transmittance at wavelength  and airmass m -

atm transmittance of the atmosphere -

sun, obs azimuth angle of sun and observation degree

, ( ) azimuth angle of observed (incident) radiation degree
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flux W m-2

H buancy flux (flux of turbulent energy) W m-2

LH, LH latent heat flux, evaporation W m-2

R, R radiation flux W m-2

SH, SH sensible heat flux W m-2

soil, G soil (ground) heat flux W m-2

matric potential or suction (soil water

pressure/specific weight of water)
Pa kg-1 m2 s2 = m

= 15[tref + (  - ref)/15 + Z - 12], hour angle hours

circular frequency (2 /N) s-1

~ single scattering albedo -

solid angle (into which radiation is reflected) sr

solid angle from which a target receives radiation sr

a absolute humidity kg m-3

a = 4 /  absorption coefficient m-1

A area (m-2) m-2

A area m2

A0 offset coefficient or spectral radiance at QCAL = 0 W m-2 sr-1

A0 post-calibration offset coefficient  mW cm-2 sr-1 m-1

A1 gain coefficient in units of W m-2 sr-1

A1 post-calibration gain coefficient  mW cm-2 sr-1 m-1

DN-1

magnetic flux density vector T = kg A-1 s-2

B(T) = LBB(T) black body radiance W m-2 sr-1

c speed of light in vacuum 2.997925  108 ms-1

c specific heat capacity of soils J kg-1 K-1

cp specific heat at constant pressure of air 1005 J kg-1 K-1

c1 = 2 hc2, first Planck radiation constant 3.7418  10-16 Wm2

c2 = hc/k, second Planck radiation constant 1.4388 10-2 mK,

Cn
2 structure parameter (or constant) of the refractive

index of air

m-2/3

Cu
2 structure parameter for velocity (m/s)2 m-2/3
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CL, CM, CH
fractional cloud cover for low, middle and high

clouds
-

Cs volumetric heat capacity J m-3 K-1

d instantaneous Sun-Earth distance km

d path length m

d 1 Astronomical Unit (A. U., mean Sun-Earth

distance)

1.496  108 km

d vegetation structure parameter -

D structural function m2 s-2

displacement vector C m-2 = A s m-2

D =  Cs
-1, thermal diffusivity m2 s-1

e water vapour pressure hPa

e0 saturation water vapour pressure hPa

electric field strength vector V m-1

E irradiance (at a target) Wm-2

f Cabannes factor 1.054

f areal fraction covered by vegetation -

Fi( ) filter function -

g acceleration due to gravity 9.8062 m s-2

at 45 ° latitude

gi weight -

h empirical roughness parameter m

h  height m

h Planck constant 6.6262 10-34 J s,

H index, horizontal polarization -

magnetic field strength vector A m-1

H = RT0/Mg, scale height 8435 m 

Hd extraterrestrial solar radiant exposure (irradiance at

a horizontal plane integrated over specified

exposure time)

J m-2 day-1

i (index) isotropically reflecting (Lambertian)

surface

-

i index denotes spectral channel -

I = ( c )½, thermal inertia W m-2 K-1
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k
time constant of clear sky surface temperature post

maximum exponential decay 
hours

k = 2 /  wavenumber m-1, nm-1, µm-1

k von Kármán constant 0.4

k Boltzmann constant 1.3807  10-23 JK-1

K force constant N m-1

K( ) hydraulic (or capillary) conductivity m s-1

L latent heat of water vaporization (A.5) 2.465 MJ kg-1

at 15°C

L radiance Wm-2sr-1

L spectral radiance mW cm-2 sr-1 m-1

LMAX maximum spectral radiance mW cm-2 ster-1

at QCAL = 255 DN

LMIN minimum spectral radiance mW cm-2 ster-1 m

at QCAL= 0 DN

LMO = cp Tv u 3/ g k H, Monin-Obukhov length m

m mass kg

m relative airmass -

M radiation flux density across a unit area Wm-2

Ma molar mass of air up to about 90 km 0.028964 kg mole-1

n refractive index -

n index “natural” reflector -

N molecules per unit volume m-3

N
number of molecules per unit volume (Loschmidt

number)
2.6867  1025 m-3

n0 refractive index of air at 700 nm and sea level 2.76  10-4

p pressure of air hPa

, electric dipole momentum A s m

P fractional vegetation cover -

p0 standard air pressure 1013.25  hPa

Ph energy consumed for photosynthesis W m-2

pR ( ) Rayleigh scattering phase function -

q specific humidity g kg-1
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QCAL quantised and calibrated scaled radiance DN

ql
*(T)  the temperature dependent value of the specific

humidity at saturation that is assumed to be reached

within the leaves 

g kg-1

qs  the specific humidity at the bare soil surface or if

this is dry

g kg-1

qs (SST ) specific humidity at saturation defined by the sea

surface temperatur

g kg-1

position vector m

r resistance to energy transfer

 ra aerodynamic resistance, rs resistance of

unsaturated soil, rst stomatal resistance

s m-1

R gas constant 8.314 J mole-1 K-1

R mean earth radius 6356766 m

R0 range ( R0 pixel size) m

S (T ) line strength (integrated absorption) cm-1 sec-1

S0
exo-atmospheric solar flux density (“solar

constant”)
1368±1 W m-2

S  ( , ,t) solar spectral flux density at the top of the

atmosphere at latitude , declination  and

time t through a horizontal surface 

W m-2 m

T temperature K

T = scat/ R, turbidity factor (Linke) -

tref
reference time, time in hours measured in zonal

mean time
hours

t(Tm) time of clear sky surface temperature maximum hours

T0 reference temperature, e.g. 288.15 K (15 °C) K

TBB black body emission temperature K

Teff effective radiative surface temperature K

Tv = T(1+0.61q), virtual temperature K

u10 wind speed at 10m height m s-1

u friction velocity m s-1

V index, vertical polarization -

w precipitable amount of water vapour cm

W band-width m
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1) Use of the reflectance symbol :

Symbol Definition Dim.

 (d , d ’) bi-directional [spectral] reflectance distribution function (BRDF),

ratio of the directional radiance (W m-2 sr-1) reflected from a

target within an infinitesimally  narrow solid angle to the

incident flux density (irradiance, W m-1) generated by a point

source

sr-1

 ( , ’)

[  ( , ’)]

bi-directional [spectral] reflectance factor (BDRF) defined as

ratio of the radiance reflected from a target to that one reflected

from a white Lambertian reference panel under identical

illumination and observation conditions. The directional radiance

originating from a white Lambertian surface equals 1/  of its

irradiance. The BRDF therefore can be expressed as (radiance

target)/( radiance reference) or BRDF = BDRF 

-

 (d , 2 ) ratio of directional radiance reflected from a target to the

irradiance from a hemispherical source(directional-hemispherical

reflectance)

sr-1

 (2 , 2 ) albedo (= bi-hemispherical reflectance factor): ratio of

hemispherically reflected to incident radiation flux (sometimes

the overbar is used to indicate broad band albedo)

-

W equivalent width cm-1

z0 roughness length cm

zref reference height m

Z equation of time hours



1European International Project on Climatic and Hydrological Interactions between

Vegetation, Atmosphere, and Land-surfaces 

2A short description of these activities can be found in Appendix 1. 

The approach followed in this publication is based upon available long term data

series of NOAA-AVHRR and Nimbus-SMMR and occasional Landsat-TM, SPOT,

Meteosat, and ERS1/2 scenes. The spectrum ranges from the visible to microwaves.

This broad approach was found to be advantageous for the following reasons: (i)

information inferred from medium resolution satellite data can be validated by

stepwise scaling up  from point measurements made at the ground first to high

resolution satellite data and then, by aggregation of pixels, to measurements made

by NOAA-AVHRR and Meteosat, (ii) the different observation times and different

spatial resolutions of satellite systems supplement each other, and (iii) information

gained from sensors with different spectral characteristic mutually support each

other. For the entire lifetime of the new European Envisat mission, for example,

measurements from a variety of instruments are simultaneously available for the first

time. This, nowadays greatly enhances the synergy effect of the measurements.

Most of the presented data result from research projects of the European

Commission, DG Research, starting 1991 with the ECHIVAL1 Field Experiment in

Desertification-threatened Areas (EFEDA)2. These projects were initiated to study

the causes of land degradation and desertification, their relationship to climate

change and man’s activities, and to develop indices to quantify these changes. One

aim was to explore the role which observations from space can play to analyse the

processes that occur at the land surfaces and to overview the whole Mediterranean

basin. Because of the complex topographical structure of the Mediterranean

landscape it seems impossible to obtain such an overview for a longer time period

exclusively by measurements at the surface. Long term observations are necessary to

assess trends superimposed by large annual fluctuations as is the case in the

Mediterranean area. Some climate state variables indicate a quasi-periodicity of

about 23 years. Consequently the aim must be to extend the use of measurements

from space to such time scales. Because different satellites with varying instruments

must be used to cover such a long period, great care has to be taken to construct

homogeneous data series. Only then the analysis of remote sensing data gains weight
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3Meteorological terms used in this book are explained in Appendix 2

in this research. The outcome for the Mediterranean area may also be useful for

investigations and applications in other parts of the world.

The remote sensing component of the above mentioned EC research projects did

not aim at an assessment of land-surface changes by means of repetitive

classification of land-use units. They were rather meant to relate measurements from

satellites to physical and biological quantities that drive land surface - atmosphere

interactions and change due to man’s activities and climate variability. One

important question is whether these processes may be subject to irreversible trends

due to global change. 

Changes at the land surfaces are driven by the annual sequence of weather

situations, extreme weather events, long term global climate change, and the

activities of man in response to ecological and economical forcing. The various

processes involved are briefly reviewed in the following sections of this introduction.

Mediterranean climate occurs in a number of western continental coasts between 30°

and 45° north and south (Strahler 1975). Research in the about 4 Mkm2 large

European, African and Levantine land masses around the Mediterranean Sea

therefore finds its congruity in other regions of the world, such as at the fringe of the

subtropics in the south-west of the United States, Mexico, Chile, Australia, and

South Africa. Notwithstanding this climatic correspondence, the situation of the

European-African-Levantine Mediterranean Basin differs in some respect from that

of the other Mediterranean regions. Its highly structured landmasses border a nearly

closed large inland sea of about 2.5 Mkm2 stretching over 42° longitude or as much

as 3.02 Mkm2 if, in addition, one counts the Marmora and the Black Seas as part of

the Mediterranean area. Because of this longitudinally elongated water mass

enclosed by land, the Mediterranean climate stretches further eastward to south of

the Caspian Sea. This would enlarge the extend of the Mediterranean area to about

10 Mkm2, which is unique in the world.

The Mediterranean climate and its variability was recently described by Lionello

et al. (eds.) (2005). Here only a few processes are recalled in connection to remote

sensing opportunities. The topographically complex Mediterranean Basin, positioned

between the subtropical Hadley circulation system3 and the westerlies, is

characterized by strong climatic gradients and several specific phenomena (see Fig

A.2.1 in Appendix 2). The latter are caused by the seasonal variability of the

latitudinal position of the “polar front”, land-sea circulation systems, travelling

cyclones, low pressure systems caused by convection from hot surfaces, and across

and around mountain air-flows. Mineral dust from the neighboured Saharan desert as

well as from Mediterranean areas with bare soils and air pollution generated locally

or imported from central Europe are blown over the area. The Mediterranean basin

therefore is ideal for research into the interaction of processes between land,
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 Long term 1989 - 2004 annual mean of the radiative surface temperature for cloudless

days and at the time of the NOAA satellites overpasses (the scale is in °C)

atmosphere and sea under variable climatic conditions and at different scales.

The south - north climate gradient shows up in measurements of the radiance in

the thermal infrared spectral bands converted to equivalent temperatures at the top of

the atmosphere (TOA) and then corrected with the split-window technique for

atmospheric effects. The annual mean temperature averaged over the years 1989 to

2004 as obtained by the AVHRR instrument for cloudless days at the time of the

NOAA satellite overpass (e. g. nominal 15:50 UT for NOAA-14 which was the same

for NOAA-11 at launch but by March 1995 NOAA-11 had drifted to 17:33 UT) is

shown in Fig. 1.1. Seasonally averaged TOA temperatures for cloudless conditions

during the years 1989 - 1998 are presented in section 6.9. The colours indicate

temperatures in steps of five degrees ranging from black (0 °C) to red (  42 °C).

Higher spatial resolution is obtained with Landsat-TM images as shown for

south-western Tuscany in Fig. 1.2. Here, the relationship between surface

temperature and land cover (but also altitude) becomes evident. Areas with a high

vegetation index are cooler than harvested fields or quarries with normalized

difference vegetation indices (section 4.6) of typically < 0.2 that indicate bare soils.

Most of the high vegetation index sites are at hills which in addition are affected at

their windward side by the sea breeze. Solar radiation at inclined hilly terrain,

various types of land-use, and the sea breeze cause a diversity of microclimates. 

The average land-surface maximum temperature gradient across the basin is of

the order of 20 K. As Fig. 1.2 shows, temperature differences of this magnitude also

occur at single days in heterogeneous terrain. During winter, the southern European

countries are close to sea surface temperature near noon and, therefore, one can

hardly detect the coastlines in thermal infrared satellite images (see Fig. 6.9.1). In
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spring, lowlands and bare to sparsely vegetated plateaux heat up first. During

summer, the heat is nearly equally distributed across the basin though the North

African and Levantine areas are on average about 15 K warmer than the most

southern European countries. In autumn, the south of Spain, the Anatolian highlands,

the east of Greece, the chain of central Mediterranean Islands and Puglia remain

warm longer than the rest of southern Europe which tends towards the SST. The

contrast between mountainous areas and plains is considerable. This leads to locally

complex valley-mountain circulation systems or katabatic winds as known for the

north-eastern Adriatic coast, where cold air descends from the mountains to sea level

(“Bora”). Though regional contrasts show up in these pictures nearly the same way

every year, the average temperature level may change from year to year. As an

example, in autumn 1998 Anatolian highlands were remarkably warmer than in 1997

and 1999 (see section 6.9.1).

The sea surface temperatures (SST) of the Mediterranean Sea show spatial

differences up to 15 K as can be seen in a more distinctive manner for a summer

month taken by ATSR (for satellite and instruments specifications see Chapter 2 and

Appendix 4) on ERS-2 (Fig. 1.3). There are different reasons that lead to a patchy

distribution of the SST: Differential solar heating, upwelling of cooler deep water

due to internal circulations, water exchange with the Atlantic Ocean, run-off of

cooler river water into the sea, and the intrusion of water from the Black Sea through

the Sea of Marmara. A cold water surge into the Aegean in some years occurs in the

early spring when the Black Sea has the lowest temperatures in the region due to the

inflow of water from northern rivers. On an annual basis, the general features of the

SST reappear year by year. During summer, the central and eastern parts of the sea

are warmer than the western part and the Aegean.

During winter, vigorous synoptic scale weather systems imbedded in the

westerlies are the overriding weather phenomena. High mountain barriers such as the

Atlas, the Pyrenees, the Alps, and the Balkan mountains modify or even generate

these weather systems which develop in the middle troposphere and gain their

momentum by internal energy transfer processes. Well known is the Genova cyclone

generated by the interaction of the westerly airstream with the bow of the Alps.

Behind higher mountains often chinook-like pattern (“Föhn”) develop. Smaller

topographic obstacles are less important for these synoptic scale processes.

The picture changes completely during summer when the westerlies pass further

north and only seldom, in “blocking” situations, affect the Mediterranean area. At

this time of the year, mesoscale and regional topographic effects gain in importance

and interact with the now much smoother large scale pressure distribution in the

Mediterranean area. It is mainly the land-sea circulation that becomes responsible for

the exchange of dry and humid air between land and sea. Already during spring,

large thermal contrasts build up during daytime between sea and land causing warm

air to rise in coastal zones. This generates low surface pressure entraining cooler,

wetter, and heavier air from the sea which warms up rapidly when arriving over land.

 Uprising may develop into vigorous thunderstorms if the moisture is available to

generate deep convective systems that are fed by the latent heat. The air over the sea

which in summer has surface temperatures of 22 - 27°C, locally even higher, can

take up large amounts of water vapour but it often needs additional lifts by near
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  Top: Landsat-TM channel 6 thermal image of south-western Tuscany, 10

August 1998. Colour code on the right in degree Celsius. Bottom: Normalized Difference

Vegetation Index (NDVI - normalized near infrared to red signal difference) of the same

scene with scale on the right
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coastal mountains to move this air up to the condensation level. Pfister (1999)

therefore made such local effects responsible for severe floods in the Mediterranean

area. These occur often in autumn when the air is cooling more rapidly than the

ocean. Millán et al. (1995) and Millán (2000) reported cases of torrential rainfall

near Valencia that occurred in autumn when a high pressure cell was over France

and a low pressure cell over north-western Africa. The air took up its moisture from

very warm water near Tunisia. This was led quickly towards the Spanish coast and

released its water when it was lifted upward by the mountains near the coast.

Buzzi et al. (1994, 1998) and Pfister (1999) could attribute such flood events

inter alia to processes which occurred several days earlier over the North Atlantic

Ocean. They found that the atmospheric flow over the North Atlantic and

Mediterranean area intensifies as the south to north temperature gradient increases in

autumn which would transport considerable additional amounts of moisture into

these regions. Pinto et al. (2001) investigated 30 cases of intense rainfall and showed

that tropical systems and tropical-extratropical interactions indeed can play an

important role in these processes. They detected three mechanisms that may

influence the development of extreme Mediterranean precipitation events: 

A. Tropical systems over the eastern-central North Atlantic curve directly towards

the Mediterranean, undergo a transition into an extra-tropical cyclone and unload

their moisture in the western Mediterranean area. 

B. Tropical systems over the western and central North Atlantic become extra-

tropical cyclones and advect moisture from the subtropics to the extra-tropics.

Part of this moisture is then transported by the converted former tropical or other

systems along the southern rim of the upper tropospheric main flow towards

southern Europe.

C. The tropical system over the western North Atlantic curves east and connects with

an approaching upper-tropospheric mid-latitude trough system. The eastern

trough of this Rossby wave over the Iberian peninsula induces a south-westerly

flow of this moist air over the western Mediterranean area and directs this flow

against the south side of the Alps.

The authors investigated in detail the heavy precipitation event of 13-16 October

2000 when the Po level reached record heights. A tropical storm (“Leslie”) became

an extra-tropical cyclone near Newfoundland. It followed and joined the westerlies

and, positioned in a strong baroclinic zone, it crossed the North Atlantic towards the

British Isles. Over Spain the general air flow formed a trough which directed a

secondary system that inherited part of Leslie’s moisture towards the Strait of

Gibraltar and from there to the Alps. The updraft due to the mountain barrier then

caused the heavy rainfall.

In summer, the westerlies are positioned more northward. Then the these

processes do not play a role. Fig. 1.4 gives an impression of phenomena that can be

observed in early summer. Over the north-eastern Iberian Peninsula and southern

France the development of a large cloud field can be observed that is related to a low

pressure system embedded in the north-easterly flow of the westerlies. This is a

situation similar to what has been described for the autumn rainfall period but the

north-eastward flow occurs more westerly towards France. Over Italy and further

east the land-sea circulation leads to cumulus convection over mountain chains such


